リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「中温性放線菌 Rhodococcus 属細菌による脂肪族芳香族ポリエステルの生分解」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

中温性放線菌 Rhodococcus 属細菌による脂肪族芳香族ポリエステルの生分解

Soulenthone, Phouvilay スレーントーン, プウビライ 群馬大学

2021.03.23

概要

ポリ(ブチレンアジペート-コ-ブチレンテレフタレート) (PBAT)は、1,4 ブタンジオール、アジピン酸、及びテレフタル酸から構成された脂肪族芳香族ポリエステルであり、汎用性プラスチックの低密度ポリエチレン(LDPE)と類似する優れた機械的特性を有する代表的な生分解性プラスチックである。このため、 PBAT は LDPE の代替品の一つとして農業用プラスチックマルチの素材として期待されている。PBAT の生分解性速度はコンポストなどの高温環境では大きいが、生分解プラスチックマルチが使用される中温環境では小さい。中温環境土壌からいくつかの PBAT 分解微生物が単離されている。一方で、中温性微生物による PBAT の生分解性評価や PBAT の一次分解に関与する酵素の特徴付けなど、中温環境での PBAT 分解機構を詳細に調べた研究は少ない。PBATを素材にした生分解性プラスチックマルチが、使用後にオンサイト処理されることを想定すると、中温環境下での PBAT の分解機構について詳細に明らかにし、中温環境での PBAT の分解制御に資する知見を得ることが求められる。本博士論文では、土壌からあらたな PBAT 分解細菌を単離し、分解に関与する酵素の生理学的性質と構造について詳しく調べ、中温環境下における PBAT の生分解性機構の解明に取り組んだ。

第2章において、微生物による中温環境下での PBAT の生分解機構について明らかにするために、土壌から新たな PBAT 分解細菌を単離し、その単離微生物による PBAT の分解能や分解の特徴について調べた。クリアゾーン形成法により、PBAT 分解微生物NKCM2511 株を単離した。生化学的生理学的性質特徴付け、系統発生解析およびゲノム解析から、本株は放線菌 Rhodococcus fascians に近縁な種であることがわかった。R. fascians は Nicotian tabacum(タバコ)といった植物の葉に腫瘍の形成を誘導する植物病原菌とよく知られているが、PBAT に対する分解活性を示す報告については、本博士論文がはじめてとなる。本株は 16.3 µg/cm2/d の速度で PBAT フィルムを分解した。本株による PBAT フィルムの生分解度を、生化学的酸素要求量(BOD)生分解度試験により評価したところ、25 ˚C で 22 日後には、PBAT フィルムの BOD 生分解度は 7 %であった。この結果は、本株が PBAT を二酸化炭素まで無機化できる完全 PBAT 分解細菌であることを示唆している。また、本株の PBAT 分解酵素の生産は、誘導的ではなく構成的であることがわかった。すなわち、NKCM2511株は中温環境で PBAT を分解したが、PBAT によって集積されないことが推定された。

第3章において、NKCM2511 株による分解機構を詳細に理解するために、PBAT の分解に関与する分解酵素を同定した。また組換え酵素を用いて PBAT 分解機構解明を検討した。第2章で得られたゲノム解析の結果に基づき推定した PBAT 分解酵素遺伝子(pbathRf)をクローニングし、組換え酵素 PBATHRfを生産および精製した。組換え酵素 PBATHRfは 30 ˚C で、0.10 ± 0.03 mg/cm2/d の速度で PBAT フィルムを分解し、また PBAT をモノマー構成成分まで加水分解した。系統樹解析から、PBATHRf は、真菌由来クチナーゼや R. fascians D188 由来クチナーゼに高い相同性を示すことがわかった。PBATHRfのホモロジー3D モデリングから、PBATHRfは活性部位を覆うリッドドメインを保持しないα/β加水分解酵素であることがわかった。PBATHRfによる PBAT オリゴマーモデル基質ビス(4-ヒドロキシブチル)アジペート(BAB)の分解速度は、ビス(4-ヒドロキシブチル)テレフタレート(BTB)のものと比べ約 19 倍大きかった。分子ドッキングから、PBATHRf の基質結合ポケットは、PBAT オリゴマーモデル基質の BTB と BAB を収容するのに十分な広さを保持していたが、ドッキングモデルの推定に基づく BAB と PBATHRfの間の結合エネルギーが、BTB と酵素の間の結合エネルギーよりもはるかに低いことから、PBATHRfは BTB よりも BAB に対して高い親和性を示すことがわかった。これら結果より、PBATHRfが PBAT に対して低い分解活性を示す理由の一つとして、テレフタル酸とブタンジオール間のエステル結合が切断し難いためだと推定した。

第4章では、本博士論文を総括した。R. fascians NKCM2511 株は、中温性で単独で PBAT を無機化できる細菌であると推定された。一方、NKCM2511 株による PBAT の BOD 生分解度は低く、また、本株は PBAT により集積されなかったため、実際の中温環境下での R. fascians による PBAT の生分解への寄与は小さいと推定された。PBAT は R. fascians のような土壌伝達性植物病原細菌により分解されるものの、この細菌種を集積しないことから、PBAT を生分解性プラスチックマルチの素材として利用することを妨げないと結論付けた。本博士論文より、中温環境下で容易に分解されず分解細菌を集積しない性質を持つ PBAT の生分解を加速させるためには、PBAT 分解微生物やその分解物を資化する微生物を含む、PBAT 周辺全ての微生物数を増加させる必要があると考えられる。本論文の最後に、これを実現する方法として、堆肥や肥料と共に PBAT プラスチックマルチを土壌にすきこむことを提案した。

この論文で使われている画像

参考文献

[1] J.W. Courter, J.S. Vandemark, H.J. Hopen, Mulching vegetables: practices and commercial applications, 1009 (1969) p. 3.

