リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「低雑音性屈折率分布型プラスチック光ファイバの信号伝送特性に関する研究 (本文)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

低雑音性屈折率分布型プラスチック光ファイバの信号伝送特性に関する研究 (本文)

村元, 謙太 慶應義塾大学

2021.03.23

概要

本論文は,低雑音特性を有する GI 型 POF の信号伝送特性について述べたものである.これまでに GI 型 POF がミクロなポリマー材料特性由来の強いモード結合に起因した雑音低減効果を有することは報告されていたが,「GI 型 POF による雑音低減によって実際の信号伝送がどのように改善されるのか」について,その原理は解明されてこなかった.本研究では,光伝送システムにおける雑音や非線形歪みを詳細に検討し,低雑音性 GI 型POF の信号伝送特性の解明を目指した.第 3 章において強いモード結合を有する低雑音性 GI 型 POF を作製し,第 4 章および第 5 章にてその信号伝送特性を評価・解析した.

以下に本研究で得られた成果を要約するとともに,今後の展開を述べる.

第 4 章では,GI 型 POF のデジタルベースバンド伝送特性について検討した.GI 型 POF の強いモード結合に起因した反射戻り光雑音の低減がデータ伝送品質の改善に大きく寄与することを明らかにし,GI 型 POF を用いることで従来の石英系 GI 型MMF と比べて,1 m の伝送において,符号誤り率を 2 桁以上低減した高品質なデータ伝送が可能となることを実証した.さらに,GI 型 POF の強いモード結合による反射戻り光の低減に起因して雑音のみならず非線形歪みが低減することを見出し,GI 型 POF を用いることで石英系 GI 型 MMF と比べて光リンクの高いスプリアスフリーダイナミックレンジが得られることを実証した.以上の結果は,GI 型 POF が多値変調方式を用いた大容量データ伝送のための光伝送媒体として有用であることを示すものであり,今後の展開として,GI 型 POF による高品質な多値伝送の実証が期待される.

第 5 章では,GI 型 POF のアナログ RoF 伝送特性について検討した.従来の石英系 GI 型 MMF による RoF 伝送では反射戻り光に起因した雑音(スプリアスピーク)の発生と非線形歪みの増加によって伝送品質が大きく劣化することを明らかにするとともに,GI型 POF を用いることでその強いモード結合が一因となり,スプリアスピークと非線形歪みの両方が低減し,100 m の伝送でエラーベクトル振幅が約 2%の高品質な RoF 伝送が可能となることを明らかにした.さらに,GI 型 POF を用いた RoF リンクでは,伝送距離が長くなるほど伝送損失が大きくなるにもかかわらず,モード結合に起因したスプリアスピークと非線形歪みの低減が顕著となるため,ファイバ長の増加に伴って伝送品質が向上する傾向があることを明らかにした.以上の結果は,GI 型 POF 内部のミクロ不均一構造に依存するモード結合によって光伝送システムの伝送品質を制御できることを示唆しており,今後の展開として,GI 型 POF のモード結合の制御手法の確立が挙げられる.GI 型 POF 内部のミクロ不均一構造はポリマー材料やその重合条件に依存し,光ファイバ作製時の延伸条件等によっても変化することが予測され,上記の各種条件が GI 型 POF のモード結合特性に与える影響を明らかにすることで,使用用途に応じた低雑音性 GI 型 POF の設計が可能となることが期待される.

最後に,本研究を踏まえて GI 型 POF の特性をまとめる(Table 6.1).これまで GI 型 POF は,柔軟かつ安全で広帯域性を有するが,散乱による伝送損失が大きく,その性能は石英系 GI 型MMF に及ばないと考えられていた.しかし,本研究により,GI 型 POFにおける光散乱に起因したモード結合を積極的に利用することで,雑音と歪みを大幅に低減した信号伝送が可能となることが明らかとなった.これは,伝送損失が大きな問題とはならない短距離光通信(100 m 以下程度)においては,GI 型 POF が優れた伝送性能を有し,従来の石英系 GI 型 MMF では達成できない高品質な光ネットワークの構築が可能となることを示唆している.近年,家庭内やビル内,データセンター内等において短距離光通信の重要性が高まっており,GI 型 POF はその最有力候補と考えられる.本論文が,GI 型 POF の低雑音信号伝送特性の基礎を示し,今後の応用研究や実用展開への足掛かりとなれば幸いである.

