リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「ミリ波帯Radio over Fiberのための平面アンテナを集積した多重量子井戸光変調器」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

ミリ波帯Radio over Fiberのための平面アンテナを集積した多重量子井戸光変調器

Miyazeki Yusuke 横浜国立大学 DOI:info:doi/10.18880/00013297

2020.06.15

概要

本論文では,ミリ波帯 Radio over fiber(RoF)のための、平面アンテナを集積した InGaAs/InAlAs 多重量子井戸光変調器を提案し、その設計、電磁界解析、作製、および変調特性の測定について議論した。

5G をはじめとするミリ波帯無線通信技術のために、光ファイバを用いてミリ 波を低損失かつ高速に伝送するRoF 技術が注目される。ミリ波帯 RoF 技術には、無線ミリ波信号を光信号に変換する光変調器が必要不可欠である。RoF 技術に 用いられる従来光変調器は、外部アンテナによって受信したミリ波信号を同軸 ケーブルなどで変調器に入力することで変調動作する。しかし、同軸ケーブルに よる伝送の際に、ミリ波信号の歪みや遅延が生じることが指摘されており、これ は高速かつ低遅延な 5G 通信などミリ波帯無線通信のボトルネックとなる恐れ がある。そこで注目される新たな変調デバイスとして、光変調器にアンテナを集 積したアンテナ集積光変調器がある。この変調器は、同軸ケーブルや外部電源を 必要としない完全パッシブな変調動作が可能であり、高速かつ低遅延なミリ波 帯無線通信との高い親和性を有する。これまで、電気光学(EO)材料であるニ オブ酸リチウム(LN)や非線形光学ポリマ(EOP)のポッケルス効果を利用した アンテナ集積光変調器が報告されている。これらのアンテナ集積光変調器を用 いて、ミリ波帯無線多値変調信号の伝送実験なども既に実証されており、その応 用展開が非常に期待されている。しかし、これらの EO 材料の電界誘起屈折率変 化量は比較的小さく、変調器の大型化や高消費電力化などの課題がある。また、 光変調器システムに必要不可欠なレーザダイオード(LD)などの半導体発光素 子との集積性も乏しく、変調器システム全体の大型化や高損失化といった課題 も予想される。そこで本研究では、ミリ波帯 RoF 技術のための平面アンテナを 集積したInGaAs/InAlAs 多重量子井戸光変調器を開発する。本変調器は InP をベ ースとするため、半導体発光素子との高い集積性を有し、変調器システムの生産 性の向上、小型化、低損失化といった様々な優位点がある。さらに、本変調器の 導波路コア層に採用される 5 層非対称結合量子井戸(FACQW)はその特殊な量 子閉じ込めシュタルク効果(QCSE)により、LN と比較して数十倍の大きな電 界誘起屈折率変化特性を示すと期待され、提案変調器の変調効率向上が可能で ある。しかし、これまで半導体光変調器にアンテナを集積した研究例がないため、その集積技術を確立する必要がある。また、提案変調器を作製するための新規作 成プロセスの開発と、その作製条件の確立も必要不可欠である。さらに、これま で報告されたアンテナ集積光変調器はポッケルス効果を用いての実証に限られ ていたが、本研究では FACQW のQCSE を用いた変調動作の実証を目指す。

本論文の第 1 章では、高度情報通信社会の現状と今後の展望について解説した。近年のインターネットトラフィックの増大と高速無線通信の需要の高まりについて実例を示しながら解説した。また、現在大きく注目されるマイクロ波フォトニクスについて、その要素技術や研究トレンドについて解説した。特に、光通信と無線通信を融合させる RoF 技術について、その基礎理論と最新の研究動向を解説した。LN や EOP をベースにしたアンテナ集積光変調器の最新研究動向をまとめ、解決すべき課題と本研究の位置づけ、および目的を示した。

第 2 章では、アンテナ集積 InP 系光変調器の設計手法と、その要素技術について解説した。変調器を構成する光素子である、スポットサイズコンバータや InP ハイメサ導波路などについて、その設計理論とビーム伝搬法(BPM)で解析された動作特性を示した。変調器の導波路コア層に採用された FACQW について、その特殊な QCSEの原理と屈折率変化特性を波動関数分布や吸収スペクトルなどを用いて解説した。本変調器の平面アンテナとして採用したプリンテッドダイポールアンテナについて、その設計理論と採用理由を他のアンテナ構造と比較しながら解説した。

第 3 章では、提案する InGaAs/InAlAs 多重量子井戸アンテナ集積光変調器の設計とミリ波特性について議論した。ミリ波特性の解析には、FEM シミュレータによる電磁界解析を用いた。基板形状やアンテナ形状などの変調器設計パラメータがミリ波特性に与える影響を、導波路コア層に印加される電界強度やピーク周波数などを用いて議論した。変調器設計として、半絶縁性 Fe ドープ InP(Fe-InP)基板をベースしたマッ ハ・ツェンダー(MZ)光変調器にアンテナを集積した設計と、導電性 n 型InP(n-InP)とガラスを組み合わせた基板をベースにした光位相変調器にアンテナを集積した 2 種を提案した。両変調器設計において、導波路に PIN 構造を導入することでアンテナに誘起された電界を高効率に導波路コア層へ印加可能であることを明らかにした。Fe-InP基板ベース MZ 変調器では、入力ミリ波の 800 倍の強度を有する z 方向電界を導波路コア層に印加可能な設計案を見出した。また、アレイアンテナ構造の導入やプッシュプル駆動を可能とする変調器構造の工夫によって、本変調器はアンテナ集積光変調器として初めて、小型でありながら強度変調器として動作可能なほど大きな変調効率を達成した。InP/Glass ベース位相変調器は、InP ベースアンテナ集積光変調器の変調動作を実証するために開発した特別な設計案である。導電性基板上に形成されたアンテナは基本的に動作しないため、アンテナ集積光変調器の基板には Fe-InP など絶縁性材料が望ましい。しかし、今回 FACQW が積層された Fe-InP を手に入れることが出来なかったため、一般的な光デバイス作製に用いられる FACQW 積層導電性 n-InP 基板を用いて変調器を設計した。変調器上面に低誘電材料であるガラスを組み合わせることでアンテナ基板の実効誘電率を低減し、アンテナに誘起される電界強度の向上に成功した。また、InP 基板に約 20 m の深溝を形成し、そこに均一に樹脂を埋め込む特殊な基板構造を考案し、導電性基板上でも動作するアンテナを開発した。InP/Glass ベースアンテナ集積光変調器の変調効率は Fe-InP ベースのものと比較して大きく低減するが、変調動作の実証は可能であると見積もられた。

第 4 章では、InP/Glass ベースアンテナ集積光変調器を作製するための新規プロセスを開発し、確立した作製条件を示した。本変調器は、FACQW コア層が積層された n-InP ウエハをチップ形状に加工し、その後エッチングや電子ビーム(EB)リソグラフィなど各種半導体加工プロセスを用いて著者自らが作製した。本変調器は従来の光デバイスにはない、InP 基板への深溝形成と樹脂による深溝の均一な埋め込みが必要となる。そこで、ウェットエッチングによる厚膜 SiO2 マスクパターニングと InP ドライエッチングを併用した InP 基板深堀プロセスを新たに開発した。このプロセスを用いて、比較的垂直性が高い約 20 m の深溝を InP 基板に形成することに成功した。形成した深溝を均一に埋め込むための樹脂材料として、MEMS 分野で用いられる SU8 を見出し、均一に埋め込むための成膜条件を開発した。開発プロセスを用いて作製されたアンテナ集積光変調器を、光学顕微鏡像や電子顕微鏡(SEM)を用いて観察した。

第 5 章では、第 4 章で作製したアンテナ集積光変調器の変調測定について議論した。変調器に 60 GHz 帯ミリ波を入射することで、変調器の出力光スペクトルに明瞭なサイドバンドを確認した。出力光の搬送波とサイドバンドの強度比(CSR)を評価し、本変調器は 60 GHz の広いミリ波周波数帯域で変調動作可能であることを明らかにした。また、波長依存性について調査し、本変調器は光通信における C バンド帯において広帯域な変調動作が可能であることを明らかにした。測定された CSR から導出した位相変化量と FACQW の屈折率変化特性から算出された位相変化量を比較した。その結果、本変調器は FACQW の QCSE 効果による屈折率変化を利用して変調動作したことを明らかにした。これまで報告されたアンテナ集積光変調器は、LN や EOP のポッケルス効果を用いて動作するものに限られていた。この結果は、本研究によって、半導体の屈折率変化を用いたアンテナ集積光変調器が初めて実現されたことを示す。

以上より、本研究によってアンテナ集積半導体光変調器の設計手法の確立、変調器のための新たな作製プロセスの開発、そしてその作製と動作実証が行われた。今後、アンテナ集積光変調器は次世代ミリ波帯無線通信技術を支えるマイクロ波フォトニクスのキーデバイスとなることが予想される。本変調器がその有力な候補となり、情報通信社会の発展に大きく寄与することが期待される。

この論文で使われている画像

参考文献

Chapter 1

[1-1] Cisco Visual Networking Index: Forecast and Trends, 2017–2022 White Paper.

[1-2] Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2017–2022 White Paper.

[1-3] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of Things (IoT): A vision, architectural elements, and future directions,” Future Gener. Comp. Syst., vol. 29, no. 7, pp. 1645–1660, 2013.

