リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Mass-Fabrication Scheme of Highly Sensitive Wireless Electrodeless MEMS QCM Biosensor with Antennas on Inner Walls of Microchannel」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Mass-Fabrication Scheme of Highly Sensitive Wireless Electrodeless MEMS QCM Biosensor with Antennas on Inner Walls of Microchannel

Zhou, Lianjie 大阪大学

2023.04.04

概要

Highly sensitive and reliable biosensors are crucial in diagnosis, environmental monitoring, and drug discovery. 1 Among various biosensors, the reverse transcription-polymerase
chain reaction (RT-PCR) test and the enzyme-linked immunosorbent assay (ELISA) have
highly contributed to gaining control of the COVID-19 pandemic, although they suffer from
inadequacy in assay sensitivity. 2–4 Surface-plasmon-resonance (SPR) biosensor is another
representative and advanced method that allows the label-free detection. 5–7 However, the
expensive equipments and complex sensing system limit the point-of-care application. 8 On
the other hand, quartz-crystal-microbalance (QCM) sensors have important advantages, including simple and compact instrumentation, low-cost, high stability, and capability for realtime monitoring, and they have been widely used as force sensors, 9 humidity sensors, 10,11
gas sensors, 12–14 and biosensors. ...

この論文で使われている画像

参考文献

(1) Bhalla, N.; Jolly, P.; Formisano, N.; Estrela, P. Essays Biochem. 2016, 60, 1–8.

(2) Udugama, B.; Kadhiresan, P.; Kozlowski, H. N.; Malekjahani, A.; Osborne, M.;

Li, V. Y.; Chen, H.; Mubareka, S.; Gubbay, J. B.; Chan, W. C. ACS nano 2020,

14, 3822–3835.

(3) Kevadiya, B. D. et al. Nat. Mater. 2021, 20, 593–605.

(4) Masterson, A. N.; Muhoberac, B. B.; Gopinadhan, A.; Wilde, D. J.; Deiss, F. T.;

John, C. C.; Sardar, R. Anal. Chem. 2021, 93, 8754–8763.

(5) Homola, J. Anal. Bioanal. Chem. 2003, 377, 528–539.

(6) Wang, J.; Zhou, H. S. Anal. Chem. 2008, 80, 7174–7178.

(7) Piliarik, M.; Bocková, M.; Homola, J. Biosens. Bioelectron. 2010, 26, 1656–1661.

(8) Qu, J. H.; Dillen, A.; Saeys, W.; Lammertyn, J.; Spasic, D. Anal. Chim. Acta 2020,

1104, 10–27.

14

(9) Watanabe, S.; Murozaki, Y.; Sugiura, H.; Sato, Y.; Honbe, K.; Arai, F. Sens. Actuators

A: Phys. 2021, 317, 112475.

(10) Chappanda, K. N.; Shekhah, O.; Yassine, O.; Patole, S. P.; Eddaoudi, M.; Salama, K. N.

Sens. Actuators B: Chem. 2018, 257, 609–619.

(11) Yao, Y.; Huang, X.; Zhang, B.; Zhang, Z.; Hou, D.; Zhou, Z. Sens. Actuators B: Chem.

2020, 302, 127192.

(12) Jin, X.; Huang, Y.; Mason, A.; Zeng, X. Anal. Chem. 2009, 81, 595–603.

(13) Rianjanu, A.; Fauzi, F.; Triyana, K.; Wasisto, H. S. ACS Appl. Nano Mater. 2021, 4,

9957–9975.

(14) Zhou, L.; Nakamura, N.; Nagakubo, A.; Ogi, H. Appl. Phys. Lett. 2019, 115, 171901.

(15) Chen, D.; Li, H.; Su, X.; Li, N.; Wang, Y.; Stevenson, A. C.; Hu, R.; Li, G. Sens.

Actuators B: Chem. 2019, 287, 35–41.

(16) Reviakine, I.; Johannsmann, D.; Richter, R. P. Anal. Chem. 2011, 83, 8838–8848.

(17) Ogi, H. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci. 2013, 89, 401–417.

