リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「犬と猫の組織球増殖性疾患の分類および病理発生機序に関する研究」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

犬と猫の組織球増殖性疾患の分類および病理発生機序に関する研究

平林, 美幸 東京大学 DOI:10.15083/0002006913

2023.03.24

概要



査 の 結 果 の 要 旨

申請者氏名

平林 美幸

反応性あるいは腫瘍性に組織球が増殖する動物の組織球増殖性疾患の病態は多様である。猫で
は肺のランゲルハンス細胞(LC)が増殖する肺ランゲルハンス細胞組織球症(LCH)、全身緒臓
器で間質樹状細胞(iDC)が増殖する組織球性肉腫(HS)と猫進行性組織球症(FPH)、および
マクロファージが増殖する血球貪食性 HS に分類される。犬では活性化した iDC が反応性に増殖
する皮膚組織球症と全身性組織球症(SyH)に分類され、さらに腫瘍性疾患として、LC が増殖す
る皮膚組織球腫と皮膚 LCH、iDC が増殖する HS と樹状細胞白血病、およびマクロファージが増
殖する血球貪食性 HS に分類される。また犬の HS は限局性 HS と多臓器病変を形成する播種性
HS に細分類される。これらの疾患を通常の病理学的検索のみで明確に分類することは困難であ
り、さらに各疾患における細胞増殖メカニズムは異なる可能性が高いと予想される。このため組
織球増殖性疾患の治療法の開発には、各疾患を明確に分類し、それぞれの病理発生メカニズムを
分子レベルで解明することが不可欠である。本研究では、犬と猫の組織球増殖性疾患の病理学お
よび免疫組織化学的特徴と細胞増殖メカニズムを分類ごとに明らかにして、これらの疾患に汎用
性のある治療薬を探索することを目的とした。提出された博士論文は 3 章から構成される。
第 1 章では、猫の正常組織と、25 例の HS と 6 例の FPH を用いて、正常組織球および各疾患
の増殖細胞の免疫表現型を、ホルマリン固定パラフィン包埋(FFPE)標本を用いて比較検討し
ている。さらに FPH 由来の細胞株を樹立・定性した。免疫組織化学的に猫の FPH と HS の増殖
細胞は CD204+/E-cadherin-(iDC/マクロファージ免疫表現型)または CD204-/E-cadherin+(LC
免疫表現型)で、一部の HS は CD204+/E-cadherin+(LC 様細胞免疫表現型)であった。さらに、
E-cadherin 陰性 FPH に由来する培養細胞株の解析により、同細胞が in vitro および in vivo で
CD204+/E-cadherin+を示すことが明らかにされた。これらの結果より猫の HS および FPH の免
疫表現型は、微小環境の変化により多様な細胞表現型を示すことが確認された。
第2章では、犬の正常組織と、組織球増殖性疾患の 38 例の FFPE 標本を用いて、正常組織球
および各疾患の増殖細胞の免疫表現型が検討された。また、播種性 HS と SyH から新規樹立した

