リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Combination of Polysaccharide Nanofibers Derived from Cellulose and Chitin Promotes the Adhesion, Migration and Proliferation of Mouse Fibroblast Cells」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Combination of Polysaccharide Nanofibers Derived from Cellulose and Chitin Promotes the Adhesion, Migration and Proliferation of Mouse Fibroblast Cells

Noda, Tomoka 野田, 朋佳 ノダ, トモカ Hatakeyama, Mayumi 畠山, 真由美 ハタケヤマ, マユミ Kitaoka, Takuya 北岡, 卓也 キタオカ, タクヤ 九州大学

2022.01.26

概要

Extracellular matrix (ECM) as a structural and biochemical scaffold to surrounding cells plays significant roles in cell adhesion, migration, proliferation and differentiation. Herein, we show the nov

参考文献

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Frantz, C.; Stewart, K.M.; Weaver, V.M. The extracellular matrix at a glance. J. Cell Sci. 2010, 123, 4195–4200. [CrossRef]

Clause, K.C.; Barker, T.H. Extracellular matrix signaling in morphogenesis and repair. Curr. Opin. Biotechnol. 2013, 24, 830–833.

[CrossRef] [PubMed]

Kim, T.G.; Shin, H.; Lim, D.W. Biomimetic scaffolds for tissue engineering. Adv. Funct. Mater. 2012, 22, 2446–2468. [CrossRef]

Chan, E.C.; Kuo, S.M.; Kong, A.M.; Morrison, W.A.; Dusting, G.J.; Mitchell, G.M.; Lim, S.Y.; Liu, G.S. Three dimensional collagen

scaffold promotes intrinsic vascularisation for tissue engineering applications. PLoS ONE 2016, 11, e0149799. [CrossRef]

Albrecht, C.; Tichy, B.; Nürnberger, S.; Zak, L.; Handl, M.J.; Marlovits, S.; Aldrian, S. Influence of cryopreservation, cultivation

time and patient’s age on gene expression in Hyalograft ® C cartilage transplants. Int. Orthop. 2013, 37, 2297–2303. [CrossRef]

[PubMed]

Razavi, M. Biomaterials for Tissue Engineering; Frontiers in Biomaterials; Bentham Science Publishers: Sharjah, United Arab

Emirates, 2017; ISBN 9781681085371.

Kroon-Batenburg, L.M.J.; Kroon, J. The crystal and molecular structures of cellulose I and II. Glycoconj. J. 1997, 14, 677–690.

[CrossRef] [PubMed]

Moon, R.J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. Cellulose nanomaterials review: Structure, properties and

nanocomposites. Chem. Soc. Rev. 2011, 40, 3941–3994. [CrossRef]

Lavoine, N.; Bergström, L. Nanocellulose-based foams and aerogels: Processing, properties and applications. J. Mater. Chem. A

2017, 5, 16105–16117. [CrossRef]

Nascimento, D.M.; Nunes, Y.L.; Figueirêdo, M.C.B.; De Azeredo, H.M.C.; Aouada, F.A.; Feitosa, J.P.A.; Rosa, M.F.; Dufresne, A.

Nanocellulose nanocomposite hydrogels: Technological and environmental issues. Green Chem. 2018, 20, 2428–2448. [CrossRef]

Sharma, A.; Thakur, M.; Bhattacharya, M.; Mandal, T.; Goswami, S. Commercial application of cellulose nano-composites—A

review. Biotechnol. Rep. 2019, 21, e00316. [CrossRef]

Saito, T.; Nishiyama, Y.; Putaux, J.L.; Vignon, M.; Isogai, A. Homogeneous suspensions of individualized microfibrils from

TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 2006, 7, 1687–1691. [CrossRef]

Saito, T.; Kimura, S.; Nishiyama, Y.; Isogai, A. Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose.

Biomacromolecules 2007, 8, 2485–2491. [CrossRef] [PubMed]

Tokura, S.; Tamura, H. Chitin and Chitosan. Compr. Glycosci. Chem. Syst. Biol. 2007, 2–4, 449–475. [CrossRef]

Belbekhouche, S.; Bousserrhine, N.; Alphonse, V.; Le Floch, F.; Charif Mechiche, Y.; Menidjel, I.; Carbonnier, B. Chitosan based

self-assembled nanocapsules as antibacterial agent. Colloids Surf. B Biointerfaces 2019, 181, 158–165. [CrossRef] [PubMed]

Dragostin, O.M.; Samal, S.K.; Dash, M.; Lupascu, F.; Pânzariu, A.; Tuchilus, C.; Ghetu, N.; Danciu, M.; Dubruel, P.; Pieptu, D.; et al.