(18) Sauerbrey, G. Z. Phys. 1959, 55, 206–222.

(19) Ogi, H.; Fukunishi, Y.; Omori, T.; Hatanaka, K.; Hirao, M.; Nishiyama, M. Anal.

Chem. 2008, 80, 5494–5500.

(20) Ogi, H.; Nagai, H.; Fukunishi, Y.; Hirao, M.; Nishiyama, M. Anal. Chem. 2009, 81,

8068–8073.

(21) Zhang, Y.; Rojas, O. J. Biomacromolecules 2017, 18, 526–534.

(22) Hampitak, P.; Jowitt, T. A.; Melendrez, D.; Fresquet, M.; Hamilton, P.; Iliut, M.;

Nie, K.; Spencer, B.; Lennon, R.; Vijayaraghavan, A. ACS Sens. 2020, 5, 3520–3532.

15

(23) Hu, J.; Yesilbas, G.; Li, Y.; Geng, X.; Li, P.; Chen, J.; Wu, X.; Knoll, A.; Ren, T. L.

Anal. Chem. 2022, 94, 5760–5768.

(24) Kato, F.; Ogi, H.; Yanagida, T.; Nishikawa, S.; Hirao, M.; Nishiyama, M. Biosens.

Bioelectron. 2012, 33, 139–145.

(25) Kato, F.; Noguchi, H.; Kodaka, Y.; Oshida, N.; Ogi, H. Jpn. J. Appl. Phys. 2018, 57,

07LD14.

(26) Zhou, L.; Kato, F.; Ogi, H. Jpn. J. Appl. Phys. 2021, 60, SDDB03.

(27) Noi, K.; Iwata, A.; Kato, F.; Ogi, H. Anal. Chem. 2019, 91, 9398–9402.

(28) Jiang, X.; Wang, R.; Wang, Y.; Su, X.; Ying, Y.; Wang, J.; Li, Y. Biosens. Bioelectron.

2011, 29, 23–28.

(29) Chen, Q.; Tang, W.; Wang, D.; Wu, X.; Li, N.; Liu, F. Biosens. Bioelectron. 2010, 26,

575–579.

(30) Dong, Z. M.; Jin, X.; Zhao, G. C. Biosens. Bioelectron. 2018, 106, 111–116.

(31) Yang, H.; Li, Y.; Wang, D.; Liu, Y.; Wei, W.; Zhang, Y.; Liu, S.; Li, P. ChemComm.

2019, 55, 5994–5997.

(32) Ogi, H.; Yanagida, T.; Hirao, M.; Nishiyama, M. Biosens. Bioelectron. 2011, 26, 4819–

4822.

(33) Thies, J. W.; Kuhn, P.; Thürmann, B.; Dübel, S.; Dietzel, A. Microelectron. Eng. 2017,

179, 25–30.

(34) Noi, K.; Iijima, M.; Kuroda, S.; Ogi, H. Sens. Actuators B: Chem. 2019, 293, 59–62.

(35) Lee, D.; Yoo, M.; Seo, H.; Tak, Y.; Kim, W. G.; Yong, K.; Rhee, S. W.; Jeon, S. Sens.

Actuators B: Chem. 2009, 135, 444–448.

16

(36) Yan, J.; Zhao, C.; Ma, Y.; Yang, W. Biomacromolecules 2022, 23, 2614–2623.

(37) Liu, Y.; Yu, J. Microchim. Acta 2016, 183, 1–19.

(38) Park, M. Biochip J. 2019, 13, 82–94.

(39) Yuan, Y.; He, H.; Lee, L. J. Biotechnol. Bioeng. 2009, 102, 891–901.

(40) Tajima, N.; Takai, M.; Ishihara, K. Anal. Chem. 2011, 83, 1969–1976.

(41) Neubert, H.; Jacoby, E. S.; Bansal, S. S.; Iles, R. K.; Cowan, D. A.; Kicman, A. T.

Anal. Chem. 2002, 74, 3677–3683.

(42) Kausaite-Minkstimiene, A.; Ramanaviciene, A.; Kirlyte, J.; Ramanavicius, A. Anal.