[2] S. Kasirajan, M. Ngouajio, Polyethylene and biodegradable mulches for agricultural applications: a review, Agron. Sustain. Dev. 32 (2012) 501–529.

[3] W.J. Lamont, Plastic mulches for the production of vegetable crops, Horttechnology 3 (1993) 35–39.

[4] W. Schnathorst, Reinfection possibilities for angular leaf spot pathogen in California cotton, Calif. Agric. 23 (1969) 17–18.

[5] G. He, Z. Wang, S. Li, S.S. Malhi, Plastic mulch: Tradeoffs between productivity and greenhouse gas emissions, J. Clean. Prod. 172 (2018) 1311–1318.

[6] ⽯本正⼀, ⼟壌環境調節資材⼀マルチ, 繊維学会誌, 49 (1993) 286–290.

[7] D.J. Sarkar, M. Barman, M. De, D. Chatterjee, Agriculture : Polymers in crop production mulch and fertilizer, (2018) p. 1-2.

[8] A. Ramakrishna, H.M. Tam, S.P. Wani, T.D. Long, Effect of mulch on soil temperature, moisture, weed infestation and yield of groundnut in northern Vietnam, Field Crops Res. 95 (2006) 115–125.

[9] W. Zribi, R. Aragüés, E. Medina, J.M. Faci, Efficiency of inorganic and organic mulching materials for soil evaporation control, Soil Tillage Res. 148 (2015) 40–45.

[10] G. Mahajan, R. Sharda, A. Kumar, K. G. Singh, Effect of plastic mulch on economizing irrigation water and weed control in baby corn sown by different methods., Afr. J. Agr. Res. 2 (2006) 19–26.

[11] C. Miles, C., R. Wallace, A. Wszelaki, J. Martin, J. Cowan, T. Walters, D. Inglis, Deterioration of potentially biodegradable alternatives to black plastic mulch in three tomato production regions, HortScience 47 (2012) 1270–1277.

[12] S. Kumar, P. Dey, Effects of different mulches and irrigation methods on root growth, nutrient uptake, water-use efficiency and yield of strawberry, Sci. Hortic-Amsterdam 127(2011) 318– 324.

[13] H. C. J. Godfray, J. R. Beddington, I. R. Crute, L. Haddad, D. Lawrence, J. F. Muir, J. Pretty, S. Robinson, S. M. Thomas, C. Toulmin, Food security: The challenge of the feeding 9 billion people, Science 327 (2010) 812–818.

[14] F. Shah, W. Wu, Use of plastic mulch in agriculture and strategies to mitigate the associated environmental concerns, Adv. Agron. 164 (2020) 231–287.

[15] H.R. Hard, M. Brusseau, M. Ramirez-Andreotta, Assessing the feasibility of using a closed landfill for agricultural graze land, Environ. Monit. Assess. 191 (2019) 458.

[16] W.P. Linak, J. V. Ryan, E. Perry, R.W. Williams, D.M. DeMarini, Chemical and biological characterization of products of incomplete combustion from the simulated field burning of agricultural plastic, JAPCA J. Air Waste Ma. 39 (1989) 836–846.

[17] 平成 16 年度 マーケテイング調査⽀援⾏事業成果報告書 https://www.icon- nagano.or.jp/report/market/kiduki.pdf.

[18] J. Moore, A. Wszelaki, Plastic mulch in fruit and vegetable production: challenges for disposal, Washington State University Extension Fact Sheet , (2016), 1-4.

[19] D. Briassoulis, E. Babou, M. Hiskakis, I. Kyrikou, Analysis of long-term degradation behaviour of polyethylene mulching films with pro-oxidants under real cultivation and soil burial conditions, Environ. Sci. Pollut. Res. Int. 22 (2015) 2584–2598.

[20] L. Ramos, G. Berenstein, E.A. Hughes, A. Zalts, J.M. Montserrat, Polyethylene film incorporation into the horticultural soil of small periurban production units in Argentina, Sci. Total Environ. 523 (2015) 74–81.

[21] D. Zhang, H. B. Liu, W. L. Hu, X. H. Qin, X. W. Ma, C. R. Yan, H. Y. Wang, The status and distribution characteristics of residual mulching film in Xinjiang, China, J. Integr. Agric. 15 (2016) 2639–2646.

[22] Y. Qi, N. Beriot, G. Gort, E. H. Lwanga, H. Gooren, X. Yang, V. Geissen, Impact of plastic mulch film debris on soil physicochemical and hydrological properties, Environ. Pollut., 266 (2020) 115097.

[23] L. Yuanqiao, Z. Caixia, Y. Changrong, M. Lili, L. Qi, L. Zhen, H. Wenqing, Effects of agricultural plastic film residues on transportation and distribution of water and nitrate in soil, Chemosphere, 242 (2020) 125131.

[24] D. Hegan, L. Tong, H. Zhiquan, S. Qinming, L. Ru, Determining time limits of continuous film mulching and examining residual effects on cotton yield and soil properties, J. Environ. Biol., 36 (2015) e677–e684.

[25] E.K. Liu, W.Q. He, C.R. Yan, “White revolution” to “white pollution” –agricultural plastic film mulch in China, Environ. Res. Lett. 9 (2014) 091001.

