リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Lattice bow in thick, homoepitaxial GaN layers for vertical power devices」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Lattice bow in thick, homoepitaxial GaN layers for vertical power devices

Liu, Qiang Fujimoto, Naoki Shen, Jian Nitta, Shugo Tanaka, Atsushi Honda, Yoshio Sitar, Zlatko Boćkowski, Michał Kumagai, Yoshinao Amano, Hiroshi 名古屋大学

2020.06.01

概要

Lattice bow generated by 40 µm thick HVPE homoepitaxial layers on commercial free-standing, ammonothermal and HVPE GaN wafers was studied. While a change in lattice bow was measured for all wafers, the additional bow on the ammonothermal GaN wafers was minimal. The main driving force for the observed increase in the lattice bow for HVPE wafers was related to stress in the films generated by the elongation of dislocations via climb and generation of new dislocations at the homoepitaxial interface. Lattice bow is a crucial wafer parameter as it determines the variation of the offcut across the surface. If an offcut variation of 0.1° is allowed for desired control surface morphology, composition of alloys, and uniformity of doping on this surface, the measured bow on the two HVPE GaN wafers and one ammonothermal GaN wafer limits their uniformity-diameter to ~0.5″, 1″ and >4″, respectively.

この論文で使われている画像

参考文献

[1]

L.M. Tolbert, Power Electronics for Distributed Energy Systems and Transmission and Distribution

Applications: Assessing the Technical Needs for Utility Applications, Oak Ridge National Lab.

(ORNL), Oak Ridge, TN (United States), 2005. https://doi.org/10.2172/885985.

[2]

B.J. Baliga, Gallium nitride devices for power electronic applications, Semicond. Sci. Technol. 28

(2013) 074011. https://doi.org/10.1088/0268-1242/28/7/074011.

[3]

R.P. Tompkins, M.R. Khan, R. Green, K.A. Jones, J.H. Leach, IVT measurements of GaN power

Schottky diodes with drift layers grown by HVPE on HVPE GaN substrates, J Mater Sci: Mater

Electron. 27 (2016) 6108–6114. https://doi.org/10.1007/s10854-016-4536-z.

[4]

H. Fujikura, K. Hayashi, F. Horikiri, Y. Narita, T. Konno, T. Yoshida, H. Ohta, T. Mishima,

Elimination of macrostep-induced current flow nonuniformity in vertical GaN PN diode using

carbon-free drift layer grown by hydride vapor phase epitaxy, Appl. Phys. Express. 11 (2018)

045502. https://doi.org/10.7567/APEX.11.045502.

[5]

H. Nie, Q. Diduck, B. Alvarez, A.P. Edwards, B.M. Kayes, M. Zhang, G. Ye, T. Prunty, D. Bour, I.C.

Kizilyalli, 1.5-kV and 2.2-mΩ-cm2 Vertical GaN Transistors on Bulk-GaN Substrates, IEEE

Electron Device Letters. 35 (2014) 939–941. https://doi.org/10.1109/LED.2014.2339197.

[6]

S. Chowdhury, Vertical Gallium Nitride Technology, in: M. Meneghini, G. Meneghesso, E. Zanoni

(Eds.), Power GaN Devices: Materials, Applications and Reliability, Springer International

Publishing, Cham, 2017: pp. 101–121. https://doi.org/10.1007/978-3-319-43199-4_5.

[7]

R.P. Tompkins, J.R. Smith, K.W. Kirchner, K.A. Jones, J.H. Leach, K. Udwary, E. Preble, P.

Suvarna, J.M. Leathersich, F. Shahedipour-Sandvik, GaN Power Schottky Diodes with Drift Layers

Grown

on

Four

Substrates,

Journal

of

Elec

Materi.

43

(2014)

850–856.

https://doi.org/10.1007/s11664-014-3021-9.

[8]

H. Fujikura, T. Konno, T. Yoshida, F. Horikiri, Hydride-vapor-phase epitaxial growth of highly pure

GaN layers with smooth as-grown surfaces on freestanding GaN substrates, Jpn. J. Appl. Phys. 56

(2017) 085503. https://doi.org/10.7567/JJAP.56.085503.