[1-4] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, “Internet of Things for Smart Cities,” IEEE IoT J., vol. 1, no. 1, pp. 22–32, 2014.

[1-5] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, “Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications,” IEEE Commun. Surv. Tut., vol. 17, no. 4, pp. 2347–2376, 2015.

[1-6] S. Li, L. D. Xu, and S. Zhao, “The internet of things: a survey,” Inf. Syst. Front., vol. 17, no. 2, pp. 243–259, 2015.

[1-7] M. H. Miraz, M. Ali, P. S. Excell, and R. Picking, “A review on Internet of Things (IoT), Internet of Everything (IoE) and Internet of Nano Things (IoNT),” in 2015 Internet Technologies and Applications (ITA), 2015, pp. 219–224.

[1-8] C. Zhu, V. C. M. Leung, L. Shu, and E. C.- Ngai, “Green Internet of Things for Smart World,” IEEE Access, vol. 3, pp. 2151–2162, 2015.

[1-9] A. Botta, W. de Donato, V. Persico, and A. Pescapé, “Integration of Cloud computing and Internet of Things: A survey,” Future Gener. Comp. Syst., vol. 56, pp. 684–700, 2016.

[1-10] C. Stergiou, K. E. Psannis, B.-G. Kim, and B. Gupta, “Secure integration of IoT and Cloud Computing,” Future Gener. Comp. Syst., vol. 78, no.3, pp. 964–975, 2018.

[1-11] S. Iezekiel, Microwave Photonics: Devices and Applications, Wiley, 2009.

[1-12] A. J. Seeds and K. J. Williams, “Microwave Photonics,” J. Lightwave Technol., vol. 24, no. 12, pp. 4628–4641, 2006.

[1-13] J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics, vol. 1, no. 6, pp. 319–330, 2007.

[1-14] J. Yao, “Microwave Photonics,” J. Lightwave Technol., vol. 27, no. 3, pp. 314– 335, 2009.

[1-15] J. Yao, “A Tutorial on Microwave Photonics,” IEEE Photon. Soc. Newslett., p. 4– 12, 2012.

[1-16] J. Capmany, G. Li, C. Lim, and J. Yao, “Microwave Photonics: Current challenges towards widespread application,” Opt. Express, vol. 21, no. 19, pp. 22862–22867, 2013.

[1-17] R. Waterhouse and D. Novack, “Realizing 5G: Microwave Photonics for 5G Mobile Wireless Systems,” IEEE Microw. Mag., vol. 16, no. 8, pp. 84–92, 2015.

[1-18] X. Gu, A. F. Kockum, A. Miranowicz, Y. Liu, and F. Nori, “Microwave photonics with superconducting quantum circuits,” Phys. Rep., vol. 718–719, pp. 1–102, 2017.

[1-19] J. Hervás, A. L. Ricchiuti, W. Li, N. H. Zhu, C. R. Fernández-Pousa, S. Sales, M. Li, and J. Capmany, “Microwave Photonics for Optical Sensors,” IEEE J. Sel. Top. Quantum Electron., vol. 23, no. 2, pp. 327–339, 2017.

[1-20] D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev., vol. 7, no. 4, pp. 506–538, 2013.

[1-21] J. Capmany and P. Muñoz, “Integrated Microwave Photonics for Radio Access Networks,” J. Lightwave Technol., vol. 32, no. 16, pp. 2849–2861, 2014.

[1-22] W. Zhang and J. Yao, “Silicon-Based Integrated Microwave Photonics,” IEEE J. Sel. Top. Quantum Electron., vol. 52, no. 1, pp. 1–12, 2016.

[1-23] C. Roeloffzen et al., “Integrated microwave photonics for 5G,” in 2018 Conference on Lasers and Electro-Optics (CLEO), 2018, pp. 1–2.

[1-24] R. Maram, S. Kaushal, J. Azaña, and L. R. Chen, “Recent Trends and Advances of Silicon-Based Integrated Microwave Photonics,” Photonics, vol. 6, no. 1, 13 (40 pages), 2019.

[1-25] D. Marpaung, J. Yao, and J. Capmany, “Integrated microwave photonics,” Nat. Photonics, vol. 13, no. 2, pp. 80–90, 2019.

[1-26] D. Inoue, T. Hiratani, K. Fukuda, T. Tomiyasu, T. Amemiya, N. Nishiyama, “High- modulation efficiency operation of GaInAsP/InP membrane distributed feedback laser on Si substrate,” Opt. Express, vol. 23, no. 22, pp. 29024–29031, 2015.

[1-27] Y. Fan, J.P. Epping, R. M. Oldenbeuving, C. G, H. Roeloffzen, M. Hoekman, R. Dekker, R. G. Heideman, P.J.M. Slot, and K.-J. Boller, “Optically Integrated InP– Si₃ N₄ Hybrid Laser,” IEEE Photonics J., vol. 8, no. 6, pp. 1–11, 2016.

[1-28] Y. Fan, R. M. Oldenbeuving, C. G. Roeloffzen, M. Hoekman, D. Geskus, R. G. Heideman, and K.-J. Boller, “290 Hz intrinsic linewidth from an integrated optical chip-based widely tunable InP-Si3N4hybrid laser,” in 2017 Conference on Lasers and Electro-Optics (CLEO), 2017, pp. 1–2.

[1-29] J.-H. Han, F. Boeuf, J. Fujikata, S. Takahashi, S. Takagi, and M. Takenaka, “Efficient low-loss InGaAsP/Si hybrid MOS optical modulator,” Nat. Photonics, vol. 11, no. 8, pp. 486–490, 2017.

[1-30] T. Hiraki, T. Aihara, K. Hasebe, K. Takeda, T. Fujii, T. Kakitsuka, T. Tsuchizawa, H. Fukuda, and S. Matsuo, “Heterogeneously integrated III–V/Si MOS capacitor Mach–Zehnder modulator,” Nat. Photonics, vol. 11, no. 8, pp. 482–485, 2017.

[1-31] M. Takiguchi, A. Yokoo, K. Nozaki, M. D. Birowosuto, K. Tateno, G. Zhang, E. Kuramochi, A. Shinya, and M. Notomi, “Continuous-wave operation and 10-Gb/s direct modulation of InAsP/InP sub-wavelength nanowire laser on silicon photonic crystal,” APL Photonics, vol. 2, no. 4, 046106, 2017.

[1-32] T. Shirai, X. Han, M. Matsuura, T. Ishizaki, K. Tsushima, and K. Shimomura, “Template Thickness Dependence of GaInAsP MQW Laser Diode Grown on Directly Bonded InP/Si Substrate,” in 2019 24th OptoElectronics and Communications Conference (OECC) and 2019 International Conference on Photonics in Switching and Computing (PSC), 2019, pp. 1–3.

[1-33] Y. Ghasempour, C. R. C. M. da Silva, C. Cordeiro, and E. W. Knightly, “IEEE 802.11ay: Next-Generation 60 GHz Communication for 100 Gb/s Wi-Fi,” IEEE Commun. Mag., vol. 55, no. 12, pp. 186–192, 2017.

[1-34] G. A. Koepf, “Optical processor for phased array antenna beamformation,” Proc. SPIE, vol. 0477, pp. 75–81, 1984.

[1-35] N. A. Riza, “Transmit/receive time-delay beam-forming optical architecture for phased-array antennas,” Appl. Opt., vol. 30, no. 32, pp. 4594–4595, 1991.

[1-36] R. Benjamin and A. J. Seeds, “Optical beam forming techniques for phased array antennas,” IEEE Proc. H, vol. 139, no. 6, pp. 526–534, 1992.

[1-37] Y. Konishi, W. Chujo, and M. Fujise,” Carrier-to-noise ratio and sidelobe level in a two-laser model optically controlled array antenna using Fourier optics,” IEEE Trans. Antennas Propag., vol. 40, no. 12, pp.1459–1465, 1992.

[1-38] R. D. Esman, M. Tur, and L. Yaron,” Fiber-optic prism true time-delay antenna feed,” IEEE Photon. Technol. Lett., vol. 5, no. 11, pp. 1347–1369, 1993.

[1-39] A. Molony, C. Edge, and I. Bennion,” Fibre grating time delay element for phased array antennas,” Electron. Lett., vol. 31, no. 17, pp. 1485–1486, 1995.

[1-40] Y. Ji, K. Inagaki, R. Miura, and Y. Karasawa, “Optical processor for multibeam microwave array antennas,” Electron. Lett., vol. 32, no.9, pp. 822–824, 1996.

[1-41] D. T. K. Tong and M. C. Wu, “A novel multiwavelength optically controlled phased array antenna with programmable dispersion matrix,” IEEE Photonics Technol. Lett., vol. 8, no. 6, pp. 812–814, 1996.

[1-42] J. E. Román, M. Y. Frankel, P. J. Matthews, and R. D. Esman, “Time-steered array with a chirped grating beamformer,” Electron. Lett., vol. 33, no. 8, pp. 652–653, 1997.

[1-43] L. C. Godara, “Application of antenna arrays to mobile communications. II. Beam- forming and direction-of-arrival considerations,” Proc. IEEE, vol. 85, no.8, pp. 1195–1245, 1997.

[1-44] N. Madamopoulos and N. A. Riza, “Demonstration of an all-digital 7-bit 33- channel photonic delay line for phased-array radars,” Appl. Opt., vol. 39, no.23, pp. 4168–4181, 2000.