[26] Z. Steinmetz, C. Wollmann, M. Schaefer, C. Buchmann, J. David, J. Tröger, K. Muñoz, O. Frör, G.E. Schaumann, Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation?, Sci. Total Environ. 550 (2016) 690–705.

[27] T. Kijchavengkul, R. Auras, M. Rubino, M. Ngouajio, R.T. Fernandez, Assessment of aliphatic– aromatic copolyester biodegradable mulch films. Part II: Laboratory simulated conditions, Chemosphere 71 (2008) 1607–1616.

[28] A.P. Bilck, M.V.E. Grossmann, F. Yamashita, Biodegradable mulch films for strawberry production, Polym. Test. 29 (2010) 471–476.

[29] T. Kijchavengkul, R. Auras, M. Rubino, M. Ngouajio, R.T. Fernandez, Assessment of aliphatic – aromatic copolyester biodegradable mulch films . Part I : Field study, Chemosphere 71 (2008) 942–953.

[30] A. Rangarajan, B. Ingall, Biodegradable mulch product testing 2006, Department of horticulture, Cornell University, Ithaca, NY, USA, 2006.

[31] 農林⽔産省 農業分野から排出されるプラスチック をめぐる情勢 平成31年2⽉, https://www.maff.go.jp/j/seisan/pura-jun/pdf/haipura_josei.pdf

[32] 令和元年度 脱炭素社会を⽀えるプラスチック等資源循環システム構築実証事業 (2019), http://www.env.go.jp/recycle/R01_010_Mitsubishi.pdf

[33] J. C. Huang, A.S. Shetty, M. S. Wang, Biodegradable plastics: A review, Adv. Polym. Tech. 10 (1990) 23–30.

[34] G.Q. Chen, Plastics completely synthesized by bacteria: polyhydroxyalkanoates, Plastics from bacteria. Springer, Berlin, Heidelberg, (2010) 17–37.

[35] K. Van De Velde, P. Kiekens, Biopolymers: Overview of several properties and consequences on their applications, Polym. Test. 21 (2002) 433–442.

[36] Y. Tokiwa, T. Suzuki, Hydrolysis of copolyesters containing aromatic and aliphatic ester blocks by lipase, J. Appl. Polym. Sci. 26 (1981) 441–448.

[37] R. Koshti, L. Mehta, N. Samarth, Biological recycling of polyethylene terephthalate: A mini- review, J. Polym. Environ. 26 (2018) 3520–3529.

[38] U. Witt, R.J. Müller, W.D. Deckwer, New biodegradable polyester-copolymers from commodity chemicals with favorable use properties, J. Environ. Polym. Degr. 3 (1995) 215– 223.

[39] U. Witt, R.J. Müller, W.D. Deckwer, Biodegradation behavior and material properties of aliphatic/aromatic polyesters of commercial importance, J. Environ. Polym. Degr. 5 (1997) 81– 89.

[40] U. Witt, M. Yamamoto, U. Seeliger, R.J. Müller, V. Warzelhan, Biodegradable polymeric materials - Not the origin but the chemical structure determines biodegradability, Angew. Chem. Int. Ed., 38 (1999) 1438–1442.

[41] BASF SE ホ ー ム ペ ー ジ , https://plastics-rubber.basf.com/global/en/performance_polymers/products/ecoflex.html.

[42] European bioplastic home page , bioplastic market data, https://www.european- bioplastics.org/market/

[43] Z. Gan, K. Kuwabara, M. Yamamoto, H. Abe, Y. Doi, Solid-state structures and thermal properties of aliphatic-aromatic poly(butylene adipate-co-butylene terephthalate) copolyesters, Polym. Degrad. Stabil. 83 (2004) 289–300.

[44] A. Sangroniz, L. Sangroniz, N. Aranburu, M. Fernández, A. Santamaria, M. Iriarte, A. Etxeberria, Blends of biodegradable poly(butylene adipate-co-terephthalate) with poly(hydroxi amino ether) for packaging applications: Miscibility, rheology and transport properties, Eur. Polym. J., 105 (2018) 348–358.

[45] M. Yamamoto, U. Witt, G. Skupin, D. Beimborn, R.J. Müller, Biodegradable aliphatic-aromatic polyesters: “Ecoflex ® ”, Biopolymer Online, Weinheim, Germany, Part 4, 2005.

[46] ⽇本バイオプラスチック協会, http://www.jbpaweb.net/m-film/.

[47] D. Garlotta, A literature review of poly( lactic acid ), J. Polym. Environ. 9 (2002) 63–84.

[48] T. Fujimaki, Processability and properties of aliphatic polyesters, “BIONOLLE”, synthesized by polycondensation reaction, Polym. Degrad. Stabil. 59 (1998) 209–214.

[49] Y. Ichikawa, T. Mizukoshi, Bionolle (polybutylenesuccinate), (2011) 285–313.

[50] M. Labet, W. Thielemans, Synthesis of polycaprolactone: A review, Chem. Soc. Rev. 38 (2009) 3484–3504.

[51] K. Sudesh, H. Abe, Y. Doi, Synthesis, structure and properties of polyhydroxyalkanoates: Biological polyesters, Prog. Polym. Sci. 25 (2000) 1503–1555.

[52] 辻秀⼈, ⽣分解性⾼分⼦材料の科学 (2002) p.1, p.88–102.

