リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「ポリマー光導波路・光学素子間光結合の高効率化に関する研究 (本文)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

ポリマー光導波路・光学素子間光結合の高効率化に関する研究 (本文)

森本, 祥江 慶應義塾大学

2020.03.23

概要

情報通信技術(Information Communication Technology:ICT)の発展とともに,我々の社会も発展を遂げてきた.FTTH(Fiber To The Home)が爆発的に普及し,光ファイバ通信が 21 世紀の基幹的通信インフラとなって以来,インターネットを介して授受される情報通信量は飛躍的に増加し,我々の生活にとって不可欠な存在となった.さらにスマートフォンやタブレット端末などのスマートデバイスが広く普及したことにより, SNS(Social Networking Service)や音楽・動画配信サービスといった情報コンテンツを手軽に利用できるようになってきている.高音質,高画質データをより多く,より高速に提供するサービスやアプリケーションの開発が活発化し,利用される情報通信量は著しい増加傾向にある.また,昨今ではこのようなサービスによりユーザから収集した大量の情報(ビッグデータ)の処理・活用や,人工知能(Artificial Intelligence:AI)を介した自動運転やモノのインターネット(Internet of Things:IoT)の普及など,高速情報処理や通信技術を基盤とする ICT 技術が脚光を浴びている.

このような背景から,大規模なシステムで高速演算処理を行うハイパフォーマンスコンピュータ(High Performance Computer:HPC)の様々な分野への応用が進んでいる.これまで注目を集めていた科学技術計算用途にとどまらず,ビジネスにおけるビッグデータ処理など,今後の IoT 時代の到来へ向けて,HPC への要求がより一層高まっていくことが予想される.実際に,近年のHPC の演算性能向上は目覚ましく,2019 年に実行演算性能 1 位のスーパーコンピュータは 148.6 ペタフロップスの処理能力を達成している[ 1-1].HPC の演算性能は,10 ~ 15 年ごとに 3 桁ずつの成長を遂げていることから,2020 ~ 2023 年にはエクサフロップス,2033 ~ 2038 年にはゼタフロップススケールに到達すると予想されている.

また,大量のデータの送受信,保存管理は産業活動において非常に重要であり,それを担うデータセンタシステムへの要求は高まるばかりである.特に,近年のクラウドコンピューティングの急速な発展に伴い,データセンタ内での情報の取扱量(IP トラフィック量)の増大が著しく,2019 年度末には 10.4 ZB に達すると予想されている.過去 5 年間にかけての年平均増加率は約 25%に及ぶと予想され[ 1-2],今後のデータセンタ市場の永続的な成長が見込まれる.

これらコンピューティング・システムを担う通信技術の発展を支えるのが,光インターコネクト技術である.従来,コンピューティング・システムに用いられてきた電気配線では,表皮効果により高周波の信号損失が生じるため,高速通信を行う際には伝送距離に制限がかかる.また,伝送容量拡大のために並列伝送を行う際には,クロストークの増大が懸念されるため,配線の高密度化にも制限がある.Fig. 1-1 に,伝送距離及びデータレートごとの,電気リンク及び光リンクの市場導入実績を示す.伝送帯域距離積によって電気リンクと光リンクの棲み分けがなされており,電気リンクが実現できる伝送帯域距離積の限界は 100 Gbps∙m であるとされる[ 1-3].また,電気配線の場合,配線から発生する熱を処理するための冷却装置の導入が不可欠となる.データセンタ内で消費される電力のうち,装置の冷却にかかる電力が全体の 45%近くを占めており,低消費電力化に支障をきたしている[ 1-4].また,Fig. 1-2 に示した電気・光インターフェースの消費電力動向からわかるように,電気リンクではインターフェースレベルでの省電力化にも制限がある.

