リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Neutrino oscillations deep inside core-collapse supernovae and their impact on νp-process nucleosynthesis」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Neutrino oscillations deep inside core-collapse supernovae and their impact on νp-process nucleosynthesis

佐々木, 宏和 東京大学 DOI:10.15083/0002004717

2022.06.22

概要

Large numbers of neutrinos are emitted in core-collapse supernova explosion. Supernova neutrinos are effective tools to understand phenomenology of supernova explosion and properties of neutrinos in extreme environment of core-collapse supernovae. Supernova neutrinos are first discovered in SN1987A, but the number of neutrino event is not enough for detection of neutrino oscillations inside core-collapse supernovae. It is considered that supernova neutrinos are affected by peculiar neutrino oscillations inside medium. Especially, coherent forward scatterings of neutrinos with themselves induce non-linear flavor conversions called “Collective neutrino oscillations” around 100 − 1000 km from the center. Collective neutrino oscillations change neutrino and antineutrino spectra dramatically and increases high energy νe and ¯νe through the spectral swap. It is expected that such increased e-flavor neutrinos have influence on observable quantities such as neutrino signals in neutrino detectors and nuclear abundances of heavy nuclei in core-collapse supernovae. In this thesis, we carry out numerical simulation of collective neutrino oscillations in core-collapse supernovae. Then, we study how collective neutrino oscillations affect neutrino events in neutrino detectors and supernova nucleosynthesis.

First, we perform the three flavor multiangle simulations for precise collective neutrino oscillations by using simulation data of an electron capture supernova whose progenitor mass is 8.8M⊙. Collective neutrino oscillations are not prevented by the multiangle matter suppression because of the dilute envelop of the progenitor. In inverted mass hierarchy, e−y conversions are dominant in collective neutrino oscillations as represented in previous studies. However, we find dominant e−x conversions in normal mass hierarchy which are totally negligible in previous works. The e − x conversions are sensitive to the baryon density outside the proto-neutron star. Therefore, such e − x conversions would be characteristic behaviors of light mass progenitor such as electron capture supernovae. Furthermore, we discuss the detectability of collective neutrino oscillations in future neutrino detectors such as Hyper-Kamiokande (HK), JUNO and DUNE. We estimate spectra of νe and ¯νe on the earth. In inverted neutrino mass hierarchy, the spectrum of ¯νe on the earth becomes soft owing to the combination of collective neutrino oscillations and MSW H-resonances, so that the value of hardness ratio RH/L is reduced. Such softening feature is suitable to reveal contributions of collective neutrino oscillations. HK can distinguish this effect within the 1σ Poisson error if the supernova occurs at 15 kpc from the earth. On the other hand, in normal mass hierarchy, the spectrum of νe becomes soft. DUNE can probe such softened νe spectrum within 4 kpc, but the significant reduction of hardness ratio around 100 ms can be detected even if the supernova occurs at the center of our galaxy (∼ 10 kpc). The behavior of hardness ratio is opposite depending on neutrino mass hierarchies and neutrino species. Therefore, the combination of HK and DUNE is an intriguing opportunity to test the existence of collective neutrino oscillations.

In the second study, we simulate the effect of collective neutrino oscillations on the νp-process nucleosynthesis in proton rich neutrino driven winds. The number flux of energetic ¯νe is raised by collective neutrino oscillations in a 1D explosion model of a 40M⊙ progenitor. In the later wind trajectory at 1.1 s post bounce, abundances of p-nuclei are enhanced remarkably by ∼ 10 − 104 times in normal mass hierarchy and p-nuclei are synthesized up to 124,126Xe and 130Ba. On the other hand, in the early wind model at 0.6 s, collective neutrino oscillations are prominent in inverted mass hierarchy irrespective of the reverse shock. Thus the νp-process nucleosynthesis is enhanced in inverted mass hierarchy. We simulate both cases with and without the reverse shock in the early wind model. Outside the reverse shock, the wind temperature becomes nearly constant in the temperature region for the νp-process (T ∼ 1.5−3.0×109K), which multiplies oscillation effects and results in more abundant p-nuclei. The averaged overproduction factor of p-nuclei is dominant in the later wind model if we remove the reverse shock in the early wind model. However, the contribution of the early wind model becomes large if we take into account the reverse shock. Especially, the averaged overproduction factors of p-nuclei in the range of A = 84−108 are enhanced in inverted mass hierarchy owing to the reverse shock effect. Our result demonstrates that collective neutrino oscillations can strongly influence on the νp-process, which indicates that they should be included in nuclear network calculations in order to obtain precise abundances of p-nuclei. Our finding would help understand the origin of solar-system isotopic abundances of p-nuclei such as 92,94Mo and 96,98Ru.