この論文で使われている画像

参考文献

[1] Y. Koike, Fundamentals of Plastic Optical Fibers. Weinheim, Germany: Wiley-VCH, 2015.

[2] Y. Koike, T. Ishigure, and E. Nihei, “High-bandwidth graded-index polymer optical fiber,” J. Lightw. Technol., vol. 13, no. 7, pp. 1475–1489, Jul. 1995.

[3] K. Motohashi, “Media, culture and industry in the 4K/8K smart TV era,” New Breeze, vol. 26, no. 2, pp. 5–7, Apr. 2014.

[4] International Telecommunication Union, Recommendation ITU-R BT.2077-2, 2017.

[5] K. Szczerba, P. Westbergh, J. Karout, J. S. Gustavsson, Å. Haglund, M. Karlsson, P. A. Andrekson, E. Agrell, and A. Larsson, “4-PAM for high-speed short-range optical communications,” J. Opt. Commun. Netw., vol. 4, no. 11, pp. 885–894, Nov. 2012.

[6] D. Kuchta, “High-capacity VCSEL links,” presented at the Optical Fiber Communication Conf., Los Angeles, CA, USA, Mar. 2017, Paper Tu3C.4.

[7] K. Petermann, “External optical feedback phenomena in semiconductor lasers,” IEEE J. Sel. Topics Quantum Electron., vol. 1, no. 2, pp. 480–489, Jun. 2002.

[8] A. M. J. Koonen, “Bit-error-rate degradation in a multimode fiber optic transmission link due to modal noise,” J. Sel. Areas Commun., vol. 4, no. 9, pp. 1515–1522, Dec. 1986.

[9] D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is—and what is not—an optical isolator,” Nat. Photon., vol. 7, no. 8, pp. 579–582, Jul. 2013.

[10] M. Takahashi, “Compatibility of conventional-ferrule with step-ferrule for angled convex optical connector,” in Proc. 45th Electronic Components and Technology Conf., Las Vegas, NV, USA, May 1995, pp. 406–412.

[11] K. Szczerba, P. Westbergh, J. Karout, J. Gustavsson, A. Haglund, M. Karlsson, P. Andrekson, E. Agrell, and A. Larsson, “30 Gbps 4-PAM transmission over 200 m of MMF using an 850 nm VCSEL,” Opt. Express, vol. 19, no. 26, pp. 203–208, Dec. 2011.

[12] G. Chen, J. Du, L. Sun, W. Zhang, K. Xu, X. Chen, G. T. Reed, and Z. He, “Nonlinear distortion mitigation by machine learning of SVM classification for PAM-4 and PAM-8 modulated optical interconnection,” J. Lightw. Technol., vol. 36, no. 3, pp. 650–657, Feb. 2018.

[13] F. Hu, Opportunities in 5G Networks: A Research and Development Perspective. Boca Raton, FL, USA: CRC Press, 2016.

[14] J. Lee, E. Tejedor, K. Ranta-aho, H. Wang, K. Lee, E. Semaan, E. Mohyeldin, J. Song, C. Bergljung, and S. Jung, “Spectrum for 5G: Global status, challenges, and enabling technologies,” IEEE Commun. Mag., vol. 56, no. 3, pp. 12–18, Mar. 2018.

[15] M. Sauer, A. Kobyakov, and J. George, “Radio over fiber for picocellular network architectures,” J. Lightw. Technol., vol. 25, no. 11, pp. 3301–3320, Nov. 2007.

