リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Developmental fine-tuning of excitatory synaptic transmission at input synapses in the rat inferior colliculus」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Developmental fine-tuning of excitatory synaptic transmission at input synapses in the rat inferior colliculus

Mako Kitagawa 同志社大学 DOI:info:doi/10.14988/di.2020.0000000184

2020.03.22

概要

本研究では、聴覚神経系で入力の統合を担う下丘におけるシナプス伝達特性の生後発達段階における変化について、シナプス電流をパッチクランプ法で計測した。NMDA-EPSCにおいて、聴覚入力開始後に減衰時間が短縮していた。上行性経路からのシナプス伝達では、発達段階に応じて短期シナプス可塑性が変化した。一方で、交連性経路からのシナプス伝達では、発達段階に伴う短期シナプス可塑性の傾向には有意な変化はなかった。
The inferior colliculus (IC) is the primal center of convergence and integration in the auditory pathway. I have measured excitatory synaptic currents (EPSCs) of the neurons in the central nucleus of the IC in response to stimulation of the lateral lemniscus and the commissure of the IC. Before hearing onset, the lemniscus inputs exhibited short-term depression, whereas commissural inputs showed facilitation. After hearing onset, the NMDA-EPSCs exhibited faster decay for both pathways. Furthermore, the EPSCs showed less short-term plasticity in both pathways. These developmental changes may ensure faster and more reliable signal transmission to the IC after onset of hearing.

この論文で使われている画像

参考文献

Asaba, A., Hattori, T., Mogi, K., & Kikusui, T. (2014) Sexual attractiveness of male chemicals and

vocalizations in mice. Front. Neurosci., 8, 1–13.

Brenowitz, S. & Trussell, L.O. (2001) Maturation of synaptic transmission at end-bulb synapses of

the cochlear nucleus. J. Neurosci., 21, 9487–9498.

Brian, M. (2013) The nature of sound and the structure and function of the auditory system. In An

Introduction to the Psychology of Hearing, sixth edit. edn. Brill Academic Publishers, 1–55.

Brunso-Bechtold, J. & Henkel, C. (2005) Development of Auditory Afferents to the Central

Nucleus of the Inferior Colliculus. In: Winer J.A., Schreiner C.E. (eds) The Inferior Colliculus,

Springer, New York, NY, 537–558.

Caicedo, A. & Eybalin, M. (1999) Glutamate receptor phenotypes in the auditory brainstem and

mid-brain of the developing rat. Eur. J. Neurosci., 11, 51–74.

Cant, N.B. (2013) Patterns of convergence in the central nucleus of the inferior colliculus of the

mongolian gerbil: organization of inputs from the superior olivary complex in the low

frequency representation. Front. Neural Circuits, 7, 1–22.

Cant, N.B. & Benson, C.G. (2006) Organization of the inferior colliculus of the gerbil (meriones

unguiculatus): differences in distribution of projections from the cochlear nuclei and the

superior olivary complex. J. Comp. Neurol., 495, 511–528.

Cant, N.B. & Benson, C.G. (2008) Organization of the inferior colliculus of the gerbil (Meriones

unguiculatus): Projections from the cochlear nucleus. Neuroscience, 154, 206–217.

Caspary, D.M., Ling, L., Turner, J.G., & Hughes, L.F. (2008) Inhibitory neurotransmission ,

plasticity and aging in the mammalian central auditory system. J. Exp. Biol., 211, 1781–1791.

Clause, A., Kim, G., Sonntag, M., Weisz, C.J.C., Vetter, D.E., Rubsamen, R., & Kandler, K. (2014)

The Precise Temporal Pattern of Prehearing Spontaneous Activity Is Necessary for Tonotopic

Map Refinement. Neuron, 82, 822–835.

Clopton, B.M. & Winfield, J.A. (1976) Effect of early exposure to patterned sound on unit activity

in rat inferior colliculus. J. Neurophysiol., 39, 1081–1089.

Cook, D.L., Schwindt, P.C., Grande, L.A., & Spain, W.J. (2003) Synaptic depression in the

localization of sound. Nature, 421, 66–70.