[53] K. Numata, H. Abe, T. Iwata, Biodegradability of poly(hydroxyalkanoate) materials, Materials 2 (2009) 1104–1126.

[54] E. Marten, R.J. Müller, W.D. Deckwer, Studies on the enzymatic hydrolysis of polyesters. II. Aliphatic-aromatic copolyesters, Polym. Degrad. Stabil. 88 (2005) 371–381.

[55] Z. Saadi, G. Cesar, H. Bewa, L. Benguigui, Fungal degradation of poly(butylene adipate-co- terephthalate) in soil and in compost, J. Polym. Environ. 21 (2013) 893–901.

[56] P. Svoboda, M. Dvorackova, D. Svobodova, Influence of biodegradation on crystallization of poly (butylene adipate-co-terephthalate), Polym. Adv. Technol. 30 (2019) 552–562.

[57] T. Kijchavengkul, R. Auras, M. Rubino, S. Selke, M. Ngouajio, R.T. Fernandez, Biodegradation and hydrolysis rate of aliphatic aromatic polyester, Polym. Degrad. Stabil. 95 (2010) 2641–2647.

[58] T. Kijchavengkul, R. Auras, M. Rubino, E. Alvarado, J.R. Camacho Montero, J.M. Rosales, Atmospheric and soil degradation of aliphatic-aromatic polyester films, Polym. Degrad. Stabil. 95 (2010) 99–107.

[59] G.X. De Hoe, M.T. Zumstein, G.J. Getzinger, I. Rüegsegger, H.P.E. Kohler, M.A. Maurer-Jones, M. Sander, M.A. Hillmyer, K. McNeill, Photochemical transformation of poly(butylene adipate- co-terephthalate) and its effects on enzymatic hydrolyzability, Environ. Sci. Technol. 53 (2019) 2472–2481.

[60] I. Kleeberg, C. Hetz, R.M. Kroppenstedt, R.J. Müller, W.D. Deckwer, Biodegradation of aliphatic-aromatic copolyesters by Thermomonospora fusca and other thermophilic compost isolates, Appl. Environ. Microbiol. 64 (1998) 1731–1735.

[61] U. Witt, T. Einig, M. Yamamoto, I. Kleeberg, W.D. Deckwer, R.J. Müller, Biodegradation of aliphatic–aromatic copolyesters: evaluation of the final biodegradability and ecotoxicological impact of degradation intermediates, Chemosphere 44 (2001) 289–299.

[62] X. Hu, U. Thumarat, X. Zhang, M. Tang, F. Kawai, Diversity of polyester-degrading bacteria in compost and molecular analysis of a thermoactive esterase from Thermobifida alba AHK119, Appl. Microbiol. Biot. 87 (2010) 771–779.

[63] D.M. Abou-Zeid, R.J. Müller, W.D. Deckwer, Biodegradation of aliphatic homopolyesters and aliphatic-aromatic copolyesters by anaerobic microorganisms, Biomacromolecules 5 (2004) 1687–1697.

[64] D.M. Abou-Zeid, H. Biebl, C. Spröer, R.J. Müller, Propionispora hippei sp. nov., a novel Gram- positive, spore-forming anaerobe that produces propionic acid, Int. J. Syst. Evol. Microbiol. 54 (2004) 951–954.

[65] V. Perz, A. Hromic, A. Baumschlager, G. Steinkellner, T. Pavkov-Keller, K. Gruber, K. Bleymaier, S. Zitzenbacher, A. Zankel, C. Mayrhofer, C. Sinkel, U. Kueper, K. Schlegel, D. Ribitsch, G.M. Guebitz, An esterase from anaerobic Clostridium hathewayi can hydrolyze aliphatic-aromatic polyesters, Environ. Sci. Technol. 50 (2016) 2899–2907.

[66] F. Muroi, Y. Tachibana, P. Soulenthone, K. Yamamoto, T. Mizuno, T. Sakurai, Y. Kobayashi, K. Kasuya, Characterization of a poly(butylene adipate-co-terephthalate) hydrolase from the aerobic mesophilic bacterium Bacillus pumilus, Polym. Degrad. Stabil. 137 (2017) 11–22.

[67] T. Nakajima-Kambe, F. Ichihashi, R. Matsuzoe, S. Kato, N. Shintani, Degradation of aliphatic- aromatic copolyesters by bacteria that can degrade aliphatic polyesters, Polym. Degrad. Stabil. 94 (2009) 1901–1905.

[68] F. Trinh Tan, D.G. Cooper, M. Marić, J.A. Nicell, Biodegradation of a synthetic co-polyester by aerobic mesophilic microorganisms, Polym. Degrad. Stabil. 93 (2008) 1479–1485.

[69] H. Jia, M. Zhang, Y. Weng, Y. Zhao, C. Li, A. Kanwal, Degradation of poly(butylene adipate- co-terephthalate) by Stenotrophomonas sp. YCJ1 isolated from farmland soil, J. Environ. Sci. 103 (2021) 50–58.

[70] K. Kasuya, N. Ishii, Y. Inoue, K. Yazawa, T. Tagaya, T. Yotsumoto, J. Kazahaya, D. Nagai, Characterization of a mesophilic aliphatic–aromatic copolyester-degrading fungus, Polym. Degrad. Stabil. 94 (2009) 1190–1196.

[71] M. Aarthy, P. Puhazhselvan, R. Aparna, A.S. George, M.K. Gowthaman, N. Ayyadurai, K. Masaki, T. Nakajima-Kambe, N.R. Kamini, Growth associated degradation of aliphatic- aromatic copolyesters by Cryptococcus sp. MTCC 5455, Polym. Degrad. Stabil. 152 (2018) 20–28.