New antimicrobial chitosan derivatives for wound dressing applications. Carbohydr. Polym. 2016, 141, 28–40. [CrossRef]

Okamoto, Y.; Kawakami, K.; Miyatake, K.; Morimoto, M.; Shigemasa, Y.; Minami, S. Analgesic effects of chitin and chitosan.

Carbohydr. Polym. 2002, 49, 249–252. [CrossRef]

Ifuku, S. Chitin and chitosan nanofibers: Preparation and chemical modifications. Molecules 2014, 19, 18367–18380. [CrossRef]

Fan, Y.; Saito, T.; Isogai, A. Individual chitin nano-whiskers prepared from partially deacetylated α-chitin by fibril surface

cationization. Carbohydr. Polym. 2010, 79, 1046–1051. [CrossRef]

Azuma, K.; Ifuku, S.; Osaki, T.; Okamoto, Y.; Minami, S. Preparation and biomedical applications of chitin and chitosan nanofibers.

J. Biomed. Nanotechnol. 2014, 10, 2891–2920. [CrossRef]

Zhai, P.; Peng, X.; Li, B.; Liu, Y.; Sun, H.; Li, X. The application of hyaluronic acid in bone regeneration. Int. J. Biol. Macromol. 2020,

151, 1224–1239. [CrossRef]

Aguilar, A.; Zein, N.; Harmouch, E.; Hafdi, B.; Bornert, F.; Offner, D.; Clauss, F.; Fioretti, F.; Huck, O.; Benkirane-Jessel, N.; et al.

Application of Chitosan in Bone and Dental Engineering. Molecules 2019, 24, 3009. [CrossRef] [PubMed]

Nanomaterials 2022, 12, 402

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

12 of 12

Dutta, S.D.; Patel, D.K.; Lim, K.-T. Functional cellulose-based hydrogels as extracellular matrices for tissue engineering. J. Biol.

Eng. 2019, 13, 55. [CrossRef] [PubMed]

Yamane, S.; Iwasaki, N.; Majima, T.; Funakoshi, T.; Masuko, T.; Harada, K.; Minami, A.; Monde, K.; Nishimura, S. Feasibility

of chitosan-based hyaluronic acid hybrid biomaterial for a novel scaffold in cartilage tissue engineering. Biomaterials 2005, 26,

611–619. [CrossRef] [PubMed]

Wang, X.; Wang, G.; Liu, L.; Zhang, D. The mechanism of a chitosan-collagen composite film used as biomaterial support for

MC3T3-E1 cell differentiation. Sci. Rep. 2016, 6, 39322. [CrossRef] [PubMed]

Yoshiike, Y.; Kitaoka, T. Tailoring hybrid glyco-nanolayers composed of chitohexaose and cellohexaose for cell culture applications.

J. Mater. Chem. 2011, 21, 11150–11158. [CrossRef]

Hatakeyama, M.; Nakada, F.; Ichinose, H.; Kitaoka, T. Direct stimulation of cellular immune response via TLR2 signaling triggered

by contact with hybrid glyco-biointerfaces composed of chitohexaose and cellohexaose. Colloids Surf. B Biointerfaces 2019, 175,

517–522. [CrossRef]

Sultana, T.; Van Hai, H.; Abueva, C.; Kang, H.J.; Lee, S.Y.; Lee, B.T. TEMPO oxidized nano-cellulose containing thermo-responsive

injectable hydrogel for post-surgical peritoneal tissue adhesion prevention. Mater. Sci. Eng. C 2019, 102, 12–21. [CrossRef]

Hatakeyama, M.; Kitaoka, T. Surface-Carboxylated Nanocellulose-Based Bioadaptive Scaffolds for Cell Culture. Cellulose 2021, 5, 1–15.

[CrossRef]

Segal, L.; Creely, J.J.; Martin, A.E.; Conrad, C.M. An Empirical Method for Estimating the Degree of Crystallinity of Native

Cellulose Using the X-Ray Diffractometer. Text. Res. J. 1959, 29, 786–794. [CrossRef]

Suarez-Arnedo, A.; Figueroa, F.T.; Clavijo, C.; Arbeláez, P.; Cruz, J.C.; Muñoz-Camargo, C. An image J plugin for the high

throughput image analysis of in vitro scratch wound healing assays. PLoS ONE 2020, 15, e0232565. [CrossRef]

Isogai, A.; Saito, T.; Fukuzumi, H. TEMPO-oxidized cellulose nanofibers. Nanoscale 2011, 3, 71–85. [CrossRef] [PubMed]

Takahashi, Y.; Matsunaga, H. Crystal structure of native cellulose. Macromolecules 1991, 24, 3968–3969. [CrossRef]

Tang, Z.; Li, W.; Lin, X.; Xiao, H.; Miao, Q.; Huang, L.; Chen, L.; Wu, H. TEMPO-Oxidized cellulose with high degree of oxidation.