[16] N. Gomes, A. Nkansah, and D. Wake, “Radio over MMF techniques, Part I: RF to microwave frequency systems,” J. Lightw. Technol., vol. 26, no. 15, pp. 2388–2395, Aug. 2008.

[17] A. M. J. Koonen and M. Garcia Larrode, “Radio over MMF techniques—Part II: Microwave to mm-wave systems,” J. Lightw. Technol., vol. 26, no. 15, pp. 2396–2408, Aug. 2008.

[18] F. Forni, Y. Shi, H. van den Boom, E. Tangdiongga, and T. Koonen, “Multiband LTE–A and 4-PAM signals over large-core plastic fibers for in-home networks,” IEEE Photon. Technol. Lett., vol. 28, no. 20, pp. 2281–2284, Oct. 2016.

[19] F. Forni, Y. Shi, N. C. Tran, H. P. A. van den Boom, E. Tangdiongga, and A. M. J. Koonen, “Multiformat wired and wireless signals over large-core plastic fibers for in-home network,” J. Lightw. Technol., vol. 36, no. 16, pp. 3444–3452, Aug. 2018.

[20] D. Wake, A. Nkansah, and N. J. Gomes, “Radio over fiber link design for next generation wireless systems,” J. Lightw. Technol., vol. 28, no. 16, pp. 2456–2464, Aug. 2010.

[21] L. Breyne, G. Torfs, X. Yin, P. Demeester, and J. Bauwelinck, “Comparison between analog radio-over-fiber and sigma delta modulated radio-over-fiber,” IEEE Photon. Technol. Lett., vol. 29, no. 21, pp. 1808–1811, Nov. 2017.

[22] M. U. Hadi, H. Jung, S. Ghaffar, P. A. Traverso, and G. Tartarini, “Optimized digital radio over fiber system for medium range communication,” Opt. Commun., vol. 443, pp. 177– 185, Jul. 2019.

[23] S. Ishimura, A. Bekkali, K. Tanaka, K. Nisimura, and M. Suzuki, “1.032-Tb/s CPRI- equivalent rate IF-over-fiber transmission using a parallel IM/PM transmitter for high- capacity mobile fronthaul links,” J. Lightw. Technol., vol. 36, no. 8, pp. 1478–1484, Apr. 2018.

[24] X. N. Fernando, Radio over Fiber for Wireless Communications: From Fundamentals to Advanced Topics. Hoboken, NJ, USA: Wiley-IEEE, 2014.

[25] A. Inoue, R. Furukawa, M. Matsuura, and Y. Koike, “Reflection noise reduction effect of graded-index plastic optical fiber in multimode fiber link,” Opt. Lett., vol. 39, no. 12, pp. 3662–3665, Jun. 2014.

[26] A. Inoue and Y. Koike, “Low-noise graded-index plastic optical fiber for significantly stable and robust data transmission,” J. Lightw. Technol., vol. 36, no. 24, pp. 5887–5892, Dec. 2018.

[27] A. Inoue, T. Sassa, K. Makino, A. Kondo, and Y. Koike, “Intrinsic transmission bandwidths of graded-index plastic optical fibers,” Opt. Lett., vol. 37, no. 13, pp. 2583–2585, Jul. 2012.

[28] A. Inoue, T. Sassa, R. Furukawa, K. Makino, A. Kondo, and Y. Koike, “Efficient group delay averaging in graded-index plastic optical fiber with microscopic heterogeneous core,” Opt. Express, vol. 21, no. 14, pp. 17379–17385, Jul. 2013.

[29] J. L. Gimlett and N. K. Cheung, “Effects of phase-to-intensity noise conversion by multiple reflections on gigabit-persecond DFB laser transmission systems,” J. Lightw. Technol., vol. 7, no. 6, pp. 888–895, Jun. 1989.

[30] B. Hillerich and E. Weidel, “Polarization noise in single mode fibres and its reduction by depolarizers,” Opt. Quantum Electron., vol. 15, no. 4, pp. 281–287, Jul. 1983.