1

細胞株を用い、各疾患の増殖細胞が定性された。免疫組織化学的に限局性 HS と播種性 HS の増
殖細胞は CD204+/E-cadherin-(iDC/マクロファージ免疫表現型)または CD204+/E-cadherin+
(LC 様細胞免疫表現型)で、1 例の播種性 HS の増殖細胞は CD204-/E-cadherin+(LC 免疫表
現型)であった。これらの結果から、犬の組織球増殖性疾患の増殖細胞は、多様な iDC/マクロフ
ァージおよび LC マーカーの発現型を示すことが明らかにされた。また、播種性 HS 由来の複数
の培養細胞株と、SyH 由来培養細胞株の in vitro および in vivo 解析により、増殖細胞の
E-cadherin 発現パターンは微小環境によって変化することが示された。
第 3 章では、犬の正常単球に加え、2 章で用いた犬の播種性 HS、限局性 HS、SyH および LCH
細胞株の mRNA 発現が網羅的に解析された。解析結果のクラスタリングにより、正常単球、SyH
由来細胞株と播種性 HS 由来細胞株、限局性 HS 由来の 2 種の細胞株、および LCH 由来の細胞
株の 4 群が個別に分類された。また機能解析の結果、播種性 HS では遊走関連の遺伝子発現、LCH
では E-cadherin を含む細胞間接着に関連する遺伝子の発現が上昇していた。さらに播種性 HS で
は PI3K シグナル伝達経路、
限局性 HS では MAPK シグナル伝達経路と PI3K シグナル伝達経路、
LCH では MAPK シグナル伝達経路が活性化していた。申請者はこれらの経路に共通する腫瘍抑
制因子である RB1 遺伝子の発現が、いずれの細胞株でも高いことに着目し、CDK4/6 阻害薬であ
る Palbociclib について、犬の播種性 HS、限局性 HS、LCH および猫の FPH の細胞株に対する
細胞増殖抑制効果を検討した。その結果、Palbociclib は、in vitro で全細胞株の増殖を抑制し、
播種性 HS 細胞株を移植したマウスでも明瞭な腫瘍増殖抑制効果が確認された。
以上の研究により、申請者は犬と猫の組織球増殖性疾患の増殖細胞の免疫表現型の特徴により
従来の疾患分類を再考し、その病態に新しい概念を提唱した。同時に犬の SyH、播種性 HS、限
局性 HS および LCH に由来する細胞株の網羅的な mRNA 発現解析に基づき、各疾患の増殖細胞
の分子メカニズムの一部を明らかにするとともに、RB1 遺伝子産物である Rb およびリン酸化 Rb
を発現する組織球増殖性疾患に対する CDK4/6 阻害薬 Palbociclib の治療薬としての有用性を示し
た。これら一連の研究成果は、不明な点が多かった組織球増殖性疾患の病理発生機序の解明や、
治療薬の開発に直接寄与すると共に、ヒトでは稀とされるこれらの疾患の病態解明にも比較病理
学的見地より有用な情報をもたらすものと考えられる。よって審査委員一同は申請者が博士(獣
医学)の学位を授与するに値すると認めた。

2

参考文献

1.

Abadie J, Hedan B, Cadieu E, et al. Epidemiology, pathology, and genetics of

histiocytic sarcoma in the Bernese mountain dog breed. J Hered. 2009;100

Suppl 1(Suppl 1):S19-27.

2.

Affolter VK, Moore PF. Localized and disseminated histiocytic sarcoma of

dendritic cell origin in dogs. Vet Pathol. 2002;39(1):74-83.

3.

Affolter VK, Moore PF. Feline progressive histiocytosis. Vet Pathol.

2006;43(5):646-655.

4.

Arand J, Sage J. G1 cyclins protect pluripotency. Nat Cell Biol.

2017;19(3):149-150.

5.

Argenta FF, de Britto FC, Pereira PR, et al. Pulmonary Langerhans cell

histiocytosis in cats and a literature review of feline histiocytic diseases. J

Feline Med Surg. 2020;22(4):305-312.

6.

Asada H, Tomiyasu H, Goto-Koshino Y, et al. Evaluation of the drug

sensitivity and expression of 16 drug resistance-related genes in canine

histiocytic sarcoma cell lines. J Vet Med Sci. 2015;77(6):677-684.

7.

Asada H, Tsuboi M, Chambers JK, et al. A 2-base insertion in exon 5 is a

common mutation of the TP53 gene in dogs with histiocytic sarcoma. J Vet

Med Sci. 2017;79(10):1721-1726.

8.

Asada H, Tomiyasu H, Goto-Koshino Y, et al. Effect of a two-base insertion

mutation of the TP53 gene on expression of p53 protein in canine histiocytic

sarcoma cells. Am J Vet Res. 2019;80(7):680-688.