[72] H. Iefuji, Y. Iimura, T. Obata, Isolation and characterization of a yeast Cryptococcus sp. S-2 that produces raw starch-digesting α-amylase, xylanase, and polygalacturonase, Biosci. Biotech. Bioch. 58 (1994) 2261–2262.

[73] T. Nakajima-Kambe, K. Toyoshima, C. Saito, H. Takaguchi, Y. Akutsu-Shigeno, M. Sato, K. Miyama, N. Nomura, H. Uchiyama, Rapid monomerization of poly(butylene succinate)-co- (butylene adipate) by Leptothrix sp., J. Biosci. Bioeng. 108 (2009) 513–516.

[74] V. Perz, A. Baumschlager, K. Bleymaier, S. Zitzenbacher, A. Hromic, G. Steinkellner, A. Pairitsch, A. Łyskowski, K. Gruber, C. Sinkel, U. Küper, D. Ribitsch, G.M. Guebitz, Hydrolysis of synthetic polyesters by Clostridium botulinum esterases, Biotechnol. Bioeng. 113 (2016) 1024–1034.

[75] P.W. Wallace, K. Haernvall, D. Ribitsch, S. Zitzenbacher, M. Schittmayer, G. Steinkellner, K. Gruber, G.M. Guebitz, R. Birner-Gruenberger, PpEst is a novel PBAT degrading polyesterase identified by proteomic screening of Pseudomonas pseudoalcaligenes, Appl. Microbiol. Biot. 101 (2017) 2291–2303.

[76] A. Biundo, A. Hromic, T. Pavkov-Keller, K. Gruber, F. Quartinello, K. Haernvall, V. Perz, M.S. Arrell, M. Zinn, D. Ribitsch, G.M. Guebitz, Characterization of a poly(butylene adipate-co- terephthalate)-hydrolyzing lipase from Pelosinus fermentans, Appl. Microbiol. Biot. 100 (2016) 1753–1764.

[77] I. Kleeberg, K. Welzel, J. VandenHeuvel, R.J. Müller, W.D. Deckwer, Characterization of a new extracellular hydrolase from Thermobifida fusca degrading aliphatic-aromatic copolyesters, Biomacromolecules 6 (2005) 262–270.

[78] V. Perz, K. Bleymaier, C. Sinkel, U. Kueper, M. Bonnekessel, D. Ribitsch, G.M. Guebitz, Substrate specificities of cutinases on aliphatic-aromatic polyesters and on their model substrates, N. Biotechnol. 33 (2016) 295–304.

[79] F. Kawai, M. Oda, T. Tamashiro, T. Waku, N. Tanaka, M. Yamamoto, H. Mizushima, T. Miyakawa, M. Tanokura, A novel Ca2+-activated, thermostabilized polyesterase capable of hydrolyzing polyethylene terephthalate from Saccharomonospora viridis AHK190, Appl. Microbiol. Biot. 98 (2014) 10053–10064.

[80] M.T. Zumstein, D. Rechsteiner, N. Roduner, V. Perz, D. Ribitsch, G.M. Guebitz, H.P.E. Kohler, K. McNeill, M. Sander, Enzymatic hydrolysis of polyester thin films at the nanoscale: effects of polyester structure and enzyme active-site accessibility, Environ. Sci. Technol. 51 (2017) 7476– 7485.

[81] U. Thumarat, R. Nakamura, T. Kawabata, H. Suzuki, F. Kawai, Biochemical and genetic analysis of a cutinase-type polyesterase from a thermophilic Thermobifida alba AHK119, Appl. Microbiol. Biot. 95 (2012) 419–430.

[82] K. Suzuki, M.T. Noguchi, Y. Shinozaki, M. Koitabashi, Y. Sameshima-Yamashita, S. Yoshida, T. Fujii, H.K. Kitamoto, Purification, characterization, and cloning of the gene for a biodegradable plastic-degrading enzyme from Paraphoma-related fungal strain B47-9, Appl. Microbiol. Biot. 98 (2014) 4457–4465.

[83] T. Watanabe, K. Suzuki, Y. Shinozaki, T. Yarimizu, S. Yoshida, Y. Sameshima-Yamashita, M. Koitabashi, H.K. Kitamoto, A UV-induced mutant of Cryptococcus flavus GB-1 with increased production of a biodegradable plastic-degrading enzyme, Process Biochem. 50 (2015) 1718– 1724.

[84] N. Sinsereekul, T. Wangkam, A. Thamchaipenet, T. Srikhirin, L. Eurwilaichitr, V. Champreda, Recombinant expression of BTA hydrolase in Streptomyces rimosus and catalytic analysis on polyesters by surface plasmon resonance, Appl. Microbiol. Biot. 86 (2010) 1775–1784.

[85] P.E. Kolattukudy, Biopolyester membranes of plants: Cutin and suberin, Science 208 (1980) 990–1000.

[86] U. Thumarat, T. Kawabata, M. Nakajima, H. Nakajima, A. Sugiyama, K. Yazaki, T. Tada, T. Waku, N. Tanaka, F. Kawai, Comparison of genetic structures and biochemical properties of tandem cutinase-type polyesterases from Thermobifida alba AHK119, J. Biosci. Bioeng. 120 (2015) 491–497.