[1-45] B. Vidal, T. Mengual, C. Ibáñez-López, and J. Martí, “Optical beamforming network based on fiber optical delay lines and spatial light modulators for large antenna arrays,” IEEE Photonics Technol. Lett. vol. 18, no. 24, pp. 2590–2592, 2006.

[1-46] B. Eppich, “Optical design of beam delivery and beam forming systems,” Optik Photonik, vol. 3, no. 2, pp. 48–51, 2008.

[1-47] H. Lee, H. Jeon, and J. Jung, “Optical true time-delay beam-forming for phased array antenna using a dispersion compensating fiber and a multi-wavelength laser,” in 2011 4th Annual Caneus Fly by Wireless Workshop, 2011, pp. 1–4.

[1-48] S. Akiba, M. Oishi, Y. Nishikawa, K. Minoguchi, J. Hirokawa, and M. Ando, “Photonic architecture for beam forming of RF phased array antenna,” in Optical Fiber Communication Conference, 2014, W2A.51.

[1-49] T. Komljenovic, R. Helkey, L. Coldren, and J. E. Bowers, “Sparse aperiodic arrays for optical beam forming and LIDAR,” Opt. Express, vol. 25, no. 3, pp. 2511–2528, 2017.

[1-50] C. T. Phare, M. C. Shin, J. Sharma, S. Ahasan, H. Krishnaswamy, and M. Lipson, “Silicon Optical Phased Array with Grating Lobe-Free Beam Formation Over 180 Degree Field of View,” in 2018 Conference on Lasers and Electro-Optics (CLEO), 2018, pp. 1–2.

[1-51] M. Morant, A. Trinidad, E. Tangdiongga, T. Koonen, and R. Llorente, “Experimental Demonstration of mm-Wave 5G NR Photonic Beamforming Based on ORRs and Multicore Fiber,” IEEE Trans. Microw. Theory Tech., vol. 67, no. 7, pp. 2928–2935, 2019.

[1-52] K. Kitayama, “Architectural considerations of fiber-radio millimeter-wave wireless access systems,” J. Fib. Integ. Opt., vol. 19, no. 2, pp. 167–186, 2000.

[1-53] K. Vlachos, N. Pleros, C. Bintjas, G. Theophilopoulos, and H. Avramopoulos, “Ultrafast time-domain technology and its application in all-optical signal processing,” J. Lightwave Technol., vol. 21, no. 9, pp. 1857–1868, 2003.

[1-54] J. Capmany, B. Ortega, D. Pastor, and S. Sales, “Discrete-time optical processing of microwave signals,” J. Lightwave Technol., vol. 23, no. 2, pp. 702–723, 2005.

[1-55] R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 2, pp. 832–846, 2006.

[1-56] S. Tonda-Goldstein, D. Dolfi, A. Monsterleet, S. Formont, J. Chazelas, and Jean- Pierre Huignard, “Optical signal processing in Radar systems,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 2, pp. 847–853, 2006.

[1-57] C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon–organic hybrid slot waveguides,” Nat. Photonics, vol. 3, pp. 216–219, 2009.

[1-58] R. A. Minasian, E. H. W. Chan, and X. Yi, “Microwave photonic signal processing,” Opt. Express, vol. 21, no. 19, pp. 22918–22936, 2013.

[1-59] M. Santagiustina, S. Chin, N. Primerov, L. Ursini, and L. Thévenaz, “All-optical signal processing using dynamic Brillouin gratings,” Sci. Rep., vol. 3, 1594, 2013.

[1-60] H. Kwon, D. Sounas, A. Cordaro, A. Polman, and A. Alù, “Nonlocal Metasurfaces for Optical Signal Processing,” Phys. Rev. Lett., vol. 121, 173004, 2018.

[1-61] N. You and R. A. Minasian,” A novel high-Q optical microwave processor using hybrid delay line filters,” IEEE Trans. Microw. Theory Tech. vol. 47, no. 7, pp. 1304–1308, 1999.

[1-62] N. You, and R. A. Minasian, “High-Q optical microwave filter,” Electron. Lett., vol. 35, no. 24, pp. 2125–2126, 1999.

[1-63] J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol., vol. 24, no. 1, pp. 201–229, 2006.

[1-64] A. Loayssa, J. Capmany, M. Sagues, and J. Mora, “Demonstration of incoherent microwave photonic filters with all-optical complex coefficients,” IEEE Photonics Technol. Lett., vol. 18, no. 16, pp. 1744–1746, 2006.

[1-65] M. Bolea, J. Mora, B. Ortega, and J. Capmany, “Optical UWB pulse generator using an N tap microwave photonic filter and phase inversion adaptable to different pulse modulation formats,” Opt. Express, vol. 17, no. 7, pp. 5023–5032, 2009.

[1-66] W. Zhang and R. A. Minasian, “Widely Tunable Single-Passband Microwave Photonic Filter Based on Stimulated Brillouin Scattering,” IEEE Photonics Technol. Lett., vol. 23, no. 23, pp. 1775–1777, 2011.

[1-67] A. Casas-Bedoya, B. Morrison, M. Pagani, D. Marpaung, and B. J. Eggleton, “Tunable narrowband microwave photonic filter created by stimulated Brillouin scattering from a silicon nanowire,” Opt. Lett., vol. 40, no.17, pp. 4154–4157, 2015.

[1-68] J. Yao, “Photonics to the Rescue: A Fresh Look at Microwave Photonic Filters,” IEEE Microw. Mag., vol. 16, no. 8, pp. 46–60, 2015.

[1-69] W. Wei, L. Yi, Y. Jaouën, and W. Hu, “Software-defined microwave photonic filter with high reconfigurable resolution,” Sci. Rep., vol. 6, 35621, 2016.

[1-70] X. Zhu, F. Chen, H. Peng, and Z. Chen, “Novel programmable microwave photonic filter with arbitrary filtering shape and linear phase,” Opt. Express, vol. 25, no. 8, pp. 9232–9243, 2017.

[1-71] S. Song, S. X. Chew, X. Yi, L. Nguyen, and R. A. Minasian, “Tunable Single- Passband Microwave Photonic Filter Based on Integrated Optical Double Notch Filter,” J. Lightwave Technol., vol. 36, no. 19, pp. 4557–4564, 2018.

[1-72] W. Zhang and J. Yao, “On-chip silicon photonic integrated frequency-tunable bandpass microwave photonic filter,” Opt. Lett., vol. 43, no. 15, pp. 3622–3625, 2018.

[1-73] H. Takara, S. Kawanishi, T. Morioka, K. Mori, and M. Saruwatari, “100 Gbit/s optical waveform measurement with 0.6 ps resolution optical sampling subpicosecond supercontinuum pulses,” Electron. Lett., vol. 30, no.14, pp. 1152– 1154, 1994.

[1-74] B. Jalali, and Y. M. Xie, “Optical folding-flash analog-to-digital converter with analog encoding,” Opt. Lett., vol. 20, no. 18, pp. 1901–1903, 1995.

[1-75] M. Y. Frankel, J. U. Kang, and R. D. Esman, “High-performance photonic analogue-digital converter,” Electron. Lett. vol. 33, no. 25, pp. 2096–2097, 1997.

[1-76] F. Coppinger, A. S. Bhushan, and B. Jalali, “Photonic time stretch and its application to analog-to-digital conversion,” IEEE Trans. Microw. Theory Tech., vol. 47, no.7, pp. 1309–1314, 1999.

[1-77] J. M. Fuster, D. Novak, A. Nirmalathas, and J. Marti, “Single sideband modulation in photonic time stretch analogue-to-digital conversion,” Electron. Lett., vol. 37, no. 1, pp. 67–68, 2001.

[1-78] Y. Han and B. Jalali, “Photonic time-stretched analog-to-digital converter: Fundamental concepts and practical considerations,” J. Lightwave Technol. vol. 21, no. 12, pp. 3085–3103, 2003.

[1-79] C. Xu and X. Liu, “Photonic analog-to-digital converter using soliton self- frequency shift and interleaving spectral filters,” Opt. Lett., vol. 28, no. 12, pp. 986– 988, 2003.

[1-80] Y. Han, O. Boyraz, and B. Jalali, “Ultrawide-band photonic time stretch A/D converter employing phase diversity,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 4, pp. 1404–1408, 2005.

[1-81] C. Valley,” Photonic analog-to-digital converters,” Opt. Express, vol. 15, no. 5, pp. 1955–1982, 2007.

[1-82] H. Chi and J. Yao, “A photonic analog-to-digital conversion scheme using Mach- Zehnder modulators with identical half-wave voltages,” Opt. Express, vol. 16, no. 2, pp. 567–572, 2008.

[1-83] S. Wang, G. Wu, F. Su, and J. Chen, “Simultaneous Microwave Photonic Analog- to-Digital Conversion and Digital Filtering,” IEEE Photonics Technol. Lett., vol. 30, no. 4, pp. 343–346, 2018.

[1-84] G. Yang, W. Zou, L. Yu, and J. Chen, “Influence of the sampling clock pulse shape mismatch on channel-interleaved photonic analog-to-digital conversion,” Opt. Lett., vol. 43, no. 15, pp. 3530–3533, 2018.

[1-85] G. Yang, W. Zou, L. Yu, N. Qian, and J. Chen, “Investigation of electronic aperture jitter effect in channel-interleaved photonic analog-to-digital converter,” Opt. Express, vol. 27, no. 6, pp. 9205–9214, 2019.