Couchman, K., Grothe, B., & Felmy, F. (2010) Medial superior olivary neurons receive surprisingly

few excitatory and inhibitory inputs with balanced strength and short-term dynamics. J.

Neurosci., 30, 17111–17121.

Crins, T.T.H., Rusu, S.I., Rodriguez-Contreras, A., & Borst, J.G.G. (2011) Developmental changes

in short-term plasticity at the rat calyx of Held synapse. J. Neurosci., 31, 11706–11717.

del Castillo, J. & Katz, B. (1954) Quantal components of the end‐plate potential. J. Physiol., 124,

560–573.

Ehret, G. & Schreiner, C. (2005) Spectral and Intensity Coding in the Auditory Midbrain. In: Winer

J.A., Schreiner C.E. (eds) The Inferior Colliculus, Springer, New York, NY, 312–345.

Erazo-Fischer, E., Striessnig, J., & Taschenberger, H. (2007) The role of physiological afferent

nerve activity during in vivo maturation of the calyx of Held synapse. J. Neurosci. 27, 172554

37.

Friauf, E., Fischer, A.U., & Fuhr, M.F. (2015) Synaptic plasticity in the auditory system: a review.

Cell Tissue Res., 361, 177–213.

Futai, K., Okada, M., Matsuyama, K., & Takahashi, T. (2001) High-fidelity transmission acquired

via a developmental decrease in NMDA receptor expression at an auditory synapse. J.

Neurosci., 21, 3342–3349.

Gabriele, M.L., Brunso-Bechtold, J.K., & Henkel, C.K. (2000) Development of afferent patterns in

the inferior colliculus of the rat: Projection from the dorsal nucleus of the lateral lemniscus. J.

Comp. Neurol., 416, 368–382.

Geiger, J.R.P., Melcher, T., Koh, D.S., Sakmann, B., Seeburg, P.H., Jonas, P., & Monyer, H. (1995)

Relative abundance of subunit mRNAs determines gating and Ca2+ permeability of AMPA

receptors in principal neurons and interneurons in rat CNS. Neuron, 15, 193–204.

Glasgow, N.G., Siegler Retchless, B., & Johnson, J.W. (2015) Molecular bases of NMDA receptor

subtype-dependent properties. J. Physiol., 593, 83–95.

Grécová, J., Bureš, Z., Popelář, J., Šuta, D., & Syka, J. (2009) Brief exposure of juvenile rats to

noise impairs the development of the response properties of inferior colliculus neurons. Eur. J.

Neurosci., 29, 1921–1930.

Grothe, B. (2000) The evolution of temporal processing in the medial superior olive, an auditory

brainstem structure. Prog. Neurobiol., 61, 581–610.

Iacobucci, G.J. & Popescu, G.K. (2017) NMDA receptors : linking physiological output to

biophysical operation. Nat. Rev. Neurosci., 18, 236–249.

Ito, T., Bishop, D.C., & Oliver, D.L. (2009) Two Classes of GABAergic Neurons in the Inferior

Colliculus. J. Neurosci., 29, 13860–13869.

Ito, T. & Malmierca, M. (2018) Neurons, Connections, and Microcircuits of the Inferior Colliculus.

In: Oliver D., Cant N., Fay R., Popper A. (eds) The Mammalian Auditory Pathways, Springer

Handbook of Auditory Research, 65, Springer, Cham, 127–167.

Ito, T. & Oliver, D.L. (2014) Local and commissural IC neurons make axosomatic inputs on large

GABAergic tectothalamic neurons. J. Comp. Neurol., 522, 3539–3554.

Iwasaki, S. & Takahashi, T. (2001) Developmental regulation of transmitter release at the calyx of

Held in rat auditory brainstem. J. Physiol., 534, 861–871.

Joshi, I. & Wang, L. (2002) Developmental profiles of glutamate receptors and synaptic

transmission at a single synapse in the mouse auditory brainstem. J. Physiol., 540, 861–873.