この論文で使われている画像

参考文献

[1] R. Davis, Jr., D. S. Harmer, and K. C. Ho↵man, Phys. Rev. Lett. 20, 1205 (1968).

[2] SNO, S. N. Ahmed et al., Phys. Rev. Lett. 92, 181301 (2004).

[3] Super-Kamiokande, S. Fukuda et al., Phys. Rev. Lett. 86, 5656 (2001).

[4] Super-Kamiokande, K. Abe et al., Phys. Rev. D94, 052010 (2016).

[5] BOREXINO, M. Agostini et al., Nature 562, 505 (2018).

[6] Super-Kamiokande, Y. Fukuda et al., Phys. Rev. Lett. 81, 1562 (1998).

[7] Super-Kamiokande, K. Abe et al., Phys. Rev. D97, 072001 (2018).

[8] IceCube, M. G. Aartsen et al., Phys. Rev. Lett. 120, 071801 (2018).

[9] T. Araki et al., Nature 436, 499 (2005).

[10] Borexino, M. Agostini et al., arXiv:1909.02257 .

[11] Kamiokande-II, K. Hirata et al., Phys. Rev. Lett. 58, 1490 (1987), [,727(1987)].

[12] R. M. Bionta et al., Phys. Rev. Lett. 58, 1494 (1987).

[13] E. N. Alekseev, L. N. Alekseeva, I. V. Krivosheina, and V. I. Volchenko, Phys. Lett. B205, 209 (1988).

[14] IceCube, Fermi-LAT, MAGIC, AGILE, ASAS-SN, HAWC, H.E.S.S., INTEGRAL, Kanata, Kiso, Kapteyn, Liverpool Telescope, Subaru, Swift NuSTAR, VERITAS, VLA/17B-403, M. G. Aartsen et al., Science 361, eaat1378 (2018).

[15] Double Chooz, Y. Abe et al., Phys. Rev. Lett. 108, 131801 (2012).

[16] Daya Bay, F. P. An et al., Phys. Rev. Lett. 108, 171803 (2012).

[17] RENO, J. K. Ahn et al., Phys. Rev. Lett. 108, 191802 (2012).

[18] T2K, K. Abe et al., Phys. Rev. Lett. 107, 041801 (2011).

[19] T2K, K. Abe et al., Phys. Rev. Lett. 118, 151801 (2017).

[20] NOvA, P. Adamson et al., Phys. Rev. Lett. 118, 231801 (2017).

[21] T. J. Loredo and D. Q. Lamb, Phys. Rev. D65, 063002 (2002).

[22] I. Goldman, Y. Aharonov, G. Alexander, and S. Nussinov, Phys. Rev. Lett. 60, 1789 (1988).

[23] A. B. McDonald, C. Spiering, S. Schonert, E. T. Kearns, and T. Kajita, Rev. Sci. Instrum. 75, 293 (2004).

[24] R. Diehl et al., Nature 439, 45 (2006).

[25] H. A. Bethe and J. R. Wilson, Astrophys. J. 295, 14 (1985).

[26] H. A. Bethe, Rev. Mod. Phys. 62, 801 (1990).

[27] J. F. Beacom and M. R. Vagins, Phys. Rev. Lett. 93, 171101 (2004).

[28] Super-Kamiokande, M. Ikeda et al., Astrophys. J. 669, 519 (2007).

[29] KamLAND, K. Asakura et al., Astrophys. J. 818, 91 (2016).

[30] L. Cadonati, F. P. Calaprice, and M. C. Chen, Astropart. Phys. 16, 361 (2002).

[31] LVD, N. Y. Agafonova et al., Astrophys. J. 802, 47 (2015).

[32] H. Wei, L. Lebanowski, F. Li, Z. Wang, and S. Chen, Astropart. Phys. 75, 38 (2016).