[1-86] T. Yilmaz, C. M. DePriest, T. Turpin, J. H. Abeles, and P. J. Delfyett, “Toward a photonic arbitrary waveform generator using modelocked external cavity semiconductor laser,” IEEE Photon. Technol. Lett., vol. 14, no. 11, pp. 1608–1610, 2002.

[1-87] J. D. McKinney, D. E. Leaird, and A. M. Weiner, “Millimeter-wave arbitrary waveform generation with a direct space-to-time pulse shaper,” Opt. Lett., vol. 27, no. 15, pp. 1345–1347, 2002.

[1-88] J. Chou, Y. Han, and B. Jalali, “Adaptive RF-photonic arbitrary waveform generator,” IEEE Photonics Technol. Lett., vol. 15, no. 4, pp. 581–583, 2003.

[1-89] J. Chou, Y. Han, and B. Jalali, “Adaptive RF-Photonic arbitrary waveform generator,” IEEE Photon. Technol. Lett. vol. 15, pp. 581–583, 2003.

[1-90] I. S. Lin, J. D. McKinney, and A. Weiner, “Photonic synthesis of broadband microwave arbitrary waveforms applicable to ultra-wideband communication,” IEEE Microwave Wireless Compon. Lett. vol. 15, no. 4, pp. 226–228, 2005.

[1-91] P. K. Kondratko, A. Leven, Y.-K. Chen, J. Lin, U.-V. Koc, K.-Y. Tu, J. Lee, “12.5- GHz optically sampled interference-based photonic arbitrary waveform Generator,” IEEE Photonics Technol. Lett., vol. 17, no. 12, pp. 2727–2729, 2005.

[1-92] I. S. Lin, J. D. McKinney, and A. M. Weiner, “Photonic synthesis of broadband microwave arbitrary waveforms applicable to ultra-wideband communication,” IEEE Microw. Wirel. Compon. Lett., vol. 15, no. 4, pp. 226–228, 2005.

[1-93] M. Bolea, J. Mora, B. Ortega, and J. Capmany, “Photonic arbitrary waveform generation applicable to multiband UWB communications,” Opt. Express, vol. 18, no. 25, pp. 26259–26267, 2010.

[1-94] M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, M. Qi, “Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics, vol. 4, pp. 117–122, 2010.

[1-95] J. Yao, “Arbitrary waveform generation,” Nat. Photonics, vol. 4, pp. 79–80, 2010. [1-96] J. Wang, H. Shen, L. Fan, R. Wu, B. Niu, L. T. Varghese, Y. Xuan, D. E. Leaird, X. Wang, F. Gan, A. M. Weiner, M. Qi, “Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip,” Nat. Commun., vol. 6, 5957, 2015.

[1-97] W. Liu, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, M. Lu, L. A. Coldren, and J. Yao, “A fully reconfigurable photonic integrated signal processor,” Nat. Photonics, vol. 10, pp. 190–195, 2016.

[1-98] A. Rashidinejad, Y. Li, and A. M. Weiner, “Recent Advances in Programmable Photonic-Assisted Ultrabroadband Radio-Frequency Arbitrary Waveform Generation,” IEEE J. Quantum Electron., vol. 52, no.1, pp. 1–17, 2016.

[1-99] J. Zhang and J. Yao, “A Microwave Photonic Signal Processor for Arbitrary Microwave Waveform Generation and Pulse Compression,” J. Lightwave Technol., vol. 34, no. 24, pp. 5610–5615, 2016.

[1-100] Y. He, Y. Jiang, Y. Zi, G. Bai, J. Tian, Y. Xia, X. Zhang, R. Dong, H. Luo, “Photonic microwave waveforms generation based on two cascaded single-drive Mach-Zehnder modulators,” Opt. Express, vol. 26, no. 6, pp. 7829–7841, 2018.

[1-101] L. Chen, H. Wen, and S. Wen, “A Radio-Over-Fiber System with a Novel Scheme for Millimeter-Wave Generation and Wavelength Reuse for Up-Link Connection,” IEEE Photonics Technol. Lett., vol. 18, no. 19, pp. 2056–2058, 2006.

[1-102] C. Lin, P. Chen, C. Peng, W. Peng, B. Chiou, and S. Chi, “Hybrid Optical Access Network Integrating Fiber-to-the-Home and Radio-Over-Fiber Systems,” IEEE Photonics Technology Letters, vol. 19, no. 8, pp. 610–612, 2007.

[1-103] S. Sarkar, S. Dixit, and B. Mukherjee, “Hybrid Wireless-Optical Broadband- Access Network (WOBAN): A Review of Relevant Challenges,” J. Lightwave Technol., vol. 25, no. 11, pp. 3329–3340, 2007.

[1-104] J. J. Vegas Olmos, T. Kuri, and K. Kitayama, “Dynamic Reconfigurable WDM 60-GHz Millimeter-Waveband Radio-Over-Fiber Access Network: Architectural Considerations and Experiment,” J. Lightwave Technol., vol. 25, no. 11, pp. 3374– 3380, 2007.

[1-105] N. Mohamed, S. M. Idrus, and A.B. Mohammad, “Review on system architectures for the millimeter-wave generation techniques for RoF communication link,” in IEEE International RF and Microwave Conference, 2008, pp. 326–330.

[1-106] M. Mohamed, B. Hraimel, X. Zhang, M. N. Sakib, and K. Wu, “Frequency Quadrupler for Millimeter-Wave Multiband OFDM Ultrawideband Wireless Signals and Distribution Over Fiber Systems,” IEEE/OSA J. Optical Commun. Netw., vol. 1, no. 5, pp. 428–438, 2009.

[1-107] R. Sambaraju, J. Herrera, J. Marti, D. Zibar, A. Caballero, J. B. Jensen, Idelfonso, and T. Monroy, “Up to 40 Gb/s Wireless Signal Generation and Demodulation in 75-110 GHz Band using Photonic Techniques,” in IEEE Topical Meeting on Microwave Photonics (MWP), 2010, pp. 1–4.

[1-108] D. Wake, A. Nkansah, and N. J. Gomes, “Radio Over Fiber Link Design for Next Generation Wireless Systems,” J. Lightwave Technol., vol. 28, no. 16, pp. 2456– 2464, 2010.

[1-109] A. Kanno, K. Inagaki, I. Morohashi, T. Sakamoto, T. Kuri, I. Hosako, T. Kawanishi, Y. Yoshida, K. Kitayama, “40 Gb/s W-band (75–110 GHz) 16-QAM radio-over-fiber signal generation and its wireless transmission,” Opt. Express, vol. 19, no. 26, pp. B56–B63, 2011.

[1-110] A. Ng’oma, C.-T. Lin1, L.-Y. W. He, W.-J. Jiang, F. Annunziata, J. J. Chen, P.-T. Shih, J. George, and S. Chi, “31 Gbps RoF System Employing Adaptive Bit- Loading OFDM Modulation at 60 GHz,” in Optical Fiber Communication Conference (OFC), 2011, pp. 1–3.

[1-111] J. Beas, G. Castanon, I. Aldaya, A. Aragon-Zavala, and G. Campuzano, “Millimeter-Wave Frequency Radio over Fiber Systems: A Survey,” IEEE Commun. Surv. Tut., vol. 15, no. 4, pp. 1593–1619, 2013.

[1-112] D. Novak, R. B. Waterhouse, A. Nirmalathas, C. Lim, P. A. Gamage, T. R. Clark, M. L. Dennis, and J. A. Nanzer, “Radio-Over-Fiber Technologies for Emerging Wireless Systems,” IEEE J. Quantum Electron., vol. 52, no. 1, pp. 1–11, 2016.

[1-113] H. Yang, J. Zhang, Y. Ji, Y. He, and Y. Lee, “Experimental demonstration of multi- dimensional resources integration for service provisioning in cloud radio over fiber network,” Sci. Rep., vol. 6, 30678, 2016.

[1-114] K. Takinami, N. Shirakara, and K. Takahashi, “60 GHz band wireless access technology based on IEEE 802.11ad/WiGig and its future perspectives,” IEICE Tech. Report, vol. 116, pp. 207–212, 2017.

[1-115] U. Habib, A. E. Aighobahi, T. Quinlan, S. D. Walker, and N. J. Gomes, “Analog Radio-Over-Fiber Supported Increased RAU Spacing for 60 GHz Distributed MIMO Employing Spatial Diversity and Multiplexing,” J. Lightwave Technol., vol. 36, no. 19, pp. 4354–4360, 2018.

[1-116] M. U. Hadi, P. A. Traverso, G. Tartarini, O. Venard, G. Baudoin, and J.-L. Polleux, “Digital Predistortion for Linearity Improvement of VCSEL-SSMF-Based Radio- Over-Fiber Links,” IEEE Microw. Wirel. Compon. Lett., vol. 29, no. 2, pp. 155– 157, 2019.

[1-117] T. P. C. de Andrade, N. L. S. da Fonseca, L. B. Oliveira, and O. C. Branquinho, “MAC protocols for wireless sensor networks over radio-over-fiber links,” in 2012 IEEE International Conference on Communications (ICC), 2012, pp. 254–259.

[1-118] D. G. Lona, R. M. Assumpção, O. C. Branquinho, M. L. F. Abbade, H. E. Hernández-Figueroa, and A. C. Sodré Jr., “Implementation and performance investigation of radio-over-fiber systems in wireless sensor networks,” Microw. Opt. Technol. Lett., vol. 54, no. 12, pp. 2669–2675, 2012.