以上のように,従来の電気リンクでは,限られた電力にて,現在のスケールアウト・コンピュータの性能を十分に発揮するに足るデータ伝送速度を達成することは困難である.そこで,コンピュータ筐体内部の電気配線を光配線へと置き換える,光インターコネクト技術に注目が集まることとなった.光インターコネクト技術の導入により低消費電力を実現しながらも高密度配線化,広帯域通信化を実現できる.

この論文で使われている画像

参考文献

第一章 Reference

[ 1-1] TOP 500, “Performance Development,” https://www.top500.org/statistics/perfdevel/ (2019年11月閲覧).

[ 1-2] CISCO, “Cisco Global Cloud Index:予測と方法論、2014~2019年”、 https://www.cisco.com/c/dam/global/ja_jp/solutions/isp/ipngn/literature/pdf/cloud-index-white- paper.pdf (2019年11月閲覧).

[ 1-3] A. V. Krishnamoorthy, K. W. Goossen, W. Jan, X. Zheng, R. Ho, G. Li, R. Rozier, D. Feng, M. Asghari, T. Pinguet, and J. E. Cunningham, “Progress in low-power switched optical interconnects,” IEEE J. Sel. Top. Quantum Electron., Vol. 17, No. 2, pp. 357-376 (2011).

[ 1-4]光回路実装技術委員会、“光回路実装技術ロードマップ2010年度版「光インターコネクションの期待と展望」”、エレクトロニクス実装学会(2011).

[ 1-5] P. Pepeljugoski, J. Kash, F. Doany, D. Kuchta, L. Schares, C. Schow, M. Taubenblatt, B. J. Offrein, and A. Benner, “Towards exaflops servers and supercomputers: the roadmap for lower power and higher density optical interconnects,” Proc. of 2010 European Conference and Exhibition on Optical Communication (ECOC), 5621097 (2010).

[ 1-6] N. Farrington and A. Andreyev, “Facebook’s Data Center Network Architecture,” Proc. of 2013 Optical Interconnects Conference(OIC), pp. 49-50 (2013).

[ 1-7] Facebook Engineering, “Designing 100G opical connections,” https://engineering.fb.com/data-center-engineering/designing-100g-optical-connections/ (2020年1月閲覧).

[ 1-8]光回路実装技術委員会、“光回路実装技術ロードマップ2016年度版「光インターコネクションの第二普及世代に向けた課題と予測」”、エレクトロニクス実装学会(2017).

[ 1-9] 那須秀行、瀬尾浩司、“AOCによるボード間光接続”、エレクトロニクス実装学会誌、 Vol. 14, No. 7, pp. 537-541 (2011).

[ 1-10] N. Bamiedakis, J. Beals, R. V. Penty, L. H. White, J. V. Degroot, and T. V. Clapp, “Cost- effective multimode polymer waveguides for high-speed on-board optical interconnects,” IEEE J. Quantum Electron., Vol. 45, No. 4, pp. 415-424 (2009).

[ 1-11] M. Karppinen, T. Alajoki, A. Tanskanen, K. Kataja, J.-T. Makinen, K. Kautio, P. Karioja, M. Immonen, and J. Kivilahti, “Parallel optical interconnect between ceramic BGA packages on FR4 board using embedded waveguides and passive optical alignments,” Proc. of 2006 IEEE Electronic Components and Technology Conference(ECTC), pp. 799-805 (2006).

[ 1-12] R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmür, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Ogginori, M. Spreafico, and B. J. Offrien, “Polymer-waveguide-based board-level optical interconnect technology for Datacom application,” IEEE Trans. Adv. Pac., Vol. 31, No. 4, pp. 759-767 (2008).

[ 1-13] R. C. A. Pitwon, K. Wang, J. Graham-Jones, I. Papakonstantinou, H. Baghsiahi, B. J. Offrein, R. Dangel, D. Milward, and D. R. Selviah, “FirstLight: Pluggable optical interconnect technologies for polymeric electro-optical printed circuit boards in data centers,” IEEE J. Lightw. Technol., Vol. 30, No. 21, pp. 3316-3329 (2012).