Chem. 2010, 82, 6401–6408.

(43) Iijima, M.; Nakayama, T.; Kuroda, S. Biosens. Bioelectron. 2020, 150, 111860.

(44) Iijima, M.; Matsuzaki, T.; Kadoya, H.; Hatahira, S.; Hiramatsu, S.; Jung, G.;

Tanizawa, K.; Kuroda, S. Anal. Biochem. 2010, 396, 257–261.

(45) Nilsson, B.; Moks, T.; Jansson, B.; Abrahmsen, L.; Elmblad, A.; Holmgren, E.; Henrichson, C.; Jones, T. A.; Uhlén, M. Prot. Eng. 1987, 1, 107–113.

(46) Iijima, M.; Somiya, M.; Yoshimoto, N.; Niimi, T.; Kuroda, S. Sci. Rep. 2012, 2, 00790.

(47) Noi, K.; Iijima, M.; Kuroda, S.; Kato, F.; Ogi, H. Jpn. J. Appl. Phys. 2020, 59,

SKKB03.

(48) Iijima, M. et al. Biomaterials 2011, 32, 1455–1464.

(49) Kato, F.; Ogi, H.; Yanagida, T.; Nishikawa, S.; Nishiyama, M.; Hirao, M. Jpn. J. Appl.

Phys. 2011, 50, 07HD03.

(50) Liu, Y.; Yu, X.; Zhao, R.; Shangguan, D. H.; Bo, Z.; Liu, G. Biosens. Bioelectron.

2003, 19, 9–19.

17

(51) Ogi, H.; Motohisa, K.; Hatanaka, K.; Ohmori, T.; Hirao, M.; Nishiyama, M. Biosens.

Bioelectron. 2007, 22, 3238–3242.

(52) Christodoulides, N.; Mohanty, S.; Miller, C. S.; Langub, M. C.; Floriano, P. N.; Dharshan, P.; Ali, M. F.; Bernard, B.; Romanovicz, D.; Anslyn, E.; Fox, P. C.; McDevitt, J. T. Lab Chip 2005, 5, 261–269.

(53) Vashist, S. K.; Venkatesh, A. G.; Schneider, E. M.; Beaudoin, C.; Luppa, P. B.; Luong, J. H. Biotechnol. Adv. 2016, 34, 272–290.

(54) Zhang, L.; Li, H. Y.; Li, W.; Shen, Z. Y.; Wang, Y. D.; Ji, S. R.; Wu, Y. Front.

immunol. 2018, 9, 1–5.

(55) Vashist, S. K.; Czilwik, G.; Oordt, T. V.; Stetten, F. V.; Zengerle, R.; Schneider, E. M.;

Luong, J. H. Anal. Biochem. 2014, 456, 32–37.

(56) Gupta, R. K.; Periyakaruppan, A.; Meyyappan, M.; Koehne, J. E. Biotechnol. Bioeng.

2014, 59, 112–119.

(57) Boonkaew, S.; Chaiyo, S.; Jampasa, S.; Rengpipat, S.; Siangproh, W.; Chailapakul, O.

Microchim. Acta 2019, 186, 1–10.

(58) Baradoke, A.; Hein, R.; Li, X.; Davis, J. J. Anal. Chem. 2020, 92, 3508–3511.

(59) Aray, A.; Chiavaioli, F.; Arjmand, M.; Trono, C.; Tombelli, S.; Giannetti, A.; Cennamo, N.; Soltanolkotabi, M.; Zeni, L.; Baldini, F. J. Biophotonics 2016, 9, 1077–1084.

(60) Bini, A.; Centi, S.; Tombelli, S.; Minunni, M.; Mascini, M. Anal. Bioanal. Chem. 2008,

390, 1077–1086.

(61) Vashist, S. K.; Schneider, E. M.; Luong, J. H. Analyst 2015, 140, 4445–4452.

(62) Ding, P.; Liu, R.; Liu, S.; Mao, X.; Hu, R.; Li, G. Sens. Actuators B: Chem. 2013, 188,

1277–1283.

