リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Marker-free genome editing in the edible mushroom, Pleurotus ostreatus, using transient expression of genes required for CRISPR/Cas9 and for selection」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Marker-free genome editing in the edible mushroom, Pleurotus ostreatus, using transient expression of genes required for CRISPR/Cas9 and for selection

Koshi, Daishiro Ueshima, Hiroki Kawauchi, Moriyuki Nakazawa, Takehito Sakamoto, Masahiro Hirata, Mana Izumitsu, Kosuke Sumita, Takuya Irie, Toshikazu Honda, Yoichi 京都大学 DOI:10.1186/s10086-022-02033-6

2022

概要

In a previous study, we reported a transient transformation system using repeated screening for hygromycin B (Hyg) resistance in the basidiomycete Ceriporiopsis subvermispora. In the present study, by combining this technique with CRISPR/Cas9, we demonstrated successful marker-free genome editing in Pleurotus ostreatus, which is one of the most economically important cultivated mushrooms as well as a model white-rot fungus. At first, transformant selection mediated by the transient expression of marker genes was demonstrated using a plasmid harboring the Hyg resistance gene (hph) in P. ostreatus. Then, genome editing of fcy1, which confers 5-fluorocytosine (5-FC) resistance to the host cell, was performed by the transient expression of Cas9, gRNA, and hph and strains with 5-FC resistance and Hyg sensitivity were isolated. Additionally, genome editing of fcy1 in these strains was confirmed by Sanger sequencing. To our knowledge, this is the first report of marker-free genome editing through the transient expression of Cas9, gRNA, and hph in agaricomycetes, which opens the door for repeated genome editing in these fungi.

この論文で使われている画像

参考文献

1. Tyurin AA, Suhorukova AV, Kabardaeva KV, Goldenkova-Pavlova IV (2020)

Transient gene expression is an effective experimental tool for the

research into the fine mechanisms of plant gene function: advantages,

limitations, and solutions. Plants 9:1187. https://​doi.​org/​10.​3390/​plant​

s9091​187

2. Fus-Kujawa A, Prus P, Bajdak-Rusinek K, Teper P, Gawron K, Kowalczuk A,

Sieron AL (2021) An overview of methods and tools for transfection of

eukaryotic cells in vitro. Front Bioeng Biotechnol 9:701031. https://​doi.​

org/​10.​3389/​fbioe.​2021.​701031

3. Munoz-Rivas A, Specht CA, Drummond BJ, Froeliger E, Novotny CP, Ullrich

RC (1986) Transformation of the basidiomycete Schizophyllum commune.

Mol Gen Genet 205(1):103–106. https://​doi.​org/​10.​1007/​BF024​28038

4. Binninger DM, Skrzynia C, Pukkila PJ, Casselton LA (1987) DNA-mediated

transformation of the basidiomycete Coprinus cinereus. EMBO J 6(4):835–

840. https://​doi.​org/​10.​1002/j.​1460-​2075.​1987.​tb048​28.x

5. van de Rhee MD, Graça PMA, Huizing HJ, Mooibroek H (1996) Transformation of the cultivated mushroom, Agaricus bisporus, to hygromycin B

resistance. Mol Gen Genet 250(3):252–258. https://​doi.​org/​10.​1007/​BF021​

74382

6. Sato T, Yaegashi K, Ishii S, Hirano T, Kajiwara S, Shishido K, Enei H (1998)

Transformation of the edible basidiomycete Lentinus edodes by restriction enzyme-mediated integration of plasmid DNA. Biosci Biotechnol

Biochem 62(12):2346–2350. https://​doi.​org/​10.​1271/​bbb.​62.​2346

7. Honda Y, Matsuyama T, Irie T, Watanabe T, Kuwahara M (2000) Carboxin

resistance transformation of the homobasidiomycete fungus Pleurotus

ostreatus. Curr Genet 37(3):209–212. https://​doi.​org/​10.​1007/​s0029​40050​

521

8. Honda Y, Tanigawa E, Tsukihara T, Nguyen DX, Kawabe H, Sakatoku N,

Watari J, Sato H, Yano S, Tachiki T, Irie T, Watanabe T, Watanabe T (2019)

Stable and transient transformation, and a promoter assay in the selective

lignin-degrading fungus Ceriporiopsis subvermispora. AMB Expr 9(1):92.

https://​doi.​org/​10.​1186/​s13568-​019-​0818-1

9. Adli M (2018) The CRISPR tool kit for genome editing and beyond. Nat

Commun 9(1):1911. https://​doi.​org/​10.​1038/​s41467-​018-​04252-2

10. Sugano SS, Suzuki H, Shimokita E, Chiba H, Noji S, Osakabe Y, Osakabe

K (2017) Genome editing in the mushroom-forming basidiomycete

Coprinopsis cinerea, optimized by a high-throughput transformation

system. Sci Rep 7(1):1260. https://​doi.​org/​10.​1038/​s41598-​017-​00883-5

11. Boontawon T, Nakazawa T, Inoue C, Osakabe K, Kawauchi M, Sakamoto M, Honda Y (2021) Efficient genome editing with CRISPR/Cas9

in Pleurotus ostreatus. AMB Expr 11(1):30. https://​doi.​org/​10.​1186/​

s13568-​021-​01193-w

12. Boontawon T, Nakazawa T, Xu H, Kawauchi M, Sakamoto M, Honda Y

(2021) Gene targeting using pre-assembled Cas9 ribonucleoprotein and

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Koshi et al. Journal of Wood Science