[33] IceCube, R. Abbasi et al., Astron. Astrophys. 535, A109 (2011), [Erratum: Astron. Astrophys.563,C1(2014)].

[34] P. Antonioli et al., New J. Phys. 6, 114 (2004).

[35] K. Scholberg, Astron. Nachr. 329, 337 (2008).

[36] Hyper-Kamiokande, K. Abe et al., arXiv:1805.04163 .

[37] JUNO, F. An et al., J. Phys. G43, 030401 (2016).

[38] K. Scholberg, Ann. Rev. Nucl. Part. Sci. 62, 81 (2012).

[39] B. Pontecorvo, Sov. Phys. JETP 6, 429 (1957), [Zh. Eksp. Teor. Fiz.33,549(1957)].

[40] B. Pontecorvo, Sov. Phys. JETP 7, 172 (1958), [Zh. Eksp. Teor. Fiz.34,247(1957)].

[41] S. P. Mikheyev and A. Yu. Smirnov, Sov. J. Nucl. Phys. 42, 913 (1985),[,305(1986)].

[42] L. Wolfenstein, Physical Review D 17, 2369 (1978).

[43] J. T. Pantaleone, Phys. Rev. D46, 510 (1992).

[44] J. T. Pantaleone, Phys. Lett. B287, 128 (1992).

[45] G. Sigl and G. Ra↵elt, Nucl. Phys. B406, 423 (1993).

[46] B. H. J. McKellar and M. J. Thomson, Phys. Rev. D49, 2710 (1994).

[47] S. Yamada, Phys. Rev. D62, 093026 (2000).

[48] A. B. Balantekin and Y. Pehlivan, J. Phys. G34, 47 (2007).

[49] C. Y. Cardall, Phys. Rev. D78, 085017 (2008).

[50] V. Cirigliano, C. Lee, M. J. Ramsey-Musolf, and S. Tulin, Phys. Rev. D81, 103503 (2010).

[51] Y. Pehlivan, A. B. Balantekin, T. Kajino, and T. Yoshida, Phys. Rev. D84, 065008 (2011).

[52] A. Vlasenko, G. M. Fuller, and V. Cirigliano, Phys. Rev. D89, 105004 (2014).

[53] C. Volpe, D. V¨a¨an¨anen, and C. Espinoza, Phys. Rev. D87, 113010 (2013).

[54] D. N. Blaschke and V. Cirigliano, Phys. Rev. D94, 033009 (2016).

[55] S. Birol, Y. Pehlivan, A. B. Balantekin, and T. Kajino, Phys. Rev. D98, 083002 (2018).

[56] T. Yoshida et al., Phys. Rev. Lett. 96, 091101 (2006).

[57] H. Ko et al., arXiv:1903.02086 .

[58] H. Duan, G. M. Fuller, J. Carlson, and Y.-Z. Qian, Phys. Rev. D74, 105014(2006).

[59] H. Duan, G. M. Fuller, and Y.-Z. Qian, Phys. Rev. D74, 123004 (2006).

[60] S. Hannestad, G. G. Ra↵elt, G. Sigl, and Y. Y. Y. Wong, Phys. Rev. D74,105010 (2006), [Erratum: Phys. Rev.D76,029901(2007)].

[61] G. L. Fogli, E. Lisi, A. Marrone, and A. Mirizzi, JCAP 0712, 010 (2007).

[62] G. G. Ra↵elt and A. Yu. Smirnov, Phys. Rev. D76, 125008 (2007).

[63] G. G. Ra↵elt and A. Yu. Smirnov, Phys. Rev. D76, 081301 (2007), [Erratum:Phys. Rev.D77,029903(2008)].

[64] A. Esteban-Pretel, S. Pastor, R. Tomas, G. G. Ra↵elt, and G. Sigl, Phys. Rev.D76, 125018 (2007).

[65] A. Esteban-Pretel et al., Phys. Rev. D78, 085012 (2008).

[66] B. Dasgupta and A. Dighe, Phys. Rev. D77, 113002 (2008).

[67] B. Dasgupta, A. Dighe, G. G. Ra↵elt, and A. Yu. Smirnov, Phys. Rev. Lett.103, 051105 (2009).

[68] J. F. Cherry, G. M. Fuller, J. Carlson, H. Duan, and Y.-Z. Qian, Phys. Rev.D82, 085025 (2010).