[31] A. Inoue and Y. Koike, “Intrinsically stabilized plastic optical fiber link subject to external optical feedback,” IEEE Photon. J., vol. 11, no. 1, pp. 1–7, Feb. 2019.

[32] G. Keiser, Optical Fiber Communications. Hoboken, NJ, USA: Wiley, 2003.

[33] S. D. Personick, “Baseband linearity and equalization in fiber optic digital communication systems,” Bell Syst. Tech. J., vol. 52, no. 7, pp. 1175–1194, Sept. 1973.

[34] D. Gloge and E. A. J. Marcatili, “Multimode theory of graded-core fibers,” Bell Syst. Tech. J., vol. 52, no. 9, pp. 1563–1578, Nov. 1973.

[35] R. Olshansky, “Propagation in glass optical waveguides,” Rev. Mod. Phys., vol. 51, no. 2, pp. 341–367, Apr. 1979.

[36] R. Olshansky and D. B. Keck, “Pulse broadening in graded-index optical fibers,” Appl. Opt., vol. 15, no. 2, pp. 483–491, Feb. 1976.

[37] M. K. Soudagar and A. A.Wail, “Pulse broadening in graded-index optical fibers: Errata,” Appl. Opt., vol. 32, no. 33, p. 6678, Nov. 1993.

[38] L. G. Cohen, “Pulse transmission measurements for determining near optimal profile gradings in multimode borosilicate optical fibers,” Appl. Opt., vol. 15, no. 7, pp. 1808–1814, Jul. 1976.

[39] J. W. Fleming, “Material and mode dispersion in GeO2-B2O3-SiO2 glasses,” Am. Ceram. Soc., vol. 59, no. 11–12, pp. 503–507, Nov. 1976.

[40] L. G. Cohen and C. Lin, “Pulse delay measurements in the zero material dispersion wavelength region for optical fibers,” Appl. Opt., vol. 16, no. 12, pp. 3136–3139, Dec. 1977.

[41] T. Ishigure, E. Nihei, and Y. Koike, “Optimization of the refractive-index distribution of high-bandwidth GI polymer optical fiber based on both modal and material dispersions,” Polym. J., vol. 28, no. 3, pp. 272–275, Mar. 1996.

[42] T. Ishigure, Y. Koike, and J. W. Fleming, “Optimum index profile of the perfluorinated polymer-based GI polymer optical fiber and its dispersion properties,” J. Lightw. Technol., vol. 18, no. 2, pp. 178–184, Feb. 2000.

[43] A. Polley and S. E. Ralph, “40 Gbps links using plastic optical fiber,” presented at the Optical Fiber Communication Conf., Montreal, QC, Canada, Mar. 2007, Paper OMR5.

[44] S. R. Nuccio, L. Christen, X. Wu, S. Khaleghi, O. Yilmaz, A. E. Willner, and Y. Koike, “Transmission of 40 Gb/s of DPSK and OOK at 1.55 μm through 100 m of plastic optical fiber,” presented at the European Conf. Optical Communication, Brussels, Belgium, Sept. 2008, Paper We.2.A.4.

[45] Y. Koike and A. Inoue, “High-speed graded-index plastic optical fibers and their simple interconnects for 4K/8K video transmission,” J. Lightw. Technol., vol. 13, no. 6, pp. 1551– 1555, Mar. 2016.

[46] Y. Koike and K. Koike, “Progress in low-loss and high-bandwidth plastic optical fibers,” J. Polym. Sci. B, vol. 49, no. 1, pp. 2–17, Jan. 2011.

[47] F. Urbach, “The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids,” Phys. Rev., vol. 92, no. 5, p. 1324, Oct. 1953.

[48] T. Kaino, M. Fujiki, and K. Jinguji, “Preparation of plastic optical fibers,” Rev. Electr. Commun. Lab., vol. 32, no. 3, pp. 478–488, May 1984.

[49] T. Yamashita and K. Kamada, “Intrinsic transmission loss of polycarbonate core optical fiber,” Jpn. J. Appl. Phys., vol. 32, no. 6A, pp. 2681–2686, Jun. 1993.