[ 1-14] M. Hikita, S. Tomaru, K. Enbutsu, N. Ooba, R. Yoshida, M. Usai, T. Yoshida, and S. Imamura, “Polymeric optical waveguide films for short-distance optical interconnects,” IEEE J. Sel. Top. Quantum Electron., Vol. 5, No. 5, pp. 1237-1242 (1999).

[ 1-15] H. Nawata, “Organic-inorganic hybrid material for on-board optical interconnects and its application in optical coupling,” Proc. of 2013 IEEE CPMT Symposium Japan (ICSJ), pp. 126-129 (2013).

[ 1-16] K. Yasuhara, F. Yu, and T. Ishigure, “Circular core single-mode polymer optical waveguide fabricated using the Mosquito method with low loss at 1310/1550 nm,” Opt. Express, Vol. 25, No. 8, pp. 8524-8533 (2017).

[ 1-17] B. W. Swatowski, C. M. Amb, M. G. Hyer, R. S. John, and W. K. Weidner, “Graded index silicone waveguides for high performance computing,” Proc. of 2014 IEEE Optical Interconnects Conference (OIC), pp. 133-134 (2014).

[ 1-18] J. Chen, N. Bamiedakis, P. P. Vasil’ev, T. J. Edwards, C. T. A. Brown, R. V. Penty, and I. H. White, “High-bandwidth and large coupling tolerance graded-index multimode polymer waveguides for on-board high-speed optical interconnects,” IEEE J. Lightw. Technol., Vol. 34, No. 12, pp. 2934- 2940 (2016).

[ 1-19] S. Takayama, K. Moriya, and K. Choki, “Significant reduction of crossing loss using polynorbornene based GI-core optical waveguide,” Proc. of IEEE Electronic System-Integration Technology Conference (2012).

[ 1-20] T. Mori, K. Takahama, M. Fujiwara, K. Watanabe, H. Owari, Y. Shirato, S. Terada, M. Sakamoto, and K. Choki, “Optical and electrical hybrid flexible printed circuit boards with unique photo-defined polymer waveguide layers,” Proc. of SPIE 2010, Vol. 7607, 76060S (2010).

[ 1-21] K. Abe and T. Ishigure, “Fabrication for low loss graded-index polymer crossed optical waveguide using the soft-lithography method,” Proc. of 2016 IEEE Photonics Conference (IPC), pp. 753-754 (2016).

[ 1-22] K. Abe, Y. Oizumi, and T. Ishigure, “Low-loss graded-index polymer crossed optical waveguide with high thermal resistance,” Opt. Express, Vol. 26, No. 4, pp. 4512-4521 (2018).

[ 1-23] K. Soma and T. Ishigure, “Fabrication of a graded-index circular-core polymer parallel optical waveguide using a microdispenser for a high-density optical printed circuit board,” IEEE J. Sel. Top. Quantum Electron., Vol. 19, No. 2, 3600310 (2012).

[ 1-24] R. Kinoshita, D. Suganuma, and T. Ishigure, “Accurate interchannel pitch control in graded- index circular-core polymer parallel optical waveguide using the Mosquito method,” Opt. Express, Vol. 22, No. 7, pp. 8426-8437 (2014).

[ 1-25] A. Yamauchi, Y. Morimoto, T. Enomoto, K. Suzuki, H. Masuda, and T. Ishigure, “Graded- index multimode polymer optical waveguide enabling low loss and high density 3-D on-board integration,” Proc. of 2016 IEEE Electronic Components and Technology Conference (ECTC), pp. 490-496 (2016).

[ 1-26] H. Matsui, S. Yakabe, and T. Ishigure, “Applicability of the Mosquito method to fabricate fan- in/out device for single-mode multicore fiber,” Proc. of 2019 IEEE CPMT Symposium Japan (ICSJ), pp. 63-66 (2019).