137

9.

Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for the unification

of biology. The Gene Ontology Consortium. Nat Genet. 2000;25(1):25-29.

10. Berx G, van Roy F. Involvement of members of the cadherin superfamily in

cancer. Cold Spring Harb Perspect Biol. 2009;1(6):a003129.

11. Boyle EI, Weng S, Gollub J, et al. GO::TermFinder--open source software for

accessing Gene Ontology information and finding significantly enriched Gene

Ontology terms associated with a list of genes. Bioinformatics.

2004;20(18):3710-3715.

12. Busch MD, Reilly CM, Luff JA, et al. Feline pulmonary Langerhans cell

histiocytosis with multiorgan involvement. Vet Pathol. 2008;45(6):816-824.

13. Carpenter PM, Al-Kuran RA, Theuer CP. Paranuaclear E-cadherin in gastric

adenocarcinoma. Am J Clin Pathol. 2002;118(6):887-894.

14. Chakraborty R, Hampton OA, Shen X, Simko SJ, et al. Mutually exclusive

recurrent somatic mutations in MAP2K1 and BRAF support a central role for

ERK activation in LCH pathogenesis. Blood. 2014;124(19):3007-3015.

15. Chatterjee D, Vishwajeet V, Saikia UN, et al. CyclinD1 Is Useful to

Differentiate Langerhans Cell Histiocytosis From Reactive Langerhans Cells.

Am J Dermatopathol. 2019;41(3):188-192.

16. Cheong C, Idoyaga J, Do Y, et al. Production of monoclonal antibodies that

recognize the extracellular domain of mouse langerin/CD207. J Immunol

Methods. 2007;324(1-2):48-62.

17. Coste M, Prata D, Castiglioni V, et al. Feline progressive histiocytosis: a

retrospective investigation of 26 cases and preliminary study of Ki67 as a

prognostic marker. J Vet Diagn Invest. 2019;31(6):801-808.

138

18. Craig LE, Julian ME, Ferracone JD. The diagnosis and prognosis of synovial

tumors in dogs: 35 cases. Vet Pathol. 2002;39(1):66-73.

19. Curran KM, Schaffer PA, Frank CB, et al. BCL2 and MYC are expressed at

high levels in canine diffuse large B-cell lymphoma but are not predictive for

outcome in dogs treated with CHOP chemotherapy. Vet Comp Oncol.

2017;15(4):1269-1279.

20. Dabbs DJ, Kaplai M, Chivukula M, et al. The spectrum of morphomolecular

abnormalities of the E-cadherin/catenin complex in pleomorphic lobular

carcinoma of the breast. Appl Immunohistochem Mol Morphol. 2007;15(3):260266.

21. Dang CV. MYC on the path to cancer. Cell. 2012;149(1):22-35.

22. Davies G, Jiang WG, Mason MD. Matrilysin mediates extracellular cleavage

of E-cadherin from prostate cancer cells: a key mechanism in hepatocyte

growth factor/scatter factor-induced cell-cell dissociation and in vitro invasion.

Clin Cancer Res. 2001;7(10):3289-3297.

23. Dhawan D, Hahn NM, Ramos-Vara JA, et al. Naturally-occurring canine

invasive urothelial carcinoma harbors luminal and basal transcriptional

subtypes found in human muscle invasive bladder cancer. PLoS Genet.

2018;14(8):e1007571.

24. Dobrzycka KM, Kang K, Jiang S, et al. Disruption of scaffold attachment

factor B1 leads to TBX2 up-regulation, lack of p19ARF induction, lack of

senescence, and cell immortalization. Cancer Res. 2006;66(16):7859-7863.

25. Doebel T, Voisin B, Nagao K. Langerhans Cells - The Macrophage in Dendritic

Cell Clothing. Trends Immunol. 2017;38(11):817-828.