Polymers 2017, 9, 421. [CrossRef] [PubMed]

Minke, R.; Blackwell, J. The structure of α-chitin. J. Mol. Biol. 1978, 120, 167–181. [CrossRef]

Ifuku, S.; Shervani, Z.; Saimoto, H. Chitin Nanofibers, Preparations and Applications. In Adv. Nanofibers; Maguire, R., Ed.;

IntechOpen: London, UK, 2013; pp. 85–101. [CrossRef]

Stetefeld, J.; Frank, S.; Jenny, M.; Schulthess, T.; Kammerer, R.A.; Boudko, S.; Landwehr, R.; Okuyama, K.; Engel, J. Collagen

Stabilization at Atomic Level. Structure 2003, 11, 339–346. [CrossRef]

Lord, M.S.; Foss, M.; Besenbacher, F. Influence of nanoscale surface topography on protein adsorption and cellular response.

Nano Today 2010, 5, 66–78. [CrossRef]

Dalby, M.J.; Yarwood, S.J.; Riehle, M.O.; Johnstone, H.J.H.; Affrossman, S.; Curtis, A.S.G. Increasing Fibroblast Response to

Materials Using Nanotopography: Morphological and Genetic Measurements of Cell Response to 13-nm-High Polymer Demixed

Islands. Exp. Cell Res. 2002, 276, 1–9. [CrossRef]

Maroudas, N.G. Polymer exclusion, cell adhesion and membrane fusion. Nature 1975, 254, 695–696. [CrossRef]

Courtenay, J.C.; Johns, M.A.; Galembeck, F.; Deneke, C.; Lanzoni, E.M.; Costa, C.A.; Scott, J.L.; Sharma, R.I. Surface modified

cellulose scaffolds for tissue engineering. Cellulose 2017, 24, 253–267. [CrossRef]

Grande, R.; Trovatti, E.; Carvalho, A.J.F.; Gandini, A. Continuous microfiber drawing by interfacial charge complexation between

anionic cellulose nanofibers and cationic chitosan. J. Mater. Chem. A 2017, 5, 13098–13103. [CrossRef]

Pajorova, J.; Skogberg, A.; Hadraba, D.; Broz, A.; Travnickova, M.; Zikmundova, M.; Honkanen, M.; Hannula, M.; Lahtinen, P.;

Tomkova, M.; et al. Cellulose Mesh with Charged Nanocellulose Coatings as a Promising Carrier of Skin and Stem Cells for

Regenerative Applications. Biomacromolecules 2020, 21, 4857–4870. [CrossRef] [PubMed]

Kunzler, T.P.; Drobek, T.; Schuler, M.; Spencer, N.D. Systematic study of osteoblast and fibroblast response to roughness by means

of surface-morphology gradients. Biomaterials 2007, 28, 2175–2182. [CrossRef]

Thevenot, P.; Hu, W.; Tang, L. Surface Chemistry Influences Implant Biocompatibility. Curr. Top. Med. Chem. 2008, 8, 270–280.

[CrossRef]

Chen, S.; John, J.V.; McCarthy, A.; Xie, J. New forms of electrospun nanofiber materials for biomedical applications. J. Mater. Chem.

B 2020, 8, 3733–3746. [CrossRef]

Fu, Q.; Duan, C.; Yan, Z.; Li, Y.; Si, Y.; Liu, L.; Yu, J.; Ding, B. Nanofiber-Based Hydrogels: Controllable Synthesis and

Multifunctional Applications. Macromol. Rapid Commun. 2018, 39, 1800058. [CrossRef] [PubMed]

Trepat, X.; Chen, Z.; Jacobson, K. Cell migration. Compr. Physiol. 2012, 2, 2369–2392. [CrossRef] [PubMed]

Yue, B. Biology of the extracellular matrix: An overview. J. Glaucoma 2014, 23, S20–S23. [CrossRef]

Hughes, C.E.; Nibbs, R.J.B. A guide to chemokines and their receptors. FEBS J. 2018, 285, 2944–2971. [CrossRef]

Muzzarelli, R.A.A. Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone. Carbohydr. Polym. 2009, 76,

167–182. [CrossRef]

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る