[ 1-27] T. G. Lim, P. V. Ramana, B. S. P. Lee, T. Shioda, H. Kuruveettil, J. Li, K. Suzuki, K. Fujita, K. Yamada, D. Pinjala, and J. L. H. Shing, “Demonstration of direct coupled optical/electrical circuit boards,” IEEE Trans. Adv. Packag., Vol. 32, No. 2, pp. 509-516 (2009).

[ 1-28] R. Dangel, A. L. Porta, D. Jubin, F. Horst, N. Meier, M. Seifried, and B. J. Offrein, “Polymer waveguides enabling scalable low-loss adiabatic optical coupling for silicon photonics,” IEEE J. Sel. Top. Quantum Electron., Vol. 24, No. 4, 8200211 (2018).

第二章 References

[ 2-1]末松安晴、伊賀健一、「光ファイバ通信入門改訂 5 版」、オーム社 (2017).

[ 2-2] Y. Koike, Y. Takezawa, Y. Ohtsuka, “New interfacial-gel copolymerization technique for steric GRIN polymer optical waveguides and lens arrays,” Appl. Opt., Vol. 27, No. 3, pp. 486-491 (1998).

[ 2-3] T. Ishigure, K. Shitanda, and Y. Oizmi, “Index-profile design for low-loss crossed multimode waveguide for optical printed circuit board,” Opt. Express, Vol. 23, No. 17, pp. 22262-22273 (2015).

[ 2-4] T. Kudo and T. Ishigure, “Analysis of interchannel crosstalk in multimode parallel optical waveguides using the beam propagation method,” Opt. Express, Vol. 22, No. 8, pp. 9675-9686 (2014).

[ 2-5] R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmür, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Ogginori, M. Spreafico, and B. J. Offrien, “Polymer-waveguide-based board-level optical interconnect technology for Datacom application,” IEEE Trans. Adv. Packag., Vol. 31, No. 4, pp. 759- 767 (2008).

[ 2-6] N. Hendrickx, J. V. Erps, G. V. Steenberge, H. Thienpont, P. V. Daele, “Tolerance analysis for multilayer optical interconnections integrated on a printed circuit board”, IEEE J. Lightw. Technol., Vol. 25, Nol. 9, pp. 2395-2401 (2007).

[ 2-7] Y. Koike, S. Matsuoka, and H. E. Bair, “Origin of excess light scattering in poly(methyl methacrylate) glasses,” Macromolecules, 24, pp. 4807-4815 (1992).

[ 2-8]住友電気工業、“プレスリリース光ファイバ伝送損失の世界記録を更新”、 https://sei.co.jp/company/press/2017/03/prs029.html (2020年1月閲覧).

[ 2-9]山内潤治、藪哲郎、「光導波路解析入門」、森北出版株式会社 (2007).

[ 2-10]喜瀬智文、鈴木理仁、舟橋政樹、長島和哉、那須秀行、“28 Gb/s 1060 nm VCSELの開発とマルチモード光ファイバリンクの特性”、古河電工時報134号(2015).

[ 2-11] F. E. Doany, C. L. Schow, B. G. Lee, A. V. Rylyakov, C. Jahnes, Y. Kwark, C. Baks, D. M. Kuchta, and J. A. Kash, “Dense 24 TX + 24 RX fiber-coupled optical module based on a holey CMOS transceiver IC,” Proc. of 2010 IEEE Electronic Components and Technology Conference (ECTC), pp. 247-255 (2010).

[ 2-12]光回路実装技術委員会、“光回路実装技術ロードマップ2016年度版「光インターコネクションの第二普及世代に向けた課題と予測」”、エレクトロニクス実装学会(2017).

[ 2-13] IEEE Standard for Ethernet, IEEE Standard 802.3 TM-2015 (2015).