[87] K. Kitadokoro, U. Thumarat, R. Nakamura, K. Nishimura, H. Karatani, H. Suzuki, F. Kawai, Crystal structure of cutinase Est119 from Thermobifida alba AHK119 that can degrade modified polyethylene terephthalate at 1.76 Å resolution, Polym. Degrad. Stabil. 97 (2012) 771–775.

[88] F. Kawai, T. Kawabata, M. Oda, Current state and perspectives related to the polyethylene terephthalate hydrolases available for biorecycling, ACS Sustain. Chem. Eng. 8 (2020) 8894– 8908.

[89] A. Pellis, V. Ferrario, B. Zartl, M. Brandauer, C. Gamerith, E. Herrero Acero, C. Ebert, L. Gardossi, G.M. Guebitz, Enlarging the tools for efficient enzymatic polycondensation: Structural and catalytic features of cutinase 1 from Thermobifida cellulosilytica, Cat. Sci. Tec. 6 (2016) 3430–3442.

[90] N. Numoto, N. Kamiya, G.J. Bekker, Y. Yamagami, S. Inaba, K. Ishii, S. Uchiyama, F. Kawai, N. Ito, M. Oda, Structural dynamics of the PET-degrading cutinase-like enzyme from Saccharomonospora viridis AHK190 in substrate-bound states elucidates the Ca2+-driven catalytic cycle, Biochemistry 57 (2018) 5289–5300.

[91] D. Kold, Z. Dauter, A.K. Laustsen, A.M. Brzozowski, J.P. Turkenburg, A.D. Nielsen, H. Koldsø, E. Petersen, B. Schiøtt, L. De Maria, K.S. Wilson, A. Svendsen, R. Wimmer, Thermodynamic and structural investigation of the specific SDS binding of Humicola insolens cutinase, Protein Sci. 23 (2014) 1023–1035.

[92] S. Longhi, M. Czjzek, V. Lamzin, A. Nicolas, C. Cambillau, Atomic resolution (1.0 Å) crystal structure of Fusarium solani cutinase: Stereochemical analysis, J. Mol. Biol. 268 (1997) 779– 799.

[93] M. Goodfellow, Reclassification of Corynebacterium fascians (Tilford) Dowson in the Genus Rhodococcus, as Rhodococcus fascians comb. nov., Syst. Appl. Microbiol. 5 (1984) 225–229.

[94] P. E. Tilford, Fasciation of sweet peas caused by Phytomonas fascians n. sp., J. Agric. Res. 53 (1936) 383–394.

[95] K. S. Bell, J. C. Philp,D. W. Aw, N. Christofi, N.. The genus Rhodococcus, J. Appl. Microbiol. 85(1998), 195-210..

[96] K. Goethals, D. Vereecke, M. Jaziri, M. Van Montagu, M. Holsters, Leafy gall formation by Rhodococcus fascians,Annu. Rev. Phytophathol. 39 (2001) 27–52.

[97] P.E. Jameson, Virulent Rhodococcus fascians produce unique methylated cytokinins, Plants 8 (2019) 10–13.

[98] E. Stes, I. Francis, I. Pertry, A. Dolzblasz, S. Depuydt, D. Vereecke, The leafy gall syndrome induced by Rhodococcus fascians, FEMS Microbiol. Lett. 342 (2013) 187–194.

[99] M. Naseem, M. Wölfling, T. Dandekar, Cytokinins for immunity beyond growth, galls and green islands, Trends Plant Sci. 19 (2014) 481–484.

[100] M. Crespi, E. Messens, A.B. Caplan, M. Van Montagu, J. Desomer, Fasciation induction by the phytopathogen Rhodococcus fascians depends upon a linear plasmid encoding a cytokinin synthase gene, EMBO J. 11 (1992) 795–804.

[101] I. Francis, A. De Keyser, P. De Backer, C. Simón-Mateo, J. Kalkus, I. Pertry, W. Ardiles-Diaz, R. De Rycke, O.M. Vandeputte, M. El Jaziri, M. Holsters, D. Vereecke, pFiD188, the linear virulence plasmid of Rhodococcus fascians D188, Mol. Plant Microbe In. 25 (2012) 637–647.

[102] I.M. Francis, E. Stes, Y. Zhang, D. Rangel, K. Audenaert, D. Vereecke, Mining the genome of Rhodococcus fascians, a plant growth-promoting bacterium gone astray, N. Biotechnol. 33 (2016) 706–717.

[103] A.L. Creason, O.M. Vandeputte, E.A. Savory, E.W. Davis, M.L. Putnam, E. Hu, D. Swader- Hines, A. Mol, M. Baucher, E. Prinsen, M. Zdanowska, S.A. Givan, M. El Jaziri, J.E. Loper, T. Mahmud, J.H. Chang, Analysis of genome sequences from plant pathogenic Rhodococcus reveals genetic novelties in virulence loci, Plos One 9 (2014) e101996.

[104] C.H. Kim, D.W. Lee, Y.M. Heo, H. Lee, Y. Yoo, G.H. Kim, J.J. Kim, Desorption and solubilization of anthracene by a rhamnolipid biosurfactant from Rhodococcus fascians, Water Environ. Res. 91 (2019) 739–747.

[105] S.S.M. Puri, Munish, Lakhwinder Kaur, Partial purification and characterization of limonoate dehydrogenase from Rhodococcus fascians for the degradation of limonin, J. Microbiol. Biotechn. 12 (2002) 663–673.

[106] G. Zhao, C. Yang, B. Li, W. Xia, A new phenylethyl alkyl amide from the Ambrostoma quadriimpressum Motschulsky, Beilstein J. Org. Chem. 7 (2011) 1342–1346.