Kandel, E.R., Schwartz, J.H., Jessell, T.M., Jessell, D. of B. and M.B.T., Siegelbaum, S., &

Hudspeth, A.J. (2000) Principles of Neural Science. McGraw-hill New York.

Kasai, M., Ono, M., & Ohmori, H. (2012) Distinct neural firing mechanisms to tonal stimuli offset

in the inferior colliculus of mice in vivo. Neurosci. Res., 73, 224–237.

Kelly J.B. & Caspary D.M. (2005) Pharmacology of the Inferior Colliculus. In: Winer J.A.,

Schreiner C.E. (eds) The Inferior Colliculus, Springer, New York, NY, pp. 248–281.

Kim, G. & Kandler, K. (2010) Synaptic changes underlying the strengthening of GABA/glycinergic

connections in the developing lateral superior olive. Neuroscience, 171, 924–933.

Kitagawa, M. & Sakaba, T. (2019) Developmental changes in the excitatory short-term plasticity at

input synapses in the rat inferior colliculus. Eur. J. Neurosci., 50, 2830–2846.

Knudsen, E.I. (2002) Instructed learning in the auditory localization pathway of the barn owl.

55

Nature, 417, 322–328.

Koch, U. & Grothe, B. (2003) Hyperpolarization-activated current (Ih) in the inferior colliculus:

distribution and contribution to temporal processing. J. Neurophysiol., 90, 3679–3687.

Koike-Tani, M., Kanda, T., Saitoh, N., Yamashita, T., & Takahashi, T. (2008) Involvement of

AMPA receptor desensitization in short-term synaptic depression at the calyx of Held in

developing rats. J. Physiol., 586, 2263–2275.

Koike, M., Tsukada, S., Tsuzuki, K., Kijima, H., & Ozawa, S. (2000) Regulation of kinetic

properties of GluR2 AMPA receptor channels by alternative splicing. J. Neurosci., 20, 2166–

2174.

Kuba, H., Yamada, R., & Ohmori, H. (2003) Evaluation of the limiting acuity of coincidence

detection in nucleus laminaris of the chicken. J. Physiol., 552, 611–620.

Lu, T. & Trussell, L.O. (2007) Development and elimination of endbulb synapses in the chick

cochlear nucleus. J. Neurosci., 27, 808–817.

Ma, C.L., Kelly, J.B., & Wu, S.H. (2002) AMPA and NMDA receptors mediate synaptic excitation

in the rat’s inferior colliculus. Hear. Res., 168, 25–34.

Magnusson, A.K., Kapfer, C., Grothe, B., & Koch, U. (2005) Maturation of glycinergic inhibition

in the gerbil medial superior olive after hearing onset. J. Physiol., 568, 497–512.

Malenka, R.C. & Nicoll, R.A. (1993) NMDA-receptor-dependent synaptic plasticity: multiple

forms and mechanisms. Trends Neurosci., 16, 521–527.

Malmierca, M.S., Hernández, O., Antunes, F.M., & Rees, A. (2009) Divergent and point-to-point

connections in the commissural pathway between the inferior colliculi. J. Comp. Neurol., 514,

226–239.

Malmierca, M.S., Hernández, O., & Rees, A. (2005) Intercollicular commissural projections

modulate neuronal responses in the inferior colliculus. Eur. J. Neurosci., 21, 2701–2710.

Moore, D.R., Kotak, V.C., & Sanes, D.H. (1998) Commissural and lemniscal synaptic input to the

gerbil inferior colliculus. J. Neurophysiol., 80, 2229–2236.

Moore, L.A. & Trussell, L.O. (2017) Corelease of Inhibitory Neurotransmitters in the Mouse

Auditory Midbrain. J. Neurosci., 37, 9453–9464.

Nakamoto, K.T., Sowick, C.S., & Schofield, B.R. (2013) Auditory cortical axons contact

commissural cells throughout the guinea pig inferior colliculus. Hear. Res., 306, 131–144.

Neher, E. (2017) Some Subtle Lessons from the Calyx of Held Synapse. Biophys. J., 112, 215–223.