[ 2-14] T. Satake, T. Arikawa, P.W. Blubaugh, C. Parsons, and T. K. Uchida, “MT multifiber connectors and new applications,” Proc. of 1994 IEEE Electronic Components and Technology Conference (ECTC), pp. 994-999 (1994).

[ 2-15] M. Takezaki and R. Nagase, “Design for PMT connector (Polymer waveguides connected with MT connector),” Proc. of 2014 IEEE CPMT Symposium Japan (ICSJ), pp. 169-172 (2014).

[ 2-16] Woo-Jin. Lee, S. H. Hwang, M. J. Kim, E. J. Jung, J. B. An, G. W. Kim, M. Y. Jeong, and B. S. Rho, “Multilayerd 3-D optical circuit with mirror-embedded waveguide films,” IEEE Photon. Technol. Lett., Vol. 24, No. 14, pp. 1179-1181 (2012).

[ 2-17] T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics Devices Based on Silicon Microfabrication Technology,” IEEE J. Sel. Top. Quantum Electron., Vol. 11, No. 1, pp. 232-240 (2005).

[ 2-18] R. Dangel, J. Hofrichter, F. Horst, D. Jubin, A. L. Porta, N. Meier, I. M. Soganci, J. Weiss, and B. J. Offrein, “Polymer waveguides for electro-optical integration in data centers and high- performance computers,” Opt. Express, Vol. 23, No. 4, pp. 4736-4750 (2015).

[ 2-19] R. Dangel, A. L. Porta, D. Jubin, F. Horst, N. Meier, M. Seifried, and B. J. Offrein, “Polymer waveguides enabling scalable low-loss adiabatic optical coupling for silicon photonics,” IEEE J. Sel. Top. Quantum Electron., Vol. 24, No. 4, 8200211 (2018).

[ 2-20] K. Yasuhara, F. Yu, and T. Ishigure, “Polymer waveguide based spot-size converter for low- loss coupling between Si photonics chips and single-mode fibers,” Proc. of 2017 Optical Fiber Communications Conference and Exhibition (OFC), 16929675 (2016).

[ 2-21] T. Barwicz, Y. Taira, H. Numata, N. Boyer, S. Harel, S. Kamlapurkar, S. Takenobu, S. Laflamme, S. Engelmann, Y. Vlasov, and P. Fortier, “Assembly of mechanically compliant interfaces between optical fibers and nanophotonic chips,” Proc. of 2014 IEEE Electronic Components and Technology Conference (ECTC), pp. 179-185 (2014).

[ 2-22] A. L. Porta, R. Dangel, D. Jubin, F. Horst, N. Meier, D. Chelladurai, B. W. Swatowski, A. C. Tomasik, K. Su, W. K. Weidner, and B. J. Offrein, “Optical coupling between polymer waveguides and a silicon photonics chip in the O-band,” Proc. of 2016 Optical Fiber Communications Conference and Exhibition (OFC), M2I.2 (2016).

[ 2-23]光回路実装技術委員会、“光回路実装技術ロードマップ2010年度版「光インターコネクションへの期待と展望」”、エレクトロニクス実装学会(2011). 第 3 章ポリマー光導波路の作製法

第三章 Refences

[ 3-1] H. Nawata, “Organic-inorganic hybrid material for on-board optical interconnects and its application in optical coupling,” Proc. of 2013 IEEE CPMT Symposium Japan (ICSJ), pp. 126-129 (2013).

[ 3-2] K. Yasuhara, F. Yu, and T. Ishigure, “Circular core single-mode polymer optical waveguide fabricated using the Mosquito method with low loss at 1310/1550 nm,” Opt. Express, Vol. 25, No. 8, pp. 8524-8533 (2017).

[ 3-3] 丸島千波、2018年度慶應義塾大学修士論文(2019).

[ 3-4]信越シリコーン、“シランカップリング剤”、 https://www.silicone.jp/catalog/pdf/SilaneCouplingAgents_J.pdf (2019年11月閲覧).