139

26. Egeler RM, van Halteren AG, Hogendoorn PC, et al. Langerhans cell

histiocytosis: fascinating dynamics of the dendritic cell-macrophage lineage.

Immunol Rev. 2010;234(1):213-232.

27. Erich SA, Constantino-Casas F, Dobson JM, et al. Morphological Distinction of

Histiocytic Sarcoma from Other Tumor Types in Bernese Mountain Dogs and

Flatcoated Retrievers. In Vivo. 2018;32(1):7-17.

28. Facchetti F, Pileri SA, Lorenzi L, et al. Histiocytic and dendritic cell

neoplasms: what have we learnt by studying 67 cases. Virchows Arch.

2017;471(4):467-489.

29. Ferber EC, Kajita M, Wadlow A, et al. A role for the cleaved cytoplasmic

domain of E-cadherin in the nucleus. J Biol Chem. 2008;283(19):12691-12700.

30. Fidel J, Schiller I, Hauser B, et al. Histiocytic sarcomas in flat-coated

retrievers: a summary of 37 cases (November 1998-March 2005). Vet Comp

Oncol. 2006;4(2):63-74.

31. Fonseca-Alves CE, Rodrigues MM, de Moura VM, et al. Alterations of C-MYC,

NKX3.1, and E-cadherin expression in canine prostate carcinogenesis. Microsc

Res Tech. 2013;76(12):1250-1256.

32. Fry DW, Harvey PJ, Keller PR, et al. Specific inhibition of cyclin-dependent

kinase 4/6 by PD 0332991 and associated antitumor activity in human tumor

xenografts. Mol Cancer Ther. 2004;3(11):1427-1438.

33. Gallanis GT, Pericas RI, Riegel AT, et al. An evaluation of palbociclib as a

breast cancer treatment option: a current update. Expert Opin Pharmacother.

2020:1-10.

140

34. Geissmann F, Dieu-Nosjean MC, Dezutter C, et al. Accumulation of immature

Langerhans cells in human lymph nodes draining chronically inflamed skin. J

Exp Med. 2002;196(4):417-430.

35. Geissmann F, Emile JF, Andry P, et al. Lack of expression of E-cadherin is

associated with dissemination of Langerhans' cell histiocytosis and poor

outcome. J Pathol. 1997;181(3):301-304.

36. Geissmann F, Lepelletier Y, Fraitag S, et al. Differentiation of Langerhans

cells in Langerhans cell histiocytosis. Blood. 2001;97(5):1241-1248.

37. Giantin M, Granato A, Baratto C, et al. Global gene expression analysis of

canine cutaneous mast cell tumor: could molecular profiling be useful for

subtype classification and prognostication?. PLoS One. 2014;9(4):e95481.

38. Ginhoux F, Tacke F, Angeli V, et al. Langerhans cells arise from monocytes in

vivo. Nat Immunol. 2006;7(3):265-273.

39. Gomez-Escudero J, Moreno V, Martin-Alonso M, et al. E-cadherin cleavage by

MT2-MMP regulates apical junctional signaling and epithelial homeostasis in

the intestine. J Cell Sci. 2017;130(23):4013-4027.

40. Grace SA, Sutton AM, Armbrecht ES, et al. p53 Is a Helpful Marker in

Distinguishing Langerhans Cell Histiocytosis From Langerhans Cell

Hyperplasia. Am J Dermatopathol. 2017;39(10):726-730.

41. Hazim AZ, Ruan GJ, Ravindran A, et al. Efficacy of BRAF-Inhibitor Therapy

in BRAF(V600E) -Mutated Adult Langerhans Cell Histiocytosis. Oncologist.

2020. doi:10.1002/onco.13541.

42. Hedan B, Thomas R, Motsinger-Reif A, et al. Molecular cytogenetic

characterization of canine histiocytic sarcoma: A spontaneous model for

human histiocytic cancer identifies deletion of tumor suppressor genes and

141

highlights influence of genetic background on tumor behavior. BMC Cancer.