[50] W. Groh, “Overtone absorption in macromolecules for polymer optical fibers,” Macromol. Chem., vol. 189, no. 12, pp. 2861–2874, Dec. 1988.

[51] W. Groh and A. Zimmermann, “What is the lowest refractive index of an organic polymer?,” Macromolecules, vol. 24, no. 25, pp. 6600–6663, Dec. 1991.

[52] K. M. Gough and B. R. Henry, “Overtone spectral investigation of substituent-induced bond-length changes in gas-phase fluorinated benzenes and their correlation with ab initio STO-3G and 4-21G calculations,” J. Am. Chem. Soc., vol. 106, no. 10, pp. 2781–2787, May 1984.

[53] B. R. henry, “The local mode model and overtone spectra: A probe of molecular structure and conformation,” Acc. Chem. Res., vol. 20, no. 12, pp. 429–435, Dec. 1987.

[54] D. L. Snavely, F. R. Blackburn, Y. Ranasinghe, V. A. Walters, and M. Gonzalez del Riego, “Vibrational overtone spectroscopy of pyrrole and pyrrolidine,” J. Phys. Chem., vol. 96, no. 9, pp. 3599–3605, Apr. 1992.

[55] T. Ishigure, E. Nihei, Y. Koike, C. E. Forbes, L. LaNieve, R. Straff, and H.A. Deckers, “Large-core, high-bandwidth polymer optical fiber for near infrared use,” IEEE Photon. Technol. Lett., vol. 7, no. 4, pp. 403–405, Apr. 1995.

[56] K. Koike and Y. Koike, “Design of low-loss graded-index plastic optical fiber based on partially fluorinated methacrylate polymer,” J. Lightw. Technol., vol. 27, no. 1, pp. 41–46, Jan. 2009.

[57] T. Ishigure, M. Sato, E. Nihei, and Y. Koike, “Graded-index polymer optical fiber with high thermal stability of bandwidth,” Jpn. J. Appl. Phys., vol. 37, no. 7, pp. 3986–3991, Jul. 1998.

[58] M. Kerker, The Scattering of Light and Other Electromagnetic Radiation. New York, New York, USA: Academic Press, 1969.

[59] Y. Koike, N. Tanio, and Y. Ohtsuka, “Light scattering and heterogeneities in low-loss poly (methyl methacrylate) glasses,” Macromolecules, vol. 22, no. 3, pp. 1367–1373, Mar. 1989.

[60] Y. Koike, S. Matsuoka, and H. E. Bair, “Origin of excess light scattering in poly (methyl methacrylate) glasses,” Macromolecules, vol. 25, no. 18, pp. 4807–4815, Aug. 1992.

[61] A. Einstein, “Theorie der Opaleszenz von homogenen Flüssigkeiten und Flüssigkeitsgemischen in der Nähe des kritischen Zustandes,” Ann. Phys., vol. 338, no. 16, pp. 1275–1298, Jan. 1910.

[62] M. Dettenmaier and E. W. fischer, “Untersuchungen zu den orientierungs‐ und dichtefluktuationen in amorphen polymeren mit hilfe der lichtstreuung,” Makromol. Chem., vol. 177, no. 4, pp. 1185–1197, Apr. 1976.

[63] P. Debye and A. M. Bueche, “Scattering by an inhomogeneous solid,” J. Appl. Phys., vol. 20, no. 6, pp. 518–525, Jun. 1949.

[64] P. Debye, H. R. Anderson, and H. Brumberger, “Scattering by an inhomogeneous solid. II. The correlation function and its application,” J. Appl. Phys., vol. 28, no. 6, pp. 679–683, Jun. 1957.

[65] D. Marcuse, Theory of Dielectric Optical Waveguides. New York, New York, USA: Academic Press, 1974.

[66] R. Olshansky, “Mode coupling effects in graded-index optical fibers,” Appl. Opt., vol. 14, no. 4, pp. 935–945, Sept. 1975.