[ 3-5] M. Hikita, R. Yoshimura, M. Usui, S. Tomaru, and S. Imamura, “Polymeic optical waveguides for optical interconnections,” Thin Solid Films, Vol. 331, Issues 1-2, pp. 303-308 (1998).

[ 3-6] D. Meyerhofer, “Characteristics of resist films produced by spinning,” J. Appl. Phys., Vol. 49, pp. 3993-3997 (1978).

[ 3-7] T. Watanabe, M. Hikita, M. Amano, Y. Shuto, and S. Tomaru, “Vertically stacked coupler and serially grafted waveguide: Hybrid waveguide structures formed using an electro-optic polymer,” J. Appl. Phys., Vol. 83, No. 2, pp.639-649 (1998).

[ 3-8]佐々木実、“レジストプロセスの基本”、電気学会論文誌 E(センサ・マイクロマシン部門誌)、131巻、1号、pp. 2-7 (2011).

[ 3-9] A. Takahashi and T. Ishigure, “Bend insensitive graded index multimode polymer optical waveguides fabricated using the Mosquito method,” Proc. of SPIE 2015, Vol. 9366, 93660L (2015).

[ 3-10] H. Masuda, N. Chujo, and T. Ishigure, “Formation of pitch conversion structure in multimode polymer optical waveguide with high coupling efficiency,” Proc. of 2016 IEEE CPMT Symposium Japan (ICSJ), pp. 151-152 (2016).

[ 3-11] A. Yamauchi, Y. Morimoto, T. Enomoto, K. Suzuki, H. Masuda, and T. Ishigure, “Graded- index multimode polymer optical waveguide enabling low loss and high density 3-D on-board integration,” Proc. of 2016 IEEE Electronic Components and Technology Conference (ECTC), pp. 490-496 (2016).

[ 3-12] O. F. Rasel, A. Yamauchi, and T. Ishigure, “Low-loss 3-dimensional shuffling graded-index polymer optical waveguides for optical printed circuit boards,” IEICE Trans. Electron., Vol. E101-C, No. 7, pp. 509-517 (2018).

[ 3-13] 相賀建人、2016年度慶應義塾大学修士論文(2017).

[ 3-14] H. Matsui, S. Yakabe, and T. Ishigure, “Applicability of the Mosquito method to fabricate fan- in/out device for single-mode multicore fiber,” Proc. of 2019 IEEE CPMT Symposium Japan (ICSJ), pp. 63-66 (2019).

[ 3-15] K. Abe, Y. Oizumi, and T. Ishigure, “Low-loss graded-index polymer crossed optical waveguide with high thermal resistance,” Opt. Express, Vol. 26, No. 4, pp. 4512-4521 (2018).

[ 3-16] K. Abe, Y. Oizumi, Y. Taira, and T. Ishigure, “Low loss channel-shuffling polymer waveguides: design and fabrication,” Proc. of 2017 IEEE Electronic Components and Technology Conference (ECTC), pp. 526-531 (2017).

[ 3-17] 中崎蕗乃、2018年度慶應義塾大学修士論文(2019).

[ 3-18] 藤原悠人、2018年度慶應義塾大学修士論文(2019).

[ 3-19] Y. Fujihara and T. Ishigure, “Fabrication for organic-inorganic hybrid resin based single-mode polymer optical waveguides using the imprint method for high density optical circuit,” Proc. of 2018 IEEE CPMT Symposium Japan (ICSJ), pp. 125-126 (2018).

第四章 References

[ 4-1] R. Kinoshita, K. Moriya, K. Choki, and T. Ishigure, “Polymer optical waveguides with GI and W-shaped cores for high bandwidth density on-board interconnects,” IEEE J. Lightw. Technol., Vol. 31, No. 24, pp. 4004-4015 (2013).