[1-119] N. Shibagaki, “Experimental Study of Photonic Based Radar for FOD Detection Systems Using 90 GHz-Band,” in Air Traffic Management and Systems II: Selected Papers of the 4th ENRI International Workshop, 2017, pp. 239–248.

[1-120] 菅野敦史,Pham Tien Dat,吉田悠来,山本直克,川西哲也,“光ファイバ無線技術 ~光・電波ネットワークのシームレスな融合に向けた波形伝送技術の研究開発~,” 情報通信研究機構研究報告 Vol. 64, no. 2, pp. 57–65, 2018.

[1-121] S. Rommel, A. Morales, D. Konstantinou, T. R. Raddo, and I. T. Monroy, “mm- Wave and THz Analog Radio-over-Fiber for 5G, Wireless Communications and Sensing,” in Latin America Optics and Photonics Conference, 2018, W3D.1.

[1-122] Y. Hu, Z. Zeng, J. Liu, J. Wang, and W. Zhang, “Design of a Distributed UHF Sensor Array System for PD Detection and Location in Substation,” IEEE Trans. Instrum. Meas., vol. 68, no. 6, pp. 1844–1851, 2019.

[1-123] H. Murata, Y. Otagaki, N. Yonemoto, Y. Kakubari, K. Ikeda, N. Shibagaki, H. Toda, H. Mano, U. Habib, and N. Gomes, “Millimeter-wave communication system using photonic-based remote antennas for configurable network in dense user environment,” in 2017 IEEE Conference on Antenna Measurements Applications (CAMA), 2017, pp. 24–27.

[1-124] N. Yonemoto, Y. Otagaki, Y. Kakubari, K. Ikeda, and H. Murata, “MMW remote antenna system of vector network analyzer for propagation measurement in stadium,” in 2017 IEEE Conference on Antenna Measurements Applications (CAMA), 2017, pp. 337–340.

[1-125] K. Ishihara, T. Murakami, H. Abeysekera, M. Akimoto, and Y. Takatori, “Distributed smart antenna system for high-density WLAN system,” Electron. Lett., vol. 54, no. 6, pp. 336–338, 2018.

[1-126] S. Papaioannou, G. Kalfas, C. Vagionas, P. Maniotis, A. Miliou, N. Pleros, L. A. Neto, P. Chanclor, M. Raj-Ali, P. Bakopoulos, C. Caillaud, H. Debregeas, M. B. Sirbu, Y. Eichhammer, E. Theodoropoulou, G. Lyberopoulos, E. Kartsakli, J. Vardakas, G. Torfs, X. Yin, K. Tsagkaris, P. Demestichas, G. Giannoulis, H. Avramopoulos, G. Lentaris, E. Varvarigos, I. Tafur Monroy, E. Dayan, Y. Leiba, I. Dimogiannis, A. Kontogiannis, R. Magri, A. Tartaglia, C. G. H. Roeloffzen, R. M, Oldenbeuving, “5G mm Wave Networks Leveraging Enhanced Fiber-Wireless Convergence for High-Density Environments: The 5G-PHOS Approach,” in 2018 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), 2018, pp. 1–5.

[1-127] B. Gordijn, S. Colle, and F. O’Brolcháin, “The Ethics of Smart Stadia: A Stakeholder Analysis of the Croke Park Project,” Sci. Eng. Ethics, vol. 25, no. 3, pp. 737–769, 2019.

[1-128] S. Panchanathan, T. McDaniel, R. Tadayon, A. Rukkila, and H. Venkateswara, “Smart Stadia as Testbeds for Smart Cities: Enriching Fan Experiences and Improving Accessibility,” in 2019 International Conference on Computing, Networking and Communications (ICNC), 2019, pp. 542–546.

[1-129] X. Zou, W. Bai, W. Chen, P. Li, B. Lu, G. Yu, W. Pan, B. Luo, L. Yan, L. Shao, “Microwave Photonics for Featured Applications in High-Speed Railways: Communications, Detection, and Sensing,” J. Lightwave Technol., vol. 36, no. 19, pp. 4337–4346, 2018.

[1-130] P. T. Dat, A. Kanno, K. Inagaki, F. Rottenberg, N. Yamamoto, and T. Kawanishi, “High-Speed and Uninterrupted Communication for High-Speed Trains by Ultrafast WDM Fiber–Wireless Backhaul System,” J. Lightwave Technol., vol. 37, no. 1, pp. 205–217, 2019.

[1-131] Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, “Cascaded silicon micro-ring modulators for WDM optical interconnection,” Opt. Express, vol. 14, no. 20, pp. 9431–9436, 2006.

[1-132] L. Chen, Q. Xu, M. G. Wood, and R. M. Reano, “Hybrid silicon and lithium niobate electro-optical ring modulator,” Optica, vol. 1, no. 2, pp. 112–118, 2014.

[1-133] C. Wang, M. Zhang, M. Yu, R. Zhu, H. Hu, and M. Loncar, “Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation,” Nat. Commun., vol. 10, 978, 2019.

[1-134] H. C. Nguyen, S. Hashimoto, M. Shinkawa, and T. Baba, “Compact and fast photonic crystal silicon optical modulators,” Opt. Express, vol. 20, no. 20, pp. 22465–22474, 2012.

[1-135] X. Zhang, A. Hosseini, X. Lin, H. Subbaraman, and R. T. Chen, “Polymer-Based Hybrid-Integrated Photonic Devices for Silicon On-Chip Modulation and Board- Level Optical Interconnects,” IEEE J. Sel. Top. Quantum Electron., vol. 19, no. 6, pp. 196–210, 2013.

[1-136] Y. Hinakura, H. Arai, and T. Baba, “64 Gbps Si photonic crystal slow light modulator by electro-optic phase matching,” Opt. Express, vol. 27, no. 10, pp. 14321–14327, 2019.

[1-137] M. Izutsu, T. Itoh, and T. Sueta, “10 GHz bandwidth traveling-wave LiNbO3optical waveguide modulator,” IEEE J. Sel. Top. Quantum Electron., vol. 14, no. 6, pp. 394–395, 1978.

[1-138] R. Alferness, S. Korotky, and E. Marcatili, “Velocity-matching techniques for integrated optic traveling wave switch/modulators,” IEEE J. Sel. Top. Quantum Electron., vol. 20, no. 3, pp. 301–309, 1984.

[1-139] X. Tu, T. -Y. Liow, J. Song, X. Luo, Q. Fang, M. Yu, and G.-Q. Lo, “50-Gb/s silicon optical modulator with traveling-wave electrodes,” Opt. Express, vol. 21, no. 10, pp. 12776–12782, 2013.

[1-140] R. T. Denton, F. S. Chen, and A. A. Ballman, “Lithium Tantalate Light Modulators,” J. Appl. Phys., vol. 38, no. 4, pp. 1611–1617, 1967.

[1-141] I. P. Kaminow, V. Ramaswamy, R. V. Schmidt, and E. H. Turner, “Lithium niobate ridge waveguide modulator,” Appl. Phys. Lett., vol. 24, no. 12, pp. 622–624, 1974.

[1-142] P. Rabiei and W. H. Steier, “Lithium niobate ridge waveguides and modulators fabricated using smart guide,” Appl. Phys. Lett., vol. 86, no. 16, 161115, 2005.

[1-143] C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature, vol. 562, pp. 101–104, 2018.

[1-144] C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Lončar, “Nanophotonic lithium niobate electro-optic modulators,” Opt. Express, vol. 26, no. 2, pp. 1547–1555, 2018.

[1-145] D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett., vol. 70, no. 25, pp. 3335–3337, 1997.

[1-146] M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, A. Scherer, “Terahertz all- optical modulation in a silicon–polymer hybrid system,” Nat. Mater., vol. 5, pp. 703–709, 2006.

[1-147] X. Zhang, C. -J. Chung, A. Hosseini, H. Subbaraman, J. Luo, A. K. -Y Jen, R. L. Nelson, C. Y. -C. Lee, R. T. Chen, “High Performance Optical Modulator Based on Electro-Optic Polymer Filled Silicon Slot Photonic Crystal Waveguide,” J. Lightwave Technol., vol. 34, no. 12, pp. 2941–2951, 2016.

[1-148] C. A. Barrios, V. R. de Almeida, and M. Lipson, “Low-Power-Consumption Short-Length and High-Modulation-Depth Silicon Electrooptic Modulator,” J. Lightwave Technol., vol. 21, no.4, 1089, 2003.

[1-149] L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil, E. Franck, “High speed silicon Mach-Zehnder modulator,” Opt. Express, vol. 13, no. 8, pp. 3129–3135, 2005.

[1-150] G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat.Photonics, vol. 4, no. 8, pp. 518–526, 2010.

[1-151] Y. Kawamura, K. Wakita, Y. Itaya, Y. Yoshikuni, and H. Asahi, “Monolithic integration of InGaAs/InP DFB lasers and InGaAs/InAlAs MQW optical modulators,” Electron. Lett., vol. 22, no. 5, pp. 242–243, 1986.

[1-152] U. Koren, T. L. Koch, H. Presting, and B. I. Miller, “InGaAs/InP multiple quantum well waveguide phase modulator,” Appl. Phys. Lett., vol. 50, no. 7, pp. 368–370, 1987.

[1-153] J.-F. Vinchant, J. A. Cavailles, M. Erman, P. Jarry, and M. Renaud, “InP/GaInAsP guided-wave phase modulators based on carrier-induced effects: theory and experiment,” J. Lightwave Technol., vol. 10, no. 1, pp. 63–70, 1992.