2011;11:201-2407-11-201.

43. Hedan B, Rault M, Abadie J, et al. PTPN11 mutations in canine and human

disseminated histiocytic sarcoma. Int J Cancer. 2020;15;147(6):1657-1665.

44. Heisig A, Sorensen J, Zimmermann SY, et al. Vemurafenib in Langerhans cell

histiocytosis: report of a pediatric patient and review of the literature.

Oncotarget. 2018;9(31):22236-22240.

45. Hu W, Sung T, Jessen BA, et al. Mechanistic Investigation of Bone Marrow

Suppression Associated with Palbociclib and its Differentiation from Cytotoxic

Chemotherapies. Clin Cancer Res. 2016;22(8):2000-2008.

46. Huang da W, Sherman BT, Lempicki RA. Bioinformatics enrichment tools:

paths toward the comprehensive functional analysis of large gene lists.

Nucleic Acids Res. 2009;37(1):1-13.

47. Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis

of large gene lists using DAVID bioinformatics resources. Nat Protoc.

2009;4(1):44-57.

48. Ide K, Setoguchi-Mukai A, Nakagawa T, et al. Disseminated histiocytic

sarcoma with excessive hemophagocytosis in a cat. J Vet Med Sci.

2009;71(6):817-820.

49. Ide T, Uchida K, Tamura S, et al. Histiocytic sarcoma in the brain of a cat. J

Vet Med Sci. 2010;72(1):99-102.

50. Iorfida M, Mazza M, Munzone E. Fulvestrant in Combination with CDK4/6

Inhibitors for HER2- Metastatic Breast Cancers: Current Perspectives. Breast

Cancer (Dove Med Press). 2020;12:45-56.

142

51. Ito K, Kuroki S, Kobayashi M, et al. Identification of dasatinib as an in vitro

potent growth inhibitor of canine histiocytic sarcoma cells. Vet J.

2013;196(3):536-540.

52. Jakob T, Ring J, Udey MC. Multistep navigation of Langerhans/dendritic cells

in and out of the skin. J Allergy Clin Immunol. 2001;108(5):688-696.

53. Jensen MM, Jorgensen JT, Binderup T, et al. Tumor volume in subcutaneous

mouse xenografts measured by microCT is more accurate and reproducible

than determined by 18F-FDG-microPET or external caliper. BMC Med

Imaging. 2008;8:16-2342-8-16.

54. Johnson SK, Ramani VC, Hennings L, et al. Kallikrein 7 enhances pancreatic

cancer cell invasion by shedding E-cadherin. Cancer. 2007;109(9):1811-1820.

55. Kaplan DH. Ontogeny and function of murine epidermal Langerhans cells.

Nat Immunol. 2017;18(10):1068-1075.

56. Klucky B, Mueller R, Vogt I, et al. Kallikrein 6 induces E-cadherin shedding

and promotes cell proliferation, migration, and invasion. Cancer Res.

2007;67(17):8198-8206.

57. Kobayashi M, Kuroki S, Ito K, et al. Imatinib-associated tumour response in a

dog with a non-resectable gastrointestinal stromal tumour harbouring a c-kit

exon 11 deletion mutation. Vet J. 2013;198(1):271-274.

58. Kommalapati A, Tella SH, Durkin M, et al. Histiocytic sarcoma: a populationbased analysis of incidence, demographic disparities, and long-term outcomes.

Blood. 2018;131(2):265-268.

59. Kordes M, Röring M, Heining C, et al. Cooperation of BRAF(F595L) and

mutant HRAS in histiocytic sarcoma provides new insights into oncogenic

BRAF signaling. Leukemia. 2016;30(4):937-946.

143

60. Kraje AC, Patton CS, Edwards DF. Malignant histiocytosis in 3 cats. J Vet

Intern Med. 2001;15(3):252-256.