[9]

P. Kruszewski, P. Prystawko, M. Grabowski, T. Sochacki, A. Sidor, M. Bockowski, J. Jasinski, L.

Lukasiak, R. Kisiel, M. Leszczynski, Electrical properties of vertical GaN Schottky diodes on

Ammono-GaN substrate, Materials Science in Semiconductor Processing. 96 (2019) 132–136.

https://doi.org/10.1016/j.mssp.2019.02.037.

[10] I. Bryan, Z. Bryan, S. Mita, A. Rice, J. Tweedie, R. Collazo, Z. Sitar, Surface kinetics in AlN growth:

A universal model for the control of surface morphology in III-nitrides, Journal of Crystal Growth.

438 (2016) 81–89. https://doi.org/10.1016/j.jcrysgro.2015.12.022.

[11] H.M. Foronda, A.E. Romanov, E.C. Young, C.A. Robertson, G.E. Beltz, J.S. Speck, Curvature and

bow

of

bulk

GaN

substrates,

Journal

of

Applied

Physics.

120

(2016)

035104.

https://doi.org/10.1063/1.4959073.

[12] T. Tanikawa, K. Ohnishi, M. Kanoh, T. Mukai, T. Matsuoka, Three-dimensional imaging of

threading dislocations in GaN crystals using two-photon excitation photoluminescence, Appl. Phys.

Express. 11 (2018) 031004. https://doi.org/10.7567/APEX.11.031004.

[13] T. Sochacki, M. Amilusik, B. Lucznik, M. Fijalkowski, J.L. Weyher, G. Nowak, B. Sadovyi, G.

Kamler, R. Kucharski, M. Iwinska, I. Grzegory, M. Bockowski, HVPE-GaN growth on misoriented

ammonothermal

GaN

seeds,

Journal

of

Crystal

Growth.

403

(2014)

32–37.

https://doi.org/10.1016/j.jcrysgro.2014.06.020.

[14] P.F. Fewster, Estimating the structure factors in X-ray diffraction, Acta Cryst A. 74 (2018) 481–498.

https://doi.org/10.1107/S2053273318007593.

[15] H. FUJIKURA, T. INOUE, T. KITAMURA, T. KONNO, T. SUZUKI, T. FUJIMOTO, T.

YOSHIDA, M. SHIBATA, T. SAITO, Development of GaN Single-Crystal Substrates, SCIOCS Co.,

Ltd., 2018.

[16] G.G. Stoney, C.A. Parsons, The tension of metallic films deposited by electrolysis, Proceedings of

the Royal Society of London. 82 (1909) 172–175. https://doi.org/10.1098/rspa.1909.0021.

[17] H. Qin, X. Luan, C. Feng, D. Yang, G. Zhang, Mechanical, thermodynamic and electronic properties

of wurtzite and zinc-blende GaN crystals, Materials. 10 (2017) 1419.

[18] V. Darakchieva, B. Monemar, A. Usui, M. Saenger, M. Schubert, Lattice parameters of bulk GaN

fabricated by halide vapor phase epitaxy, Journal of Crystal Growth. 310 (2008) 959–965.

https://doi.org/10.1016/j.jcrysgro.2007.11.130.

[19] J. Weinrich, A. Mogilatenko, F. Brunner, C.T. Koch, M. Weyers, Extra half-plane shortening of

dislocations as an origin of tensile strain in Si-doped (Al)GaN, Journal of Applied Physics. 126

(2019) 085701. https://doi.org/10.1063/1.5111664.

[20] M. Amilusik, D. Wlodarczyk, A. Suchocki, M. Bockowski, Micro-Raman studies of strain in bulk

GaN crystals grown by hydride vapor phase epitaxy on ammonothermal GaN seeds, Jpn. J. Appl.

Phys. 58 (2019) SCCB32. https://doi.org/10.7567/1347-4065/ab1390.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る