18

(63) Gao, K.; Cui, S.; Liu, S. Int. J. Electrochem. Sci. 2018, 13, 812–821.

19

!"##

(#$))

*#$%&'

+",-$.#-/01',$1-

$"##

!"##

'(

+(-#&+.-/0"$$%*&

!" #$%

&'

&''/-#,'$/'',

)(%*+,

#$%&&

!"

'(

!"#$%&'#(&)*

(#$))

*#$%&

"--.*/%-+.--%

*&2-12%,''/)

Figure 1: (A) Illustration of the fabricated MEMS QCM biosensor chip and (B) its crosssection view. (C) Explanation of the three-layer structure of the chip.

Figure 2: (A) Illustration of the MEMS QCM functionalization process. (B) Schematic of

the QCM surface functionalized by SAM and protein A for IgG detection. (C) Frequency

responses of the 125-MHz MEMS QCM biosensor in IgG detection during the binding reaction.

20

Figure 3: (A) Illustration of the cross-section of the ZZ-BNC. (B) Schematic of the QCM

surface functionalized by ZZ-BNC for IgG detection. (C) Frequency responses of the 125MHz MEMS QCM biosensor in IgG detection during the binding reaction. (D) Frequency

decreases measured by the 125-MHz MEMS QCM in IgG detection using protein A and

ZZ-BNC at 30 min. (E) Exponential coefficients of the frequency decrease curves in IgG

detection using protein A and ZZ-BNC as functions of the IgG concentration. The inset

shows the binding affinity between IgG and protein A and between IgG and ZZ-BNC.

21

&53IORZ

$QWL&53

&RQWURO

&53



SJ P/



∆II SSP

∆II SSP







  

7LPHKRXU





    

&53FRQFHQWUDWLRQ QJိP/

Figure 4: (A) Schematic of the QCM surface functionalized by ZZ-BNC and anti-CRP antibody for CRP detection. (B) Frequency responses of the 166-MHz MEMS QCM biosensor

in CRP detection during the binding reaction. (C) Frequency decreases at 10 min against

the logarithm of CRP concentration.

22

For Table of Contents Only

23

Mass-fabrication scheme of highly sensitive wireless

electrodeless MEMS QCM biosensor with antennas on inner

walls of microchannel

Lianjie Zhou,†,⊥ Fumihito Kato,‡,⊥ Masumi Iijima,¶ Tomoyuki Nonaka,§ Shun’ichi Kuroda,∥ and Hirotsugu Ogi∗,† †Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan ‡Department of Mechanical Engineering, Nippon Institute of Technology, Gakuendai 4-1, Miyashiro-machi, Minamisaitama, Saitama 345-8501, Japan ¶Department of Nutritional Science and Food Safety, Tokyo University of Agriculture, Sakuragaoka 1-1-1, Setagaya-ku, Tokyo 156-8502, Japan §Samco Inc., Waraya-cho 36, Takeda, Fushimi-ku, Kyoto 612-8443, Japan ∥The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 81, Ibaraki, Osaka 567-0047, Japan ⊥Contributed equally to this work *E-mail: ogi@prec.eng.osaka-u.ac.jp Supporting Figure S1

Supporting Figure S2

••••••••••••••••••••••••••••••

••••••••••••••••••••••••••••••

S-1

S-2

S-3

Figure S1

4-inch wafer-level MEMS process for fabricating ~180 ultra-high sensitive QCM

biosensors. This MEMS process consists of four processes: (i) Glass-wafer process for fabricating

upper and bottom glass wafers with microchannels and inner and outer antennas, (ii) silicon-oninsulator (SOI) wafer process for making the middle Si layer as the bonding layer, (iii) quartz-wafer

process for patterning the isolated thin quartz resonators, and (iv) packaging process.

S-2

Df/f0 (ppm)

IgG (1 ng/mL) GHB IgG (10 ng/mL)

GHB

IgG (100 ng/mL)

HBS

GHB

HBS

HBS

-50

HBS

HBS

-100

HBS

HBS

10

12

Time (hour)

Figure S2 Frequency response of a 125 MHz MEMS QCM in a long-term measurement of IgG

detection.

S-3

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る