61. Kwon JS, Everetts NJ, Wang X, et al. Controlling Depth of Cellular

Quiescence by an Rb-E2F Network Switch. Cell Rep. 2017;20(13):3223-3235.

62. Larregina AT, Morelli AE, Spencer LA, et al. Dermal-resident CD14+ cells

differentiate into Langerhans cells. Nat Immunol. 2001;2(12):1151-1158.

63. Li L, Wu D, Yu Q, et al. Prognostic value of FOXM1 in solid tumors: a

systematic review and meta-analysis. Oncotarget. 2017;8(19):32298-32308.

64. Liao GB, Li XZ, Zeng S, et al. Regulation of the master regulator FOXM1 in

cancer. Cell Commun Signal. 2018;16(1):57-018-0266-6.

65. Liao X, Hong Y, Mao Y, et al. SPH3643: A novel cyclin-dependent kinase 4/6

inhibitor with good anticancer efficacy and strong blood-brain barrier

permeability. Cancer Sci. 2020;111(5):1761-1773.

66. Lin CY, Lovén J, Rahl PB, et al. Transcriptional amplification in tumor cells

with elevated c-Myc. Cell. 2012;151(1):56-67.

67. Liu Q, Tomaszewicz K, Hutchinson L, et al. Somatic mutations in histiocytic

sarcoma identified by next generation sequencing. Virchows Arch.

2016;469(2):233-241.

68. Lopes RA, Cardoso TC, Luvizotto MC, et al. Occurrence and expression of p53

suppressor gene and c-Myc oncogene in dog eyelid tumors. Vet Ophthalmol.

2010;13(2):69-75.

69. Maeda S, Tomiyasu H, Tsuboi M, et al. Comprehensive gene expression

analysis of canine invasive urothelial bladder carcinoma by RNA-Seq. BMC

Cancer. 2018;18(1):472-018-4409-3.

144

70. Marconato L, Sabattini S, Buchholz J, et al. Outcome comparison between

radiation therapy and surgery as primary treatment for dogs with

periarticular histiocytic sarcoma: An Italian Society of Veterinary Oncology

study. Vet Comp Oncol. 2020;18(4):778-786.

71. Mareel MM, Behrens J, Birchmeier W, et al. Down-regulation of E-cadherin

expression in Madin Darby canine kidney (MDCK) cells inside tumors of nude

mice. Int J Cancer. 1991;47(6):922-928.

72. McGinnis LM, Nybakken G, Ma L, et al. Frequency of MAP2K1, TP53, and

U2AF1 Mutations in BRAF-mutated Langerhans Cell Histiocytosis: Further

Characterizing the Genomic Landscape of LCH. Am J Surg Pathol.

2018;42(7):885-890.

73. Merad M, Ginhoux F, Collin M. Origin, homeostasis and function of

Langerhans cells and other langerin-expressing dendritic cells. Nat Rev

Immunol. 2008;8(12):935-947.

74. Milne P, Bigley V, Gunawan M, et al. CD1c+ blood dendritic cells have

Langerhans cell potential. Blood. 2015;125(3):470-473.

75. Moore PF. A review of histiocytic diseases of dogs and cats. Vet Pathol.

2014;51(1):167-184.

76. Moore PF. Canine and Feline Histiocytic Diseases. In: Meuten DJ, ed. Tumors

in Domestic Animals. 5th ed. Ames, IA: Blackwell; 2017: 322-336.

77. Moore AS, Taylor DP, Reppas G, et al. Chemotherapy for dogs with lymph

node metastasis from histiocytic sarcomas. Aust Vet J. 2017;95(1-2):37-40.

78. Nakamine H, Yamakawa M, Yoshino T, et al. Langerhans Cell Histiocytosis

and Langerhans Cell Sarcoma: Current Understanding and Differential

Diagnosis. J Clin Exp Hematop. 2016;56(2):109-118.