[69] J. F. Cherry et al., Phys. Rev. D84, 105034 (2011).

[70] A. Friedland, Phys. Rev. Lett. 104, 191102 (2010).

[71] B. Dasgupta, A. Mirizzi, I. Tamborra, and R. Tomas, Phys. Rev. D81, 093008(2010).

[72] A. Mirizzi and R. Tomas, Phys. Rev. D84, 033013 (2011).

[73] H. Duan and A. Friedland, Phys. Rev. Lett. 106, 091101 (2011).

[74] S. Chakraborty, T. Fischer, A. Mirizzi, N. Saviano, and R. Tomas, Phys. Rev.D84, 025002 (2011).

[75] J. F. Cherry, J. Carlson, A. Friedland, G. M. Fuller, and A. Vlasenko, Phys.Rev. Lett. 108, 261104 (2012).

[76] A. de Gouvea and S. Shalgar, JCAP 1210, 027 (2012).

[77] A. Mirizzi, Phys. Rev. D88, 073004 (2013).

[78] S. Chakraborty and A. Mirizzi, Phys. Rev. D90, 033004 (2014).

[79] S. Chakraborty, A. Mirizzi, N. Saviano, and D. d. S. Seixas, Phys. Rev. D89,093001 (2014).

[80] M.-R. Wu, Y.-Z. Qian, G. Martinez-Pinedo, T. Fischer, and L. Huther, Phys.Rev. D91, 065016 (2015).

[81] J. Y. Tian, A. V. Patwardhan, and G. M. Fuller, Phys. Rev. D95, 063004(2017).

[82] H. Sasaki et al., Phys. Rev. D96, 043013 (2017).

[83] M. Zaizen, T. Yoshida, K. Sumiyoshi, and H. Umeda, Phys. Rev. D98, 103020(2018).

[84] H. Sasaki, T. Takiwaki, S. Kawagoe, S. Horiuchi, and K. Ishidoshiro,arXiv:1907.01002 .

[85] S. Shibagaki et al., Astrophys. J. 816, 79 (2016).

[86] C. Frohlich et al., Phys. Rev. Lett. 96, 142502 (2006).

[87] J. Pruet, R. D. Ho↵man, S. E. Woosley, H. T. Janka, and R. Buras, Astrophys.J. 644, 1028 (2006).

[88] S. Wanajo, Astrophys. J. 647, 1323 (2006).

[89] M. Fukugita and T. Yanagida, Physics of neutrinos and applications to astrophysics (Berlin, Germany: Springer (2003) 593 p, 2003).

[90] C. Giunti and C. W. Kim, Fundamentals of Neutrino Physics and Astrophysics(Oxford, UK: Univ. Pr. (2007) 710 p, 2007).

[91] Planck, P. A. R. Ade et al., Astron. Astrophys. 594, A13 (2016).

[92] Particle Data Group, M. Tanabashi et al., Phys. Rev. D98, 030001 (2018), and2019 update.

[93] Z. Maki, M. Nakagawa, and S. Sakata, Prog. Theor. Phys. 28, 870 (1962),[,34(1962)].

[94] S.-B. Kim, Nucl. Part. Phys. Proc. 265-266, 93 (2015).

[95] ICAL, S. Ahmed et al., Pramana 88, 79 (2017).

[96] KM3NeT, U. F. Katz, The ORCA Option for KM3NeT, in Proceedings of the15th International Workshop on Neutrino Telescopes (Neutel 2013): Venice,March 11-15, 2013, 2014.

[97] IceCube PINGU, M. G. Aartsen et al., arXiv:1401.2046 .

[98] H. P. Breuer and F. Petruccione, The theory of open quantum systems (Oxford,UK: Univ. Pr. (2002) 625 p, 2002).

[99] L. D. Landau, Phys. Zs. Sowjet 2, 46 (1932).

[100] C. Zener, Proceedings of the Royal Society of London Series A 137, 696 (1932).

[101] J. R. Rubbmark, M. M. Kash, M. G. Littman, and D. Kleppner, Phys. Rev. A23, 3107 (1981).

[102] M. Born and V. Fock, Zeitschrift fur Physik 51, 165 (1928).

[103] T. Kato, Journal of the Physical Society of Japan 5, 435 (1950).