Oliver, D.L. (2005) Neuronal organization in the inferior colliculus. In: Winer J.A., Schreiner C.E.

(eds) The Inferior Colliculus, Springer, New York, NY, 69–114.

Ono, M., Bishop, D.C., & Oliver, D.L. (2017) Identified GABAergic and glutamatergic neurons in

the mouse inferior colliculus share similar response properties. J. Neurosci., 37, 8952–8964.

Ono, M. & Ito, T. (2015) Functional organization of the mammalian auditory midbrain. J. Physiol.

Sci., 65, 499–506.

Ono, M. & Oliver, D.L. (2014) The balance of excitatory and inhibitory synaptic inputs for coding

sound location. J. Neurosci., 34, 3779–3792.

Ono, M., Yanagawa, Y., & Koyano, K. (2005) GABAergic neurons in inferior colliculus of the

GAD67-GFP knock-in mouse: Electrophysiological and morphological properties. Neurosci.

Res., 51, 475–492.

Orton, L.D., Papasavvas, C.A., & Rees, A. (2016) Commissural gain control enhances the midbrain

56

representation of sound location. J. Neurosci., 36, 4470–4481.

Otis, T., Zhang, S., & Trussell, L.O. (1996) Direct measurement of AMPA receptor desensitization

induced by glutamatergic synaptic transmission. J. Neurosci., 16, 7496–7504.

Palmer, A.R., Shackleton, T.M., Sumner, C.J., Zobay, O., & Rees, A. (2013) Classification of

frequency response areas in the inferior colliculus reveals continua not discrete classes. J.

Physiol., 591, 4003–4025.

Pérez-González, D. & Malmierca, M.S. (2014) Adaptation in the auditory system: An overview.

Front. Integr. Neurosci., 8, 1–10.

Perkel, D.J. & Nicoll, R.A. (1993) Evidence for all‐or‐none regulation of neurotransmitter

release: implications for long‐term potentiation. J. Physiol., 471, 481–500.

Peruzzi, D., Sivaramakrishnan, S., & Oliver, D.L. (2000) Identification of cell types in brain slices

of the inferior colliculus. Neuroscience, 101, 403–416.

Reetz, G. & Ehret, G. (1999) Inputs from three brainstem sources to identified neurons of the mouse

inferior colliculus slice. Brain Res., 816, 527–543.

Regehr, W.G. (2012) Short-term presynaptic plasticity. Cold Spring Harb. Perspect. Biol., 4, 1–19.

Regehr, W.G. & Abbott, L.F. (2004) Synaptic computation. Nature, 431, 796–803.

Saldaña, E., Aparicio, M.A., Fuentes-Santamaría, V., & Berrebi, A.S. (2009) Connections of the

superior paraolivary nucleus of the rat: projections to the inferior colliculus. Neuroscience,

163, 372–387.

Saldaña, E. & Merchań, M.A. (1992) Intrinsic and commissural connections of the rat inferior

colliculus. J. Comp. Neurol., 319, 417–437.

Sanchez, J.T., Gans, D., & Wenstrup, J.J. (2007) Contribution of NMDA and AMPA receptors to

temporal patterning of auditory responses in the inferior colliculus. J. Neurosci., 27, 1954–

1963.

Sanchez, J.T., Ghelani, S., & Otto-Meyer, S. (2015) From development to disease: Diverse

functions of NMDA-type glutamate receptors in the lower auditory pathway. Neuroscience,

285, 248–259.

Schmid, S., Guthmann, A., & Ruppersberg, J.P. (2001) Expression of AMPA receptor subunit

flip/flop splice variants in the rat auditory brainstem and inferior colliculus. J. Comp. Neurol.,

430, 160–171.

Schneggenburger, R. & Forsythe, I.D. (2006) The calyx of Held. Cell Tissue Res., 326, 311–337.

Shnerson, A. & Willott, J.F. (1979) Development of inferior colliculus response properties in

C57BL/6J mouse pups. Exp. Brain Res., 37, 373–385.