[ 4-2] Y. Koike, “Fundamentals of Plastic Optical Fibers,” WILEY-VCH (2015). 第 4 章マルチモードポリマー光導波路の光結合特性

[ 4-3]岩井則広、高木啓史、清水均、今井英、川北泰雅、神谷慎一、平岩浩二、高木智洋、石川卓哉、築地直樹、粕川秋彦、“光インタコネクション用 1060 nm VCSELアレイ”、古河電工時報、第 125号(2010).

[ 4-4] T. Mori, K. Takahama, M. Fujiwara, K. Watanabe, H. Owari, Y. Shirato, S. Terada, M. Sakamoto, and K. Choki, “Optical and electrical hybrid flexible printed circuit boards with unique photo-defined polymer waveguide layers,” Proc. of SPIE 2010, Vol. 7607, 76070S (2010).

[ 4-5] Y. Morimoto and T. Ishigure, “Low-loss light coupling with graded-index core polymer optical waveguides via 45-degree mirrors,” Opt. Express, Vol. 24, No. 4, pp. 3550-3561 (2016).

[ 4-6] T. Noda and Y. Koike, “Bandwidth enhancement of graded index plastic optical fiber by control of differential mode attenuation,” Opt. Express, Vol. 18, No. 3, pp. 3128-3136 (2010).

[ 4-7] Y. Morimoto and T. Ishigure, “Design for polymer optical waveguides realizing efficient light coupling via 45-degree mirrors,” Opt. Express, Vol. 27, No. 8, pp. 10839-10853 (2019).

[ 4-8] H. Numata, S. Nakagawa, Y. Taira, “High-density optical interconnect based on TIR and metal coated precise mirror attached waveguide,” Proc. of Conference on Lasers and Electro-Optics 2009, JWA40 (2009).

[ 4-9] FINTECH、“各種物質の放射率(吸収率)”、https://www.fintech.co.jp/etc- data/housharitsu.htm (2020年1月閲覧).

[ 4-10] K. Abe, Y. Oizumi, and T. Ishigure, “Low-loss graded-index polymer crossed optical waveguide with high thermal resistance,” Opt. Express, Vol. 26, No. 4, pp. 4512-4521 (2018).

[ 4-11] Y. Morimoto, K. Date, and T. Ishigure, “Accurate core alignment for polymer optical waveguide in the Mosquito method for high-efficient coupling,” Proc. of 2018 IEEE Electronic Components and Technology Conference (ECTC), pp. 2444-2449 (2018).

[ 4-12] R. Kinoshita, D. Suganuma, and T. Ishigure, “Accurate interchannel pitch control in graded- index circular-core polymer parallel optical waveguide using the Mosquito method,” Opt. Express, Vol. 22, No. 7, pp. 8426-8437 (2014).

[ 4-13] 阿部光平、2017年度慶應義塾大学修士論文(2018).

第五章 References

[ 5-1] 住友電気工業,“光ファイバ・ケーブル”,https://www.optigate.jp/pdf/catalog/cable.pdf (2019 年 11 月閲覧).

[ 5-2] 森本祥江,疋田真,松井瞳,藤原悠人,石榑崇明,“Mosquito 法 および 直接露光法によるシングルモードポリマー光導波路の作製と光学素子との高効率光結合検討”,第 32 回 エレクトロニクス実装学会 春季講演大会 (2019).

[ 5-3] Y. Morimoto, M. Hikita, H. Matsui, Y. Fujihara, and T. Ishigure, “Low-loss single-mode polymer optical waveguides: comparison between direct-curing and the Mosquito methods,” Proc. of 2018 IEEE CPMT Symposium Japan (ICSJ), pp. 145-146 (2018).

[ 5-4] 齊藤侑季,2016 年度慶應義塾大学修士論文 (2017).

[ 5-5] R. Kinoshita, D. Suganuma, and T. Ishigure, “Accurate interchannel pitch control in graded- index circular-core polymer parallel optical waveguide using the Mosquito method,” Opt. Express, Vol. 22, No. 7, pp. 8426-8437 (2014).