145

79. Otsuka M, Egawa G, Kabashima K. Uncovering the mysteries of Langerhans

cells, inflammatory dendritic epidermal cells, and monocyte-derived

Langerhans cell-like cells in the epidermis. Front Immunol. 2018;9:1768.

80. Paredes J, Figueiredo J, Albergaria A, et al. Epithelial E- and P-cadherins:

role and clinical significance in cancer. Biochim Biophys Acta.

2012;1826(2):297-311.

81. Paterson S, Boydell P, Pike R. Systemic histiocytosis in the Bernese mountain

dog. J Small Anim Pract. 1995;36(5):233-236.

82. Pazdzior-Czapula K, Rotkiewicz T, Otrocka-Domagała I, et al. Morphology and

immunophenotype of canine cutaneous histiocytic tumours with particular

emphasis on diagnostic application. Vet Res Commun. 2015;39(1):7-17.

83. Pinard J, Wagg CR, Girard C, et al. Histiocytic sarcoma in the tarsus of a cat.

Vet Pathol. 2006;43(6):1014-1017.

84. Pinto da Cunha N, Ghisleni G, Scarampella F, et al. Cytologic and

immunocytochemical characterization of feline progressive histiocytosis. Vet

Clin Pathol. 2014;43(3):428-436.

85. Ramos-Vara JA, Miller MA. Immunohistochemical expression of E-cadherin

does not distinguish canine cutaneous histiocytoma from other canine round

cell tumors. Vet Pathol. 2011;48(3):758-763.

86. Rassnick KM, Moore AS, Russell DS, et al. Phase II, open-label trial of singleagent CCNU in dogs with previously untreated histiocytic sarcoma. J Vet

Intern Med. 2010;24(6):1528-1531.

87. Santifort KM, Jurgens B, Grinwis GC, et al. Invasive nasal histiocytic

sarcoma as a cause of temporal lobe epilepsy in a cat. JFMS Open Rep.

2018;4(2):2055116918811179.

146

88. Schoos A, Knab VM, Gabriel C, et al. In vitro study to assess the efficacy of

CDK4/6 inhibitor Palbociclib (PD-0332991) for treating canine mammary

tumours. Vet Comp Oncol. 2019;17(4):507-521.

89. Scurrell E, Trott A, Rozmanec M, et al. Ocular histiocytic sarcoma in a cat. Vet

Ophthalmol. 2013;16 Suppl 1:173-176.

90. Shanmugam V, Griffin GK, Jacobsen ED, et al. Identification of diverse

activating mutations of the RAS-MAPK pathway in histiocytic sarcoma. Mod

Pathol. 2019;32(6):830-843.

91. Shimono J, Miyoshi H, Arakawa F, et al. Prognostic factors for histiocytic and

dendritic cell neoplasms. Oncotarget. 2017;8(58):98723-98732.

92. Skorupski KA, Rodriguez CO, Krick EL, et al. Long-term survival in dogs with

localized histiocytic sarcoma treated with CCNU as an adjuvant to local

therapy. Vet Comp Oncol. 2009;7(2):139-144.

93. Skorupski KA, Clifford CA, Paoloni MC, et al. CCNU for the treatment of dogs

with histiocytic sarcoma. J Vet Intern Med. 2007;21(1):121-126.

94. Son NV, Uchida K, Thongtharb A, et al. Establishment of cell line and in vivo

mouse model of canine Langerhans cell histiocytosis. Vet Comp Oncol.

2019;17(3):345-353.

95. Stoitzner P, Tripp CH, Douillard P, et al. Migratory Langerhans cells in

mouse lymph nodes in steady state and inflammation. J Invest Dermatol.

2005;125(1):116-125.

96. Swerdlow SH, Campo E, Harris NL, et al. WHO Classification of Tumours of

Haematopoietic and Lymphoid Tissues. 4th ed. Lyon, France: IARC; 2017.