[104] Y. Pehlivan, A. L. Suba¸sı, N. Ghazanfari, S. Birol, and H. Y¨uksel, Phys. Rev.D95, 063022 (2017).

[105] M. Born and H. S. Green, Proc. Roy. Soc. Lond. A188, 10 (1946).

[106] J. Yvon, Act. Sci. et Ind. 203 (1935).

[107] J. Yvon, Chem.Phys. 3 (1935).

[108] N. Bogoliubov, Journal of Physics USSR 10 (1946).

[109] A. D. Dolgov et al., Nucl. Phys. B632, 363 (2002).

[110] P. F. de Salas and S. Pastor, JCAP 1607, 051 (2016).

[111] L. Johns, M. Mina, V. Cirigliano, M. W. Paris, and G. M. Fuller, Phys. Rev.D94, 083505 (2016).

[112] T. Hasegawa et al., arXiv:1908.10189 .

[113] Y.-L. Zhu, A. Perego, and G. C. McLaughlin, Phys. Rev. D94, 105006 (2016).

[114] M. Frensel, M.-R. Wu, C. Volpe, and A. Perego, Phys. Rev. D95, 023011(2017).

[115] A. Chatelain and C. Volpe, Phys. Rev. D95, 043005 (2017).

[116] L. Becerra et al., Astrophys. J. 852, 120 (2018).

[117] N. Langer, Annual Review of Astronomy and Astrophysics 50, 107 (2012).

[118] K. Nomoto, Astrophys. J. 277, 791 (1984).

[119] K. Nomoto, Astrophys. J. 322, 206 (1987).

[120] F. S. Kitaura, H. T. Janka, and W. Hillebrandt, Astron. Astrophys. 450, 345(2006).

[121] H.-T. Janka et al., Progress of Theoretical and Experimental Physics 2012,01A309 (2012).

[122] C. L. Doherty, P. Gil-Pons, L. Siess, J. C. Lattanzio, and H. H. B. Lau, MonthlyNotices of the Royal Astronomical Society 446, 2599 (2014).

[123] T. J. Moriya and J. J. Eldridge, Monthly Notices of the Royal AstronomicalSociety 461, 2155 (2016).

[124] K. Takahashi, T. Yoshida, and H. Umeda, Astrophys. J. 771, 28 (2013).

[125] M. Turatto et al., Astrophys. J. Letters 498, L129 (1998).

[126] A. Pastorello et al., Monthly Notices of the Royal Astronomical Society 394,2266 (2009).

[127] M. T. Botticella et al., Monthly Notices of the Royal Astronomical Society 398,1041 (2009).

[128] K. Nomoto et al., Nature 299, 803 (1982).

[129] N. Tominaga, S. I. Blinnikov, and K. Nomoto, Astrophys. J. 771, L12 (2013).

[130] S. Wanajo, H.-T. Janka, and B. Mueller, Astrophys. J. 726, L15 (2011).

[131] A. Heger, C. L. Fryer, S. E. Woosley, N. Langer, and D. H. Hartmann, Astrophys. J. 591, 288 (2003).

[132] S. E. Woosley, A. Heger, and T. A. Weaver, Rev. Mod. Phys. 74, 1015 (2002).

[133] A. Gal-Yam et al., Nature 462, 624 (2009).

[134] E. O. Ofek et al., Astrophys. J. Letters 659, L13 (2007).

[135] N. Smith et al., Astrophys. J. 666, 1116 (2007).

[136] A. Kozyreva, M. Kromer, U. M. Noebauer, and R. Hirschi, Mon. Not. Roy.Astron. Soc. 479, 3106 (2018).

[137] N. Langer et al., Astron. Astrophys. 475, L19 (2007).

[138] H. Suzuki, In *Fukugita, M. (ed.), Suzuki, A. (ed.): Physics and astrophysicsof neutrinos* 763-847 , 763 (1994).

[139] A. Mezzacappa and S. W. Bruenn, Astrophys. J. 405, 637 (1993).

[140] K. Sumiyoshi et al., Astrophys. J. 629, 922 (2005).

[141] K. Sumiyoshi, H. Suzuki, S. Yamada, and H. Toki, Nucl. Phys. A730, 227(2004).