[67] L. Su, K. S. Chiang, and D. Lu, “Microbend-induced mode coupling in a graded-index multimode fiber,” Appl. Opt., vol. 44, no. 34, pp. 7394–7402, Dec. 2005.

[68] K. Kitayama, S. Seikai, and N. Uchida, “Impulse response prediction based on experimental mode coupling coefficient in a 10-km long graded index fiber,” J. Quantum Electron., vol. 16, no. 3, pp. 356–362, Mar. 1980.

[69] K. Balemarthy, A. Polley, and S. E. Ralph, “Electronic equalization of multikilometer 10- Gb/s multimode fiber links: Mode-coupling effects,” J. Lightw. Technol., vol. 24, no. 12, pp. 4885–4894, Dec. 2006.

[70] R. F. Shi, C. Koeppen, G. Jiang, J. Wang, and A. F. Garito, “Origin of high bandwidth performance of graded-index plastic optical fibers,” Appl. Phys. Lett., vol. 71, no. 25, pp. 3625–3627, Dec. 1997.

[71] A. E. Golowich, W. White, W. A. Reed, and E. Knudsen, “Quantitative estimates of mode coupling and differential modal attenuation in perfluorinated graded-index plastic optical fiber,” J. Lightw. Technol., vol. 21, no. 1, pp. 111–121, Jan. 2003.

[72] A. Polley and S. W. Ralph, “Mode coupling in plastic optical fiber enables 40-Gb/s performance,” IEEE Photon. Technol. Lett., vol. 19, no. 16, pp. 1254–1256, Aug. 2007.

[73] D. Gloge, “Weakly guiding fibers,” Appl. Opt., vol. 10, no. 10, pp. 2252–2258, Oct. 1971.

[74] M. Matsuura, R. Furukawa, Y. Matsumoto, A. Inoue, and Y. Koike, “Evaluation of modal noise in graded-index silica and plastic optical fiber links for radio-over-multimode fiber systems,” Opt. Express, vol. 22, no. 6, pp. 6562–6568, Mar. 2014.

[75] Y. C. Chung and Y. H. Lee, “Spectral characteristics of vertical-cavity surface-emitting lasers with external optical feedback,” IEEE Photon. Technol. Lett., vol. 3, no. 7, pp. 597– 599, Jul. 1991.

[76] J. W. Bae, H. Temkin, S. E. Swirhun, W. E. Quinn, P. Brusenbach, C. Parsons, M. Kim, and T. Uchida, “Reflection noise in vertical cavity surface emitting lasers,” Appl. Phys. Lett., vol. 63, no. 11, pp. 1480–1482, Sept. 1993.

[77] J. Ohtsubo, Semiconductor Lasers: Stability, Instability and Chaos. Berlin, Germany: Springer-Verlag, 2013.

[78] I. Ikushima and M. Maeda, “Self-coupled phenomena of semiconductor lasers caused by an optical fiber,” J. Quantum Electron., vol. 14, no. 5, pp. 331–332, May 1978.

[79] N. Schunk and K. Petermann, “Stability analysis for laser diodes with short external cavities,” IEEE Photon. Technol. Lett., vol. 1, no. 3, pp. 49–51, Mar. 1989.

[80] K. Koike, T. Kado, Z. Satoh, Y. Okamoto, and Y. Koike, “Optical and thermal properties of methyl methacrylate and pentafluorophenyl methacrylate copolymer: Design of copolymers for low-loss optical fibersfor gigabit in-home communications,” Polymer, vol. 51, no. 6, pp. 1377–1385, Mar. 2010.

[81] T. Ishigure, E. Nihei, and Y. Koike, “Graded-index polymer optical fiber for high-speed data communication,” Appl. Opt., vol. 33, no. 19, pp. 4261–4266, Jan. 1994.

[82] M. Asai, R. Hirose, A. Kondo, and Y. Koike, “High-bandwidth graded-index plastic optical fiber by the dopant diffusion coextrusion process,” J. Lightw. Technol., vol. 25, no. 10, pp. 3062–3067, Oct. 2007.