97. Takada M, Hix JML, Corner S, et al. Targeting MEK in a Translational Model

of Histiocytic Sarcoma. Mol Cancer Ther. 2018;17(11):2439-2450.

147

98. Takada M, Parys M, Gregory-Bryson E, et al. A novel canine histiocytic

sarcoma cell line: initial characterization and utilization for drug screening

studies. BMC Cancer. 2018;18(1):237-018-4132-0.

99. Takada M, Smyth LA, Thaiwong T, et al. Activating Mutations in PTPN11

and KRAS in Canine Histiocytic Sarcomas. Genes (Basel). 2019;10(7):505. doi:

10.3390/genes10070505.

100. Takahashi M, Tomiyasu H, Hotta E, et al. Clinical characteristics and

prognostic factors in dogs with histiocytic sarcomas in Japan. J Vet Med Sci.

2014;76(5):661-666.

101. Tomokiyo R, Jinnouchi K, Honda M, et al. Production, characterization, and

interspecies reactivities of monoclonal antibodies against human class A

macrophage scavenger receptors. Atherosclerosis. 2002;161(1):123-132.

102. Thongtharb A, Uchida K, Chambers JK, et al. Histological and

immunohistochemical studies on primary intracranial canine histiocytic

sarcomas. J Vet Med Sci. 2016;78(4):593-599.

103. Thongtharb A, Uchida K, Chambers JK, et al. Variations in histiocytic

differentiation of cell lines from canine cerebral and articular histiocytic

sarcomas. Vet Pathol. 2017;54(3):395-404.

104. Tzankov A, Kremer M, Leguit R, et al. Histiocytic cell neoplasms involving the

bone marrow: summary of the workshop cases submitted to the 18th meeting

of the European Association for Haematopathology (EAHP) organized by the

European Bone Marrow Working Group, Basel 2016. Ann Hematol.

2018;97(11):2117-2128.

105. Vormer TL, Foijer F, Wielders CL, et al. Anchorage-independent growth of

pocket protein-deficient murine fibroblasts requires bypass of G2 arrest and

148

can be accomplished by expression of TBX2. Mol Cell Biol. 2008;28(24):72637273.

106. Wansleben S, Peres J, Hare S, et al. T-box transcription factors in cancer

biology. Biochim Biophys Acta. 2014;1846(2):380-391.

107. Wong SHM, Fang CM, Chuah LH, et al. E-cadherin: its dysregulation in

carcinogenesis and clinical implications. Crit Rev Oncol Hematol. 2018;121:1122.

108. Wong VM, Snyman HN, Ackerley C, et al. Primary nasal histiocytic sarcoma

of macrophage-myeloid cell type in a cat. J Comp Pathol. 2012;147(2-3):209213.

109. Yamada O, Kobayashi M, Sugisaki O, et al. Imatinib elicited a favorable

response in a dog with a mast cell tumor carrying a c-kit c.1523A>T mutation

via suppression of constitutive KIT activation. Vet Immunol Immunopathol.

2011;142(1-2):101-106.

110. Yamate J, Yoshida H, Tsukamoto Y, et al. Distribution of cells

immunopositive for AM-3K, a novel monoclonal antibody recognizing human

macrophages, in normal and diseased tissues of dogs, cats, horses, cattle, pigs,

and rabbits. Vet Pathol. 2000;37(2):168-176.

111. Yamazaki H, Takagi S, Hosoya K, et al. Survivin suppressor (YM155)

enhances chemotherapeutic efficacy against canine histiocytic sarcoma in

murine transplantation models. Res Vet Sci. 2015;99:137-144.

112. Zainal NS, Lee BKB, Wong ZW, et al. Effects of palbociclib on oral squamous

cell carcinoma and the role of PIK3CA in conferring resistance. Cancer Biol

Med. 2019;16(2):264-275.

149

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る