[107] G. Sezonov, D. Joseleau-Petit, R. D’Ari, Escherichia coli physiology in Luria-Bertani broth, J. Bacteriol. 189 (2007) 8746–8749.

[108] N. Ishii, N.,Y. Inoue, K. I. Shimada, Y. Tezuka, H. Mitomo, K. Kasuya,. Fungal degradation of poly (ethylene succinate), Polym. Degrad. Stabil. 92 (2007) 44-52.

[109] K. Wilson, Preparation of genomic DNA from bacteria, Curr. Protoc. Mol. Biol., 56 (2001) 2-4.

[110] Y. Tezuka, N. Ishii, K. Kasuya, H. Mitomo, Degradation of poly(ethylene succinate) by mesophilic bacteria, Polym. Degrad. Stabil. 84 (2004) 115–121.

[111] N. Saitou, Nei, M. Nei, The neighbor-joining method: a new method for reconstructing phylogenetic trees, Mol. Biol. Evol. 4 (1987) 406–425.

[112] S. Kumar, G. Stecher, K. Tamura, MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets, Mol. Biol. Evol. 33 (2016) 1870–1874.

[113] M.F. Fernandes, Fatty acid profiling of soil microbial communities: A comparison of extraction methods and temporal dynamics in plant amended, Chapter 1 (2006) 5-36.

[114] M. Mesbah, U. Premachadran, W.B. Whitman, Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography, Int. J. Syst. Bacteriol. 39 (1989) 159–167.

[115] K. Kasuya, K. Takagi, S.I. Ishiwatari, Y. Yoshida, Y. Doi, Biodegradabilities of various aliphatic polyesters in natural waters, Polym. Degrad. Stabil. 59 (1998) 327–332.

[116] M. Suzuki, Y. Tachibana, K. Oba, R. Takizawa, K. Kasuya, Microbial degradation of poly(ε- caprolactone) in a coastal environment, Polym. Degrad. Stabil. 149 (2018) 1–8.

[117] H. Schägger, Tricine–SDS-PAGE, Nat. Protoc. 1 (2006) 16–22.

[118] U.K. Laemmli, Cleavage of structural proteins durin the assembly of the head of bacteriophage T4, Nature 227 (1970) 680–685.

[119] A.M. Bolger, M. Lohse, B. Usadel, Trimmomatic: A flexible trimmer for illumina sequence data, Bioinformatics 30 (2014) 2114–2120.

[120] A. Bankevich, S. Nurk, D. Antipov, A.A. Gurevich, M. Dvorkin, A.S. Kulikov, V.M. Lesin, S.I. Nikolenko, S. Pham, A.D. Prjibelski, A. V. Pyshkin, A. V. Sirotkin, N. Vyahhi, G. Tesler, M.A. Alekseyev, P.A. Pevzner, SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing, J. Comput. Biol. 19 (2012) 455–477.

[121] C. Jain, L.M. Rodriguez-R, A.M. Phillippy, K.T. Konstantinidis, S. Aluru, High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries, Nat. Commun. 9 (2018) 1–8.

[122] T. Seemann, Prokka: Rapid prokaryotic genome annotation, Bioinformatics 30 (2014) 2068–2069.

[123] V. Gesheva, Production of antibiotics and enzymes by soil microorganisms from the windmill islands region, Wilkes Land, East Antarctica, Polar Biol. 33 (2010) 1351–1357.

[124] R. Boden, E. Thomas, P. Savani, D.P. Kelly, A.P. Wood, Novel methylotrophic bacteria isolated from the River Thames (London, UK), Environ. Microbiol. 10 (2008) 3225–3236.

[125] L. Martínková, B. Uhnáková, M. Pátek, J. Nešvera, V. Křen, Biodegradation potential of the genus Rhodococcus, Environ. Int. 35 (2009) 162–177.

[126] A.K. Bej, D. Saul, J. Aislabie, Cold-tolerant alkane-degrading Rhodococcus species from Antarctica, Polar Biol. 23 (2000) 100–105.

[127] A.K. Urbanek, W. Rymowicz, M.C. Strzelecki, W. Kociuba, Ł. Franczak, A.M. Mirończuk, Isolation and characterization of Arctic microorganisms decomposing bioplastics, AMB Express 7 (2017) 1–10.

[128] Z. Gan, D. Yu, Z. Zhong, Q. Liang, X. Jing, Enzymatic degradation of poly(ε- caprolactone)/poly(DL-lactide) blends in phosphate buffer solution, Polymer 40 (1999) 2859– 2862.

[129] C. Gamerith, M. Vastano, S.M. Ghorbanpour, S. Zitzenbacher, D. Ribitsch, M.T. Zumstein, M. Sander, E.H. Acero, A. Pellis, G.M. Guebitz, Enzymatic degradation of aromatic and aliphatic polyesters by P. pastoris expressed cutinase 1 from Thermobifida cellulosilytica, Front. Microbiol. 8 (2017) 938.

[130] F. Muroi, Y. Tachibana, Y. Kobayashi, T. Sakurai, K. Kasuya, Influences of poly(butylene adipate-co-terephthalate) on soil microbiota and plant growth, Polym. Degrad. Stabil. 129 (2016) 338–346.

[131] J.E. Johnson, X-ray diffraction studies of the crystallinity in polyethylene terephthalate, J. Appl. Polym. Sci. 2 (1959) 205–209.