[1-154] S. Irmscher, R. Lewen, and U. Eriksson, “InP-InGaAsP high-speed traveling- wave electroabsorption modulators with integrated termination resistors,” IEEE Photonics Technol. Lett., vol. 14, no.7, pp. 923–925, 2002.

[1-155] C. R. Doerr, L. Zhang, P. J. Winzer, J. H. Sinsky, A. L. Adamiecki, N. J. Sauer, N.J., G. Raybon, “Compact High-Speed InP DQPSK Modulator,” IEEE Photonics Technol. Lett., vol. 19, no. 15, pp. 1184–1186, 2007.

[1-156] Y. Ogiso, J. Ozaki, Y. Ueda, N. Kashio, N. Kikuchi, E. Yamada, H. Tanobe, S. Kanazawa, H. Yamazaki, Y. Ohiso, T. Fujii, M. Kohtoku, “Over 67 GHz Bandwidth and 1.5 V Vπ InP-Based Optical IQ Modulator With n-i-p-n Heterostructure,” J. Lightwave Technol., vol. 35, no. 8, pp. 1450–1455, 2017.

[1-157] S. Matsuo, T. Fujii, K. Hasebe, K. Takeda, T. Sato, and T. Kakitsuka, “Directly modulated buried heterostructure DFB laser on SiO2/Si substrate fabricated by regrowth of InP using bonded active layer,” Opt. Express, vol. 22, no. 10, pp. 12139–12147, 2014.

[1-158] J. -H. Han, F. Boeuf, J. Fujikata, S. Takahashi, S. Takagi, and M. Takenaka, “Efficient low-loss InGaAsP/Si hybrid MOS optical modulator,” Nat. Photonics, vol. 11, pp. 486–490, 2017.

[1-159] T. Hiraki, T. Aihara, K. Hasebe, K. Takeda, T. Fujii, T. Kakitsuka, T. Tsuchizawa, H. Fukuda, S. Matsuo, “Heterogeneously integrated III–V/Si MOS capacitor Mach–Zehnder modulator,” Nat. Photonics, vol. 11, pp. 482–485, 2017.

[1-160] T. Thiessen, P. Grosse, J. D. Fonseca, P. Billondeau, B. Szelag, C. Jany, J. Poon, J. S. Menezo, “30 GHz heterogeneously integrated capacitive InP-on-Si Mach– Zehnder modulators,” Opt. Express, vol. 27, no. 1, pp. 102–109, 2019.

[1-161] T. Meier, K. Kostrzcewa, B. Schuppert, and K. Petermann, “Electro-optical E- field sensor with optimised electrode structure,” Electron. Lett., vol. 28, no. 14, pp. 1327–1329, 1992.

[1-162] Y. N. Wijayanto, H. Murata, and Y. Okamura, “Novel electro-optic microwave- lightwave converters utilizing a patch antenna embedded with a narrow gap,” IEICE Electron. Exp., vol. 8, no. 7, pp. 491–497, 2011.

[1-163] H. Murata, R. Miyanaka, and Y. Okamura, “Wireless space-division-multiplexed signal discrimination device using electro-optic modulator with antenna-coupled electrodes and polarization-reversed structures,” Int. J. Microw. Wirel. Technol., vol. 4, no. 3, pp. 399–405, 2012.

[1-164] Y. N. Wijayanto, H. Murata, and Y. Okamura, “Electrooptic Millimeter-Wave– Lightwave Signal Converters Suspended to Gap-Embedded Patch Antennas on Low-k Dielectric Materials,” IEEE J. Sel. Top. Quantum Electron., vol. 19, no. 6, pp. 33–41, 2013.

[1-165] H. Murata et al., “Millimeter-wave electro-optic modulator using stacked patch- antennas embedded with micrometer-gap for radio-over-fiber system,” in 2017 47th European Microwave Conference (EuMC), 2017, pp. 628–631.

[1-166] Y. N. Wijayanto, H. Arisesa, D. Mahmudin, P. Daud, P. Adhi, H. Murata, A. Kanno, T. Kawanishi, “Optical fiber and microwave wireless up-links using EO modulator with planar stripline feed to gap-embedded patch-antennas,” in 2017 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET), 2017, pp. 75–78.

[1-167] Y. Matsukawa, T. Inoue, H. Murata, and A. Sanada, “Millimeter-wave band optical single-sideband modulator using array-antenna-electrode and polarization- reversed structures with asymmetric Mach–Zehnder waveguide,” Jpn. J. Appl. Phys., vol. 57, no. 8S2, 08PB04, 2018.

[1-168] O. D. Herrera, K. J.- Kim, R. Voorakaranam, R. Himmelhuber, S. Wang, V. Demir, V., W. Zhan, L. Li, R. A. Norwood, R. L. Nelson, J. Luo, A. K. -Y. Jen, N. Peyghambarian, “Silica/Electro-Optic Polymer Optical Modulator With Integrated Antenna for Microwave Receiving,” J. Lightwave Technol., vol. 32, no. 20, pp. 3861–3867, 2014.

[1-169] X. Zhang, A. Hosseini, H. Subbaraman, S. Wang, Q. Zhan, J. Luo, A. K. -Y. Jen, and R. T. Chen, “Integrated Photonic Electromagnetic Field Sensor Based on Broadband Bowtie Antenna-coupled Silicon Organic Hybrid Modulator,” J. Lightwave Technol., vol. 32, no. 20, pp. 3774–3784, 2014.

[1-170] C.-J. Chung et al., “Silicon-Based Hybrid Integrated Photonic Chip for K band Electromagnetic Wave Sensing,” J. Lightwave Technol., vol. 36, no. 9, pp. 1568– 1575, 2018.

[1-171] D. H. Park, V. R. Pagán, T. E. Murphy, J. Luo, A. K.-Y. Jen, and W. N. Herman, “Free space millimeter wave-coupled electro-optic high speed nonlinear polymer phase modulator with in-plane slotted patch antennas,” Opt. Express, vol. 23, no. 7, pp. 9464–9476, 2015.

[1-172] D. Park, V. R. Pagán, P. S. Cho, J. Luo, A. K.-Y. Jen, and P. V. Petruzzi, “RF photonic downconversion of vector modulated signals based on a millimeter-wave coupled electrooptic nonlinear polymer phase-modulator,” Opt. Express, vol. 25, no. 24, pp. 29885–29895, 2017.

[1-173] Y. Salamin, W. Heni, C. Haffner,Y. Fedoryshyn, C. Hoessbacher, R. Bonjour, M. Zahner, D. Hillerkuss, P. Leuchtmann, D. L. Elder, L. R. Dalton, C. Hafner, and J. Leuthold, “Direct Conversion of Free Space Millimeter Waves to Optical Domain by Plasmonic Modulator Antenna,” Nano Lett., vol. 15, no. 12, pp. 8342–8346, 2015.

[1-174] Y. Salamin, W. Heni, Y. Fedoryshyn, C. Haffner, C. Hoessbacher, P. V. Johnston, D. L. Elder, R. Bonjour, M. Zahner, R. Cottier, A. F. Tillack, L. R. Dalton, C. Hafner, J. Leuthold, “Direct RF-to-optical detection by plasmonic modulator integrated into a four-leaf-clover antenna,” in 2016 Conference on Lasers and Electro-Optics (CLEO), 2016, pp. 1–2.

[1-175] Y. Salamin, B. Baeuerle, W. Heni, F. C. Abrecht, A. Josten, Y. Fedoryshyn, C. Haffner, R. Bonjour, T. Watanabe, M. Burla, D. L. Elder, L. R. Dalton and J. Leuthold, “Microwave plasmonic mixer in a transparent fibre–wireless link,” Nat. Photonics, vol. 12, no. 12, pp. 749–753, 2018.

[1-176] T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, and R. G. Priest, "Optical Fiber Sensor Technology," IEEE Trans. Microw. Theory Tech., vol. 30, no. 4, 472–511, 1982.

[1-177] S. T. Vohra, F. Bucholtz, and A. D. Kersey, "Fiber-optic dc and low-frequency electric-field sensor," Opt. Lett., vol. 16, no. 18, 1445–1447, 1991.

Chapter 2

[2-1] J. H. Coggon, “Electromagnetic and electrical modeling by the finite element method,” Geophysics, vol. 36, no. 1, pp. 132–155, 1971.

[2-2] S. V. Tsynkov, “Numerical solution of problems on unbounded domains. A review,” Appl. Numer. Math., vol. 27, no. 4, pp. 465–532, 1998.

[2-3] J.-P. Geng, K. B. C. Tan, and G.-R. Liu, “Application of finite element analysis in implant dentistry: A review of the literature,” J. Prosthet. Dent., vol. 85, no. 6, pp. 585–598, 2001.

[2-4] T. Belytschko, R. Gracie, and G. Ventura, “A review of extended/generalized finite element methods for material modeling,” Modelling Simul. Mater. Sci. Eng., vol. 17, no. 4, 043001, 2009.

[2-5] D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, C. A. Burrus, “Band-Edge Electroabsorption in Quantum Well Structures: The Quantum-Confined Stark Effect,” Phys. Rev. Lett., vol. 53, no. 22, pp. 2173– 2176, 1984.

[2-6] L. D. Hicks and M. S. Dresselhaus, “Effect of quantum-well structures on the thermoelectric figure of merit,” Phys. Rev. B, vol. 47, no. 19, pp. 12727–12731, 1993.