[142] S. A. Colgate, W. H. Grasberger, and R. H. White, Astronomical Journal 70,280 (1961).

[143] Y. Z. Qian and S. E. Woosley, Astrophys. J. 471, 331 (1996).

[144] H. T. Janka, Astron. Astrophys. (2000), [Astron. Astrophys.368,527(2001)].

[145] E. O’Connor et al., J. Phys. G45, 104001 (2018).

[146] J. M. Blondin, A. Mezzacappa, and C. DeMarino, Astrophys. J. 584, 971(2003).

[147] T. Takiwaki, K. Kotake, and Y. Suwa, Astrophys. J. 749, 98 (2012).

[148] F. Hanke, B. M¨uller, A. Wongwathanarat, A. Marek, and H.-T. Janka, Astrophys. J. 770, 66 (2013).

[149] F. Hanke, A. Marek, B. M¨uller, and H.-T. Janka, Astrophys. J. 755, 138 (2012).

[150] T. Takiwaki, K. Kotake, and Y. Suwa, Astrophys. J. 786, 83 (2014).

[151] T. Takiwaki, K. Kotake, and Y. Suwa, Mon. Not. Roy. Astron. Soc. 461, L112(2016).

[152] T. Takiwaki, K. Kotake, and K. Sato, Astrophys. J. 691, 1360 (2009).

[153] P. M¨osta et al., Astrophys. J. 785, L29 (2014).

[154] K. Langanke et al., Phys. Rev. Lett. 90, 241102 (2003).

[155] K. Nakazato et al., Astrophys. J. Suppl. 205, 2 (2013).

[156] T. A. Thompson, A. Burrows, and P. A. Pinto, Astrophys. J. 592, 434 (2003).

[157] F. Capozzi, B. Dasgupta, A. Mirizzi, M. Sen, and G. Sigl, Phys. Rev. Lett.122, 091101 (2019).

[158] T. Stirner, G. Sigl, and G. Ra↵elt, JCAP 1805, 016 (2018).

[159] V. Cirigliano, M. Paris, and S. Shalgar, JCAP 1811, 019 (2018).

[160] S. Shalgar and I. Tamborra, arXiv:1904.07236 .

[161] M. Zaizen et al., arXiv:1908.10594 .

[162] C. J. Stapleford, C. Fr¨ohlich, and J. P. Kneller, arXiv:1910.04172 .

[163] R. F. Sawyer, Phys. Rev. D79, 105003 (2009).

[164] G. Ra↵elt, S. Sarikas, and D. de Sousa Seixas, Phys. Rev. Lett. 111, 091101(2013), [Erratum: Phys. Rev. Lett.113,no.23,239903(2014)].

[165] R. F. Sawyer, Phys. Rev. Lett. 116, 081101 (2016).

[166] B. Dasgupta, A. Mirizzi, and M. Sen, JCAP 1702, 019 (2017).

[167] F. Capozzi, B. Dasgupta, E. Lisi, A. Marrone, and A. Mirizzi, Phys. Rev. D96,043016 (2017).

[168] I. Izaguirre, G. Ra↵elt, and I. Tamborra, Phys. Rev. Lett. 118, 021101 (2017).

[169] S. Chakraborty, R. S. Hansen, I. Izaguirre, and G. Ra↵elt, JCAP 1603, 042(2016).

[170] S. Abbar and H. Duan, Phys. Rev. D98, 043014 (2018).

[171] S. Abbar, H. Duan, K. Sumiyoshi, T. Takiwaki, and M. C. Volpe, Phys. Rev.D100, 043004 (2019).

[172] T. Morinaga and S. Yamada, Phys. Rev. D97, 023024 (2018).

[173] M. Delfan Azari et al., Phys. Rev. D99, 103011 (2019).

[174] S. Abbar, H. Duan, K. Sumiyoshi, T. Takiwaki, and M. C. Volpe,arXiv:1911.01983 .

[175] T. Morinaga, H. Nagakura, C. Kato, and S. Yamada, arXiv:1909.13131 .

[176] H. Nagakura, T. Morinaga, C. Kato, and S. Yamada, arXiv:1910.04288 .

[177] M. Delfan Azari et al., arXiv:1910.06176 .

[178] R. Glas et al., arXiv:1912.00274 .