13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. (2022) 68:27

split-marker recombination in Pleurotus ostreatus. FEMS Microbiol Lett

368(13):fnab080. https://​doi.​org/​10.​1093/​femsle/​fnab0​80

Weng C, Peng X, Han Y (2021) Depolymerization and conversion of lignin

to value-added bioproducts by microbial and enzymatic catalysis. Biotechnol Biofuels 14(1):84. https://​doi.​org/​10.​1186/​s13068-​021-​01934-w

Nagy LG, Riley R, Bergmann PJ, Krizsán K, Martin FM, Grigoriev IV, Cullen

D, Hibbett DS (2017) Genetic bases of fungal white rot wood decay

predicted by phylogenomic analysis of correlated gene-phenotype

evolution. Mol Biol Evol 34(1):35–44. https://​doi.​org/​10.​1093/​molbev/​

msw238

Knop D, Yarden O, Hadar Y (2015) The ligninolytic peroxidases in the

genus Pleurotus: divergence in activities, expression, and potential applications. Appl Microbiol Biotechnol 99(3):1025–1038. https://​doi.​org/​10.​

1007/​s00253-​014-​6256-8

Salame Tomer M, Knop D, Tal D, Levinson D, Yarden O, Hadar Y (2012)

Predominance of a versatile-peroxidase-encoding gene, mnp4, as demonstrated by gene replacement via a gene targeting system for Pleurotus

ostreatus. Appl Environ Microbiol 78(15):5341–5352. https://​doi.​org/​10.​

1128/​AEM.​01234-​12

Salame Tomer M, Knop D, Levinson D, Yarden O, Hadar Y (2013) Redundancy among manganese peroxidases in Pleurotus ostreatus. Appl Environ Microbiol 79(7):2405–2415. https://​doi.​org/​10.​1128/​AEM.​03849-​12

Salame TM, Knop D, Levinson D, Mabjeesh SJ, Yarden O, Hadar Y (2014)

Inactivation of a Pleurotus ostreatus versatile peroxidase-encoding

gene (mnp2) results in reduced lignin degradation. Environ Microbiol

16(1):265–277. https://​doi.​org/​10.​1111/​1462-​2920.​12279

Matsunaga Y, Ando M, Izumitsu K, Suzuki K, Honda Y, Irie T (2017) A development and an improvement of selectable markers in Pleurotus ostreatus

transformation. J Microbiol Methods 134:27–29. https://​doi.​org/​10.​1016/j.​

mimet.​2017.​01.​007

Larraya Luis M, Pérez G, Peñas María M, Baars Johan JP, Mikosch Thomas

SP, Pisabarro Antonio G, Ramírez L (1999) Molecular karyotype of the

white rot fungus Pleurotus ostreatus. Appl Environ Microbiol 65(8):3413–

3417. https://​doi.​org/​10.​1128/​AEM.​65.8.​3413-​3417.​1999

Nakazawa T, Tsuzuki M, Irie T, Sakamoto M, Honda Y (2016) Marker

recycling via 5-fluoroorotic acid and 5-fluorocytosine counter-selection in

the white-rot agaricomycete Pleurotus ostreatus. Fungal Biol 120(9):1146–

1155. https://​doi.​org/​10.​1016/j.​funbio.​2016.​06.​011

Rao PS, Niederpruem DJ (1969) Carbohydrate metabolism during morphogenesis of Coprinus lagopus (sensu Buller). J Bacteriol 100(3):1222–

1228. https://​doi.​org/​10.​1128/​jb.​100.3.​1222-​1228.​1969

Cummings WJ, Celerin M, Crodian J, Brunick LK, Zolan ME (1999) Insertional mutagenesis in Coprinus cinereus: use of a dominant selectable

marker to generate tagged, sporulation-defective mutants. Curr Genet

36(6):371–382. https://​doi.​org/​10.​1007/​s0029​40050​512

Nguyen DX, Nakazawa T, Myo G, Inoue C, Kawauchi M, Sakamoto M,

Honda Y (2020) A promoter assay system using gene targeting in agaricomycetes Pleurotus ostreatus and Coprinopsis cinerea. J Microbiol Methods

179:106053. https://​doi.​org/​10.​1016/j.​mimet.​2020.​106053

Izumitsu K, Hatoh K, Sumita T, Kitade Y, Morita A, Tanaka C, Gafur A, Ohta

A, Kawai M, Yamanaka T, Neda H, Ota Y (2012) Rapid and simple preparation of mushroom DNA directly from colonies and fruiting bodies for PCR.

Mycoscience 53(5):396–401. https://​doi.​org/​10.​1007/​S10267-​012-​0182-3

Wang Q, Coleman JJ (2019) Progress and challenges: development and

implementation of CRISPR/Cas9 technology in filamentous fungi. Comput Struct Biotechnol J 17:761–769. https://​doi.​org/​10.​1016/j.​csbj.​2019.​

06.​007

Gong Z, Cheng M, Botella JR (2021) Non-GM genome editing approaches

in crops. Front Genome Ed 3:817279. https://​doi.​org/​10.​3389/​fgeed.​2021.​

817279

Nakazawa T, Ando Y, Kitaaki K, Nakahori K, Kamada T (2011) Efficient gene

targeting in ΔCc.ku70 or ΔCc.lig4 mutants of the agaricomycete Coprinopsis cinerea. Fungal Genet Biol 48(10):939–946. https://​doi.​org/​10.​1016/j.​

fgb.​2011.​06.​003

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Page 8 of 8

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る