[ 5-6] H. Nawata, “Organic-inorganic hybrid material for on-board optical interconnects and its application in optical coupling,” Proc. of 2013 IEEE CPMT Symposium Japan (ICSJ), pp. 126-129 (2013).

[ 5-7] 山内潤治,藪哲郎,「光導波路解析入門」,森北出版株式会社 (2007).

[ 5-8] D. F. G. Gallagher and T. P. Felici, “Eigenmode expansion methods for simulation of optical propagation in photonics – pros and cons,” Proc. of SPIE 2003, Vol. 4987, pp. 69-82 (2003).

[ 5-9] 安原和貴,於豊,石榑崇明,“Si フォトニクスチップ接続のためのポリマー光導波路 型スポットサイズコンバータ”,電子情報通信学会 光エレクトロニクス研究会 (2016).

[ 5-10] Y. Fujihara and T. Ishigure, “Fabrication for organic-inorganic hybrid resin based single-mode polymer optical waveguides using the imprint method for high density optical circuit,” Proc. of 2018 IEEE CPMT Symposium Japan (ICSJ), pp. 125-126 (2018).

[ 5-11] Y. Sakaguchi and T. Ishigure, “Simulation of refractive index profile formed in polymer optical waveguides fabricated using the Mosquito method,” Proc. of 2019 IEEE CPMT Symposium Japan (ICSJ), pp. 145-146 (2019).

[ 5-12] 小林佑衣,阪口洋至,石榑崇明,“Mosquito 法による円形コアシングルモードテーパ 光導波路の作製とスポットサイズコンバータへの応用”,電子情報通信学会 光エレクトロニクス研究会 (2019).

[ 5-13] Y. H. Min, M. H. Lee, and J. Y. Do, “Polarization dependent loss in polymeric rib channel waveguide”, IEEE Photon. Technol. Lett., Vol. 12, No. 11, pp. 1483-1485 (2000).

[ 5-14] J. M. Lee, S. Park, M. H. Lee, J. T. Ahn, J. Ju, and K. H. Kim, “Simple method to adjust polarization dependence in polymeric arrayed waveguide gratings,” IEEE Photon. Technol. Lett., Vol. 15, No. 7, pp. 927-929 (2003).

[ 5-15] S. Y. Cheng, K. S. Chiang, and H. P. Chan, “Polarization dependence in polymer waveguide directional couplers,” IEEE Photon. Technol. Lett., Vol. 17, No. 7, pp. 1465-1467 (2005).

[ 5-16] M. F. Hossain, H. P. Chan, M. A. Uddin, and R. K. Y. Li, “Efficient design of polarization independent polymer optical waveguide devices,” Proc. of 14th Optoelectronics and Communications Conference, WA5 (2009).

[ 5-17] H. Matsui and T. Ishigure, “Fabrication for single-mode core fan-in/out polymer optical waveguide using the Mosquito method,” Proc. of BiCOP 2019 (2019).

[ 5-18] H. Matsui, S. Yakabe, and T. Ishigure, “Applicability of the Mosquito method to fabricate fan- in/out device for single-mode multicore fiber,” Proc. of 2019 IEEE CPMT Symposium Japan (ICSJ), pp. 63-66 (2019).

[ 5-19] Y. Morimoto, H. Matsui, M. Hikita, and T. Ishigure, “Polarization dependence of optical properties of single-mode polymer optical waveguides fabricated under different processes at 1310/1550 nm,” IEEE J. Lightw. Technol.

[in printing].

[ 5-20] Y. Morimoto, H. Matsui, M. Hikita, and T. Ishigure, “Polarization dependence analysis of 第 5 章 シングルモードポリマー光導波路の光結合特性 polymer optical waveguides,” Proc. of 2019 IEEE CPMT Symposium Japan (ICSJ), pp. 183-186 (2019).

[ 5-21] 藤原悠人,2018 年度慶應義塾大学修士論文 (2019).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る