[83] R. Hirose, M. Asai, A. Kondo, and Y. Koike, “Graded-index plastic optical fiber prepared by the coextrusion process,” Appl. Opt., vol. 47, no. 22, pp. 4177–4185, Aug. 2008.

[84] Information technology – Generic cabling for customer premises, ISO/IEC 11801-1, 2017.

[85] F. M. E. Sladen, D. N. Payne, and J. Adams, “Determination of optical fiber refractive index profiles by a near‐field scanning technique,” Appl. Phys. Lett., vol. 28, no. 5, pp. 255–258, Mar. 1976.

[86] D. Molin, M. Bigot-Astruc, K. de Jongh, and P. Sillard, “Trench-assisted bend-resistant OM4 multi-mode fibers,” presented at the European Conf. Optical Communication, Torino, Italy, Sept. 2010, Paper P1.12.

[87] Lasers and laser-related equipment – Test methods for laser beam widths, divergence angles and beam propagation ratios, ISO 11146-1, 2005.

[88] D. Yavick and B. Stoltz, “Effect of mode coupling on the total pulse response of perturbed optical fibers,” Appl. Opt., vol. 22, no. 7, pp. 1010–1015, Apr. 1983.

[89] P. Dubský, “Simple computer solution of coupled power equations,” Opt. Quantum Electron., vol. 21, pp. 511–515, Nov. 1989.

[90] T. Okoshi, Optical Fibers. New York, New York, USA: Academic Press, 1982.

[91] J. Redd, “Calculating statistical confidence levels for error-probability estimates,” Lightwave, vol. 17, no. 5, pp. 110–114, Apr. 2000.

[92] C. Carlsson, H. Martinsson, R. Schatz, J. Halonen, and A. Larsson, “Analog modulation properties of oxide confined VCSELs at microwave frequencies,” J. Lightw. Technol., vol. 20, no. 9, pp. 1740–1749, Sept. 2002.

[93] J. R. Wesselmann, N. M. Margalit, and J. E. Bowers, “Analog measurements on long wavelength vertical cavity lasers,” Appl. Phys. Lett., vol. 72, pp. 2084–2086, Jun. 1998.

[94] H. Lee, R. V. Dalai, R. J. Ram, and K. D. Choquette, “Resonant distortion in vertical cavity surface emitting lasers for RF communication,” presented at the Optical Fiber Communication Conf., San Diego, CA, USA, Feb. 1999, Paper FE1.

[95] C. Carlsson, H. Martinsson, J. Vukusic, J. Halonen, and A. Larsson, “Nonlinear distortion and dynamic range of red (670 nm) oxide confined VCSELs,” IEEE Photon. Technol. Lett., vol. 13, pp. 358–360, Apr. 2001.

[96] J. Helms, “Intermodulation and harmonic distortions of laser diodes with optical feedback,” J. Lightw. Technol., vol. 9, no. 11, pp. 1567–1575, Nov. 1991.

[97] C. Lethien, C. Loyez, J. P. Vilcot, R. Kassi, N. Rolland, C. Sion, and P. A. Rolland, “Review of glass and polymer multimode fibers used in a wimedia ultrawideband MB-OFDM radio over fiber system,” J. Lightw. Technol., vol. 27, no. 10, pp. 1320–1331, May 2009.

[98] P. Polishuk, “Plastic optical fibers branch out,” IEEE Commun. Mag., vol. 44, no. 9, pp. 140–148, Sept. 2006.

[99] T. Wipiejewski, T. Moriarty, V. Hung, P. Doyle, G. Duggan, D. Barrow, M. O'Gorman, T. Calvert, M. Maute, V. Gerhardt, and J. D. Lambkin, “Gigabits in the home with plugless plastic optical fiber (POF) interconnects,” presented at the 2nd Electronics System- Integration Technology Conf., Greenwich, UK, Sept. 2008, pp. 1263–1266.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る