[2-7] B. F. Levine, “Quantum‐well infrared photodetectors,” J. Appl. Phys., vol. 74, no. 8, pp. R1–R81, 1993.

[2-8] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, “InGaN-Based Multi-Quantum-Well-Structure Laser Diodes,” Jpn. J. Appl. Phys., vol. 35, no. 1B, p. L74–L76, 1996.

[2-9] Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature, vol. 437, no. 7063, pp. 1334–1336, 2005.

[2-10] M. Aoki, H. Sano, M. Suzuki, M. Takahashi, K. Uomi, and A. Takai, “Novel structure MQW electroabsorption modulator/DFB-laser integrated device fabricated by selective area MOCVD growth,” Electron. Lett., vol. 27, no. 23, pp. 2138–2140, 1991.

[2-11] K. Sato, I. Kotaka, K. Wakita, Y. Kondo, and M. Yamamoto, “Strained-InGaAsP MQW electroabsorption modulator integrated DFB laser,” Electron. Lett., vol. 29, no. 12, pp. 1087–1089, 1993.

[2-12] W. Kobayashi, M. Arai, T. Yamanaka, N. Fujiwara, T. Fujisawa, T. Tadokoro, K. Tsuzuki, Y. Kondo, F. Kano, “Design and Fabrication of 10-/40-Gb/s, Uncooled Electroabsorption Modulator Integrated DFB Laser with Butt-Joint Structure,” J. Lightwave Technol., vol. 28, no. 1, pp. 164–171, 2010.

[2-13] T. Arakawa, K. Tada, N. Kurosawa, and J.-H. Noh, “Anomalous Sharp Dip of Large Field-Induced Refractive Index Change in GaAs/AlGaAs Five-Layer Asymmetric Coupled Quantum Well,” Jpn. J. Appl. Phys., vol. 39, no. 11R, pp. 6329–6333, 2000.

[2-14] K. Tada, T. Arakawa, K. Kazuma, N. Kurosawa, and J.-H. Noh, “Influence of One Monolayer Thickness Variation in GaAs/AlGaAs Five-Layer Asymmetric Coupled Quantum Well upon Electrorefractive Index Change,” Jpn. J. Appl. Phys., vol. 40, no. 2A, pp. 656–661, 2001.

[2-15] T. Suzuki, J. –H. Noh, T. Arakawa, K. Tada, Y. Okamiya, Y. Miyagi, N. Sakai, N. Haneji, “Fabrication and Optical Characterization of Five-Layer Asymmetric Coupled Quantum Well (FACQW),” Jpn. J. Appl. Phys., vol. 41, no. 4B, pp. 2701– 2706, 2002.

[2-16] T. Suzuki, T. Arakawa, K. Tada, Y. Imazato, J.-H. Noh, and N. Haneji, “Observation of Giant Electrorefractive Effect in Five-Layer Asymmetric Coupled Quantum Wells (FACQWs),” Jpn. J. Appl. Phys., vol. 43, no. 12A, pp. L1540– L1542, 2004.

[2-17] T. Arakawa, T. Toya, M. Ushigome, K. Yamaguchi, T. Ide, and K. Tada, “InGaAs/InAlAs Five-Layer Asymmetric Coupled Quantum Well Exhibiting Giant Electrorefractive Index Change,” Jpn. J. Appl. Phys., vol. 50, no. 3R, 032204, 2011.

[2-18] T. Makino, T. Gotoh, R. Hasegawa, T. Arakawa, and Y. Kokubun, “Microring Resonator Wavelength Tunable Filter Using Five-Layer Asymmetric Coupled Quantum Well,” J. Lightwave Technol., vol. 29, no. 16, pp. 2387–2393, 2011.

[2-19] T. Arakawa, T. Hariki, Y. Amma, M. Fukuoka, M. Ushigome, and K. Tada, “Low- Voltage Mach–Zehnder Modulator with InGaAs/InAlAs Five-Layer Asymmetric Coupled Quantum Well,” Jpn. J. Appl. Phys., vol. 51, no. 4R, 042203, 2012.

[2-20] H. Ikehara, T. Goto, H. Kamiya, T. Arakawa, and Y. Kokubun, “Hitless wavelength-selective switch based on quantum well second-order series-coupled microring resonators,” Opt. Express, vol. 21, no. 5, pp. 6377–6390, 2013.

[2-21] H. Kamiya, T. Goto, H. Ikehara, R. Katouf, T. Arakawa, and Y. Kokubun, “Hitless wavelength-selective switch with quadruple series-coupled microring resonators using multiple-quantum-well waveguides,” Opt. Express, vol. 21, no. 18, pp. 20837–20850, 2013.

[2-22] H. Kaneshige, R. Gautam, Y. Ueyama, R. Katouf, T. Arakawa, and Y. Kokubun, “Low-voltage quantum well microring-enhanced Mach-Zehnder modulator,” Opt. Express, vol. 21, no. 14, pp. 16888–16900, 2013.

[2-23] S. Kashima, J.-H. Noh, and T. Arakawa, “Proposal of Compact Tunable 1×2 Multimode Interference Splitter Based on Multiple Quantum Well,” Jpn. J. Appl. Phys., vol. 52, no. 4S, 04CG02, 2013.

[2-24] N. Kawaguchi, K. Hori, T. Arakawa, and Y. Kokubun, “Design for high speed operation of double microring resonator-loaded Mach-Zehnder 2×2 quantum well optical switch,” in 2016 21st OptoElectronics and Communications Conference (OECC) held jointly with 2016 International Conference on Photonics in Switching (PS), 2016, pp. 1–3.

[2-25] K. Suzuki, T. Hirayama, and T. Arakawa, “Proposal of compact TE/TM polarization switch based on microring resonator,” in 2016 21st OptoElectronics and Communications Conference (OECC) held jointly with 2016 International Conference on Photonics in Switching (PS), 2016, pp. 1–3.

[2-26] Y. Miyazeki and T. Arakawa, “InP-Based Mach–Zehnder Modulator Using Gap- Embedded Planar Antennas for Wireless Millimeter-Wave Communication Systems,” in 2019 24th OptoElectronics and Communications Conference (OECC) and 2019 International Conference on Photonics in Switching and Computing (PSC), 2019, pp. 1–3.

[2-27] Y. N. Wijayanto, H. Murata, and Y. Okamura, “Novel electro-optic microwave- lightwave converters utilizing a patch antenna embedded with a narrow gap,” IEICE Electron. Exp., vol. 8, no. 7, pp. 491–497, 2011.

[2-28] V. R. Gupta and N. Gupta, “Characteristics of a compact microstrip antenna, “Microw. Opt. Technol. Lett., vol. 40, no. 2, pp. 158–160, 2004.

[2-29] C. A. Balanis, Antenna Theory, 3rd ed. (Wiley-Interscience, 2005).

[2-30] R. Rodriguez-Berral, F. Mesa, and D. R. Jackson,” Gap Discontinuity in Microstrip Lines: An Accurate Semianalytical Formulation,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 6, pp. 1441–1453, 2011.

Chapter 3

[3-1] Y. Miyazeki and T. Arakawa, “Proposal of InGaAs/InAlAs multiple quantum well Mach–Zehnder modulator integrated with array of planar antennas,” Jpn. J. Appl. Phys., vol. 58, SJJE05, 2019.

[3-2] T. Arakawa, T. Toya, M. Ushigome, K. Yamaguchi, T. Ide, and K. Tada, “InGaAs/InAlAs Five-Layer Asymmetric Coupled Quantum Well Exhibiting Giant Electrorefractive Index Change,” Jpn. J. Appl. Phys., vol. 50, no. 3R, 032204, 2011.

[3-3] Y. N. Wijayanto, H. Murata, and Y. Okamura, “Novel electro-optic microwave- lightwave converters utilizing a patch antenna embedded with a narrow gap,” IEICE Electronics Exp., vol. 8, no. 7, pp. 491–497, 2011.

[3-4] D. H. Park, V. R. Pagán, T. E. Murphy, J. Luo, A. K.-Y. Jen, and W. N. Herman, “Free space millimeter wave-coupled electro-optic high speed nonlinear polymer phase modulator with in-plane slotted patch antennas,” Opt. Express, vol. 23, no. 7, pp. 9464–9476, 2015.

[3-5] D. Burdeaux, P. Townsend, J. Carr, and P. Garrou, “Benzocyclobutene (BCB) dielectrics for the fabrication of high density, thin film multichip modules,” JEM, vol. 19, no. 12, pp. 1357–1366, 1990.

[3-6] Y. Salamin, W. Heni, C. Haffner,Y. Fedoryshyn, C. Hoessbacher, R. Bonjour, M. Zahner, D. Hillerkuss, P. Leuchtmann, D. L. Elder, L. R. Dalton, C. Hafner, and J. Leuthold, “Direct Conversion of Free Space Millimeter Waves to Optical Domain by Plasmonic Modulator Antenna,” Nano Lett., vol. 15, no. 12, pp. 8342–8346, 2015.

[3-7] Y. Salamin, B. Baeuerle, W. Heni, F. C. Abrecht, A. Josten, Y. Fedoryshyn, C. Haffner, R. Bonjour, T. Watanabe, M. Burla, D. L. Elder, L. R. Dalton and J. Leuthold, “Microwave plasmonic mixer in a transparent fibre–wireless link,” Nat. Photon, vol. 12, no. 12, pp. 749–753, Dec. 2018.