Sivaramakrishnan, S. & Oliver, D.L. (2001) Distinct K currents result in physiologically distinct

cell types in the inferior colliculus of the rat. J. Neurosci., 21, 2861–2877.

Sivaramakrishnan, S. & Oliver, D.L. (2006) Neuronal responses to lemniscal stimulation in laminar

brain slices of the inferior colliculus. JARO, 7, 1–14.

Steinert, J.R., Postlethwaite, M., Jordan, M.D., Chernova, T., Robinson, S.W., & Forsythe, I.D.

(2010) NMDAR-mediated EPSCs are maintained and accelerate in time course during

maturation of mouse and rat auditory brainstem in vitro. J. Physiol., 588, 447–463.

Sturm, J., Nguyen, T., & Kandler, K. (2014) Development of intrinsic connectivity in the central

nucleus of the mouse inferior colliculus. J. Neurosci., 34, 15032–15046.

Taschenberger, H., Leão, R.M., Rowland, K.C., Spirou, G.A., & von Gersdorff, H. (2002)

57

Optimizing synaptic architecture and efficiency for high-frequency transmission. Neuron, 36,

1127–1143.

Taschenberger, H. & von Gersdorff, H. (2000) Fine-tuning an auditory synapse for speed and

fidelity: developmental changes in presynaptic waveform, EPSC kinetics, and synaptic

plasticity. J. Neurosci., 20, 9162–9173.

Tong, G. & Jahr, C.E. (1994) Multivesicular release from excitatory synapses of cultered

hippocampal neurons. Neuron, 12, 51–59.

Trussell, L.O., Zhang, S., & Ramant, I.M. (1993) Desensitization of AMPA receptors upon

multiquantal neurotransmitter release. Neuron, 10, 1185–1196.

Vale, C., Juíz, J.M., Moore, D.R., & Sanes, D.H. (2004) Unilateral cochlear ablation produces

greater loss of inhibition in the contralateral inferior colliculus. Eur. J. Neurosci., 20, 2133–

2140.

Vale, C. & Sanes, D.H. (2002) The effect of bilateral deafness on excitatory and inhibitory synaptic

strength in the inferior colliculus. Eur. J. Neurosci., 16, 2394–2404.

von Gersdorff, H. & Borst, J.G.G. (2002) Short-term plasticity at the calyx of held. Nat. Rev.

Neurosci., 3, 53–64.

von Gersdorff, H., Schneggenburger, R., Weis, S., & Neher, E. (1997) Presynaptic depression at a

calyx synapse: the small contribution of metabotropic glutamate receptors. J. Neurosci., 17,

8137–8146.

Wang, H.C. & Bergles, D.E. (2015) Spontaneous activity in the developing auditory system. Cell

Tissue Res., 361, 65–75.

Weis, S., Schneggenburger, R., & Neher, E. (1999) Properties of a model of Ca++-dependent

vesicle pool dynamics and short term synaptic depression. Biophys. J., 77, 2418–2429.

Winer, J.A. & Schreiner, C.E. (2005) The Central Auditory System: A Functional Analysis. In:

Winer J.A., Schreiner C.E. (eds) The Inferior Colliculus, Springer, New York, NY, 1–68.

Wu, S.H., Lei, M.C., & Kelly, J.B. (2004) Contribution of AMPA, NMDA, and GABA(A)

receptors to temporal pattern of postsynaptic responses in the inferior colliculus of the rat. J.

Neurosci., 24, 4625–4634.

Yassin, L., Pecka, M., Kajopoulos, J., Gleiss, H., Li, L., Leibold, C., & Felmy, F. (2016)

Differences in synaptic and intrinsic properties result in topographic heterogeneity of temporal

processing of neurons within the inferior colliculus. Hear. Res., 341, 79–90.

Zhang, H. & Kelly, J.B. (2001) AMPA and NMDA receptors regulate responses of neurons in the

rat’s inferior colliculus. J. Neurophysiol., 86, 871–880.

Zucker, R.S. & Regehr, W.G. (2002) Short-term synaptic plasticity. Annu. Rev. Physiol., 64, 355–

405.

58

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る