[132] A. Wlochowicz, A. Jeziorny, Determination of crystallinity in polyester fibers by X-Ray methods, J. Polym. Sci. A2 10 (1972) 1407–1414.

[133] L. Ge, P. Rudolph, Simultaneous introduction of multiple mutations using overlap extension PCR, Biotechniques 22 (1997) 28–30.

[134] M.M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem. 72 (1976) 248–254.

[135] H. Inoue, H. Nojima, H. Okayama, High efficiency transformation of Escherichia coli with plasmids. Gene 96 (1990) 23-28.

[136] A. Waterhouse, M. Bertoni, S. Bienert, G. Studer, G. Tauriello, R. Gumienny, F.T. Heer, T.A.P. De Beer, C. Rempfer, L. Bordoli, R. Lepore, T. Schwede, SWISS-MODEL: Homology modelling of protein structures and complexes, Nucleic Acids Res. 46 (2018) W296–W303.

[137] A. Roussel, S. Amara, A. Nyyssölä, E. Mateos-Diaz, S. Blangy, H. Kontkanen, A. Westerholm- Parvinen, F. Carrière, C. Cambillau, A cutinase from Trichoderma reesei with a lid-covered active site and kinetic properties of true lipases, J. Mol. Biol. 426 (2014) 3757–3772.

[138] A. Grosdidier, V. Zoete, O. Michielin, SwissDock, a protein-small molecule docking web service based on EADock DSS, Nucleic Acids Res. 39 (2011) 270–277.

[139] S. Chen, X. Tong, R.W. Woodard, G. Du, J. Wu, J. Chen, Identification and characterization of bacterial cutinase, J. Biol. Chem. 283 (2008) 25854–25862.

[140] M. Miyagi, F. Sakiyama, I. Kato, S. Tsunasawa, Complete covalent structure of porcine liver acylamino acid-releasing enzyme and identification of its active site serine residue, J. Biochem. 118 (1995) 771–779.

[141] F.I. Khan, D. Lan, R. Durrani, W. Huan, Z. Zhao, Y. Wang, The lid domain in lipases: Structural and functional determinant of enzymatic properties, Front. Bioeng. Biotechnol. 5 (2017) 16.

[142] S. Chen, L. Su, J. Chen, J. Wu, Cutinase: Characteristics, preparation, and application, Biotechnol. Adv. 31 (2013) 1754–1767.

[143] B.C. Knott, E. Erickson, M.D. Allen, J.E. Gado, R. Graham, F.L. Kearns, I. Pardo, E. Topuzlu, J.J. Anderson, H.P. Austin, G. Dominick, C.W. Johnson, N.A. Rorrer, C.J. Szostkiewicz, V. Copié, C.M. Payne, H.L. Woodcock, B.S. Donohoe, G.T. Beckham, J.E. McGeehan, Characterization and engineering of a two-enzyme system for plastics depolymerization., P. Natl. Acad. Sci. USA, 117 (2020) 25476-25485.

[144] F. Kovacic, N. Babic, U. Krauss, K.-E. Jaeger, Classification of lipolytic enzymes from bacteria, Aerobic utilization of hydrocarbons, oils and lipids, Chapter 14, 2019, 3.

[145] C. Ruiz, F.I.J. Pastor, P. Diaz, Isolation and characterization of Bacillus sp. BP-6 LipA, a ubiquitous lipase among mesophilic Bacillus species, Lett. Appl. Microbiol. 37 (2003) 354–359.

[146] G. M. Whitesides, J. E. Lilburn, R. P. Szajewski, Rates of thiol-disulfide interchange reactions between mono- and dithiols and Ellman’s reagent, J. Org. Chem., 42 (2002) 332–338.

[147] S. Joo, I.J. Cho, H. Seo, H.F. Son, H.Y. Sagong, T.J. Shin, S.Y. Choi, S.Y. Lee, K.J. Kim, Structural insight into molecular mechanism of poly(ethylene terephthalate) degradation, Nat. Commun. 9 (2018) 1–12.

[148] J. Then, R. Wei, T. Oeser, A. Gerdts, J. Schmidt, M. Barth, W. Zimmermann, A disulfide bridge in the calcium binding site of a polyester hydrolase increases its thermal stability and activity against polyethylene terephthalate, FEBS Open Bio 6 (2016) 425–432.

[149] I. Taniguchi, S. Yoshida, K. Hiraga, K. Miyamoto, Y. Kimura, K. Oda, Biodegradation of PET: current status and application aspects, ACS Catal. 9 (2019) 4089–4105.

[150] Å.M. Ronkvist, W. Xie, W. Lu, R.A. Gross, Cutinase-catalyzed hydrolysis of poly(ethylene terephthalate), Macromolecules 42 (2009) 5128–5138.

[151] S. Yoshida, K. Hiraga, T. Takehana, I. Taniguchi, H. Yamaji, Y. Maeda, K. Toyohara, K. Miyamoto, Y. Kimura, K. Oda, A bacterium that degrades and assimilates poly(ethylene terephthalate), Science 351 (2016) 1196–1199.

[152] F. Kawai, T. Kawabata, M. Oda, Current knowledge on enzymatic PET degradation and its possible application to waste stream management and other fields, Appl. Microbiol. Biot. 103 (2019) 4253–4268.

[153] C.M.L. Carvalho, M.R. Aires-Barros, J.M.S. Cabral, Cutinase: From molecular level to bioprocess development, Biotechnol. Bioeng. 66 (1999) 17–34.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る