[3-8] M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999). [3-9] C. A. Balanis, Antenna Theory, 3rd ed. (Wiley-Interscience, New York, 2005).

[3-10] J.-H. Han, F. Boeuf, J. Fujikata, S. Takahashi, S. Takagi, and M. Takenaka, “Efficient low-loss InGaAsP/Si hybrid MOS optical modulator,” Nat. Photonics, vol. 11, no. 8, pp. 486–490, 2017.

[3-11] T. Hiraki, T. Aihara, K. Hasebe, K. Takeda, T. Fujii, T. Kakitsuka, T. Tsuchizawa, H. Fukuda, and S. Matsuo, “Heterogeneously integrated III–V/Si MOS capacitor Mach–Zehnder modulator,” Nat. Photonics, vol. 11, no. 8, pp. 482–485, 2017.

[3-12] M. Takiguchi, A. Yokoo, K. Nozaki, M. D. Birowosuto, K. Tateno, G. Zhang, E. Kuramochi, A. Shinya, and M. Notomi, “Continuous-wave operation and 10-Gb/s direct modulation of InAsP/InP sub-wavelength nanowire laser on silicon photonic crystal,” APL Photonics, vol. 2, no. 4, p. 046106, 2017.

[3-13] Y. N. Wijayanto, H. Murata, and Y. Okamura, “Electrooptic Millimeter-Wave– Lightwave Signal Converters Suspended to Gap-Embedded Patch Antennas on Low-k Dielectric Materials,” IEEE J. Sel. Top. Quantum Electron., vol. 19, no. 6, pp. 33–41, 2013.

[3-14] H. Murata and Y. Okamura, “High-Speed Signal Processing Utilizing Polarization- Reversed Electro-Optic Devices,” J. Lightwave Technol., vol. 32, no. 20, pp. 3403– 3410, 2014.

[3-15] B. E. A. Saleh and B. C. Teich, Fundamental of Photonics, 2nd ed. (Wiley- Interscience, 2007)

[3-16] T. Arakawa, T. Hariki, Y. Amma, M. Fukuoka, M. Ushigome, and K. Tada, “Low- Voltage Mach–Zehnder Modulator with InGaAs/InAlAs Five-Layer Asymmetric Coupled Quantum Well,” Jpn. J. Appl. Phys., vol. 51, no. 4R, 042203, 2012.

Chapter 4

[4-1] J. He, S. H. Tang, Y. W. Qin, P. Dong, H. Z. Zhang, C. H. Kang, W. X. Sun, Z. X. Shen, “Two-dimensional structures of ferroelectric domain inversion in LiNbO3 by direct electron beam lithography,” J. Appl. Phys., vol. 93, no. 12, pp. 9943–9946, 2003.

[4-2] T. H. P. Chang, “Proximity effect in electron‐beam lithography,” J. Vac. Sci. Technol., vol. 12, no. 6, pp. 1271–1275, 1975.

[4-3] L. D. Westbrook, A. W. Nelson, and C. Dix, “High-quality InP surface corrugations for 1.55 μm InGaAsP DFB lasers fabricated using electron-beam lithography,” Electron. Lett., vol. 18, no. 20, pp. 863–865, 1982.

[4-4] M. A. McCord, “Electron beam lithography for 0.13 μm manufacturing,” J. Vac. Sci. Technol. B Nanotechnol. Microelectron., vol. 15, no. 6, pp. 2125–2129, 1997.

[4-5] C. Vieu, F. Carcenac, A. Pépin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, H. Launois, “Electron beam lithography: resolution limits and applications,” Appl. Surf. Sci., vol. 164, no. 1, pp. 111–117, 2000.

[4-6] E. Seo, B. K. Choi, and O. Kim, “Determination of proximity effect parameters and the shape bias parameter in electron beam lithography,” Microelectron. Eng., vol. 53, no. 1, pp. 305–308, 2000.

[4-7] J. Shao, S. Zhang, J. Liu, B. -R. Lu, N. Taksatorn, W. Lu, Y. Chen, “Y shape gate formation in single layer of ZEP520A using 3D electron beam lithography,” Microelectron. Eng., vol. 143, pp. 37–40, 2015.

[4-8] D. Burdeaux, P. Townsend, J. Carr, and P. Garrou, “Benzocyclobutene (BCB) dielectrics for the fabrication of high density, thin film multichip modules,” J. Electron. Mat., vol. 19, no. 12, pp. 1357–1366, 1990.

[4-9] H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, and P. Vettiger, “SU-8: a low-cost negative resist for MEMS,” J. Micromech. Microeng., vol. 7, no. 3, pp. 121–124, 1997.

[4-10] A. del Campo and C. Greiner, “SU-8: a photoresist for high-aspect-ratio and 3D submicron lithography,” J. Micromech. Microeng., vol. 17, no. 6, pp. R81–R95, 2007.

[4-11] http://engineering.dartmouth.edu/microeng/processing/lithography/SU83000Da taSheet.pdf

Chapter 5

[5-1] L. G. Kazovsky, “Impact of Laser Phase Noise on Optical Heterodyne Communication Systems,” J. Opt. Commun., vol. 7, no. 2, pp. 66–78, 1986.

[5-2] D. E. Cooper and R. E. Warren, “Frequency modulation spectroscopy with lead– salt diode lasers: a comparison of single-tone and two-tone techniques,” Appl. Opt., vol. 26, no. 17, pp. 3726–3732, 1987.

[5-3] J. D. Gibson, Principles of digital and analog communications, 2nd ed. (Macmillan, 1993).

[5-4] D. H. Park, V. R. Pagán, T. E. Murphy, J. Luo, A. K.-Y. Jen, and W. N. Herman, “Free space millimeter wave-coupled electro-optic high speed nonlinear polymer phase modulator with in-plane slotted patch antennas,” Opt. Express, vol. 23, no. 7, pp. 9464–9476, 2015.

[5-5] T. Makino, T. Gotoh, R. Hasegawa, T. Arakawa, and Y. Kokubun, “Microring Resonator Wavelength Tunable Filter Using Five-Layer Asymmetric Coupled Quantum Well,” J. Lightwave Technol., vol. 29, no. 16, pp. 2387–2393, 2011.

[5-6] H. Kamiya, T. Goto, H. Ikehara, R. Katouf, T. Arakawa, and Y. Kokubun, “Hitless wavelength-selective switch with quadruple series-coupled microring resonators using multiple-quantum-well waveguides,” Opt. Express, vol. 21, no. 18, pp. 20837–20850, 2013.

[5-7] H. Kaneshige, R. Gautam, Y. Ueyama, R. Katouf, T. Arakawa, and Y. Kokubun, “Low-voltage quantum well microring-enhanced Mach-Zehnder modulator,” Opt. Express, vol. 21, no. 14, pp. 16888–16900, 2013.

[5-8] E. H. Turner, "High-frequency electro-optic coefficients of lithium niobate," Appl. Phys. Lett., vol. 8, no.11, pp. 303–304, 1966.

[5-9] P. D. Dapkus, “A critical comparison of MOCVD and MBE for heterojunction devices,” J. Cryst. Growth, vol. 68, no. 1, pp. 345–355, 1984.

[5-10] M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999). [5-11] S. Nishimura, H. Inoue, H. Sano, and K. Ishida, “Electrooptic effects in an InGaAs/InAlAs multiquantum well structure,” IEEE Photonics Technol. Lett., vol. 4, no. 10, pp. 1123–1126, 1992.

[5-12] C. A. Balanis, Antenna Theory, 3rd ed. (Wiley-Interscience, New York, 2005).

[5-13] Y. Miyazeki and T. Arakawa, “Proposal of InGaAs/InAlAs multiple quantum well Mach–Zehnder modulator integrated with array of planar antennas,” Jpn. J. Appl. Phys., vol. 58, SJJE05, 2019.

[5-14] Y. N. Wijayanto, H. Murata, and Y. Okamura, “Electrooptic Millimeter-Wave–Lightwave Signal Converters Suspended to Gap-Embedded Patch Antennas on Low-k Dielectric Materials,” IEEE J. Sel. Top. Quantum Electron., vol. 19, no. 6, pp. 33–41, 2013

[5-15] D. H. Park, V. R. Pagán, T. E. Murphy, J. Luo, A. K.-Y. Jen, and W. N. Herman, “Free space millimeter wave-coupled electro-optic high speed nonlinear polymer phase modulator with in-plane slotted patch antennas,” Opt. Express, vol. 23, no. 7, pp. 9464–9476, 2015.

[5-16] Y. Salamin, B. Baeuerle, W. Heni, F. C. Abrecht, A. Josten, Y. Fedoryshyn, C. Haffner, R. Bonjour, T. Watanabe, M. Burla, D. L. Elder, L. R. Dalton and J. Leuthold, “Microwave plasmonic mixer in a transparent fibre–wireless link,” Nat. Photonics, vol. 12, no. 12, pp. 749–753, 2018.

[5-17] Y. Enami, B. Yuan, M. Tanaka, J. Luo, and A. K.-Y. Jen, “Electro-optic polymer/TiO2 multilayer slot waveguide modulators,” Appl. Phys. Lett., vol. 101, no. 12, 123509, 2012.

[5-18] K. Gallo, G. Assanto, K. R. Parameswaran, and M. M. Fejer, “All-optical diode in a periodically poled lithium niobate waveguide,” Appl. Phys. Lett., vol. 79, no. 3, pp. 314–316, 2001.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る