[179] C. J. Stapleford, D. J. V¨a¨an¨anen, J. P. Kneller, G. C. McLaughlin, and B. T.Shapiro, Phys. Rev. D94, 093007 (2016).

[180] A. Dighe and M. Sen, Phys. Rev. D97, 043011 (2018).

[181] Y. Yang and J. P. Kneller, Phys. Rev. D97, 103018 (2018).

[182] C. Lunardini, B. Muller, and H. T. Janka, Phys. Rev. D78, 023016 (2008).

[183] R. Tomas et al., JCAP 0409, 015 (2004).

[184] G. L. Fogli, E. Lisi, A. Mirizzi, and D. Montanino, JCAP 0504, 002 (2005).

[185] S. Kawagoe et al., Phys. Rev. D81, 123014 (2010).

[186] K. Nakamura et al., Mon. Not. Roy. Astron. Soc. 461, 3296 (2016).

[187] C. Kato et al., Astrophys. J. 848, 48 (2017).

[188] Super-Kamiokande, C. Simpson et al., Astrophys. J. 885, 133 (2019).

[189] H. Duan, G. M. Fuller, and Y.-Z. Qian, Ann. Rev. Nucl. Part. Sci. 60, 569(2010).

[190] F. Bloch, Phys. Rev. 70, 460 (1946).

[191] R. P. Feynman, F. L. Vernon, Jr., and R. W. Hellwarth, J. Appl. Phys. 28, 49(1957).

[192] N. Vitanov, T. Halfmann, B. Shore, and K. Bergmann, Annual review of physical chemistry 52, 763 (2001).

[193] K. Kotake, T. Takiwaki, T. Fischer, K. Nakamura, and G. Mart´ınez-Pinedo,Astrophys. J. 853, 170 (2018).

[194] H. Sotani and T. Takiwaki, Phys. Rev. D94, 044043 (2016).

[195] K. Nakamura, T. Takiwaki, T. Kuroda, and K. Kotake, Publ. Astron. Soc. Jap.67, 107 (2015).

[196] J. M. Lattimer and F. D. Swesty, Nucl. Phys. A535, 331 (1991).

[197] A. Summa et al., Astrophys. J. 825, 6 (2016).

[198] T. Yoshida, Y. Suwa, H. Umeda, M. Shibata, and K. Takahashi, Mon. Not.Roy. Astron. Soc. 471, 4275 (2017).

[199] H. T. Janka, B. Mueller, F. S. Kitaura, and R. Buras, Astron. Astrophys. 485,199 (2008).

[200] T. Fischer, S. C. Whitehouse, A. Mezzacappa, F. K. Thielemann, andM. Liebendorfer, Astron. Astrophys. 517, A80 (2010).

[201] C. J. Horowitz, Phys. Rev. D65, 043001 (2002).

[202] C. J. Horowitz, O. L. Caballero, Z. Lin, E. O’Connor, and A. Schwenk, Phys.Rev. C95, 025801 (2017).

[203] I. Tamborra, G. Ra↵elt, F. Hanke, H.-T. Janka, and B. Mueller, Phys. Rev.D90, 045032 (2014).

[204] I. Tamborra, B. Muller, L. Hudepohl, H.-T. Janka, and G. Ra↵elt, Phys. Rev.D86, 125031 (2012).

[205] M. T. Keil, G. G. Ra↵elt, and H.-T. Janka, Astrophys. J. 590, 971 (2003).

[206] A. B. Balantekin and G. M. Fuller, Phys. Lett. B471, 195 (1999).

[207] C. D¨oring, R. S. L. Hansen, and M. Lindner, JCAP 1908, 003 (2019).

[208] E. Borriello, S. Chakraborty, A. Mirizzi, P. D. Serpico, and I. Tamborra, Phys.Rev. D86, 083004 (2012).

[209] P. Vogel and J. F. Beacom, Phys. Rev. D60, 053003 (1999).

[210] E. O’Connor and C. D. Ott, Astrophys. J. 762, 126 (2013).

[211] S. Horiuchi, K. Nakamura, T. Takiwaki, and K. Kotake, J. Phys. G44, 114001(2017).

[212] S. Kawagoe, T. Takiwaki, and K. Kotake, JCAP 0909, 033 (2009).

[213] KamLAND, A. Gando et al., Astrophys. J. 829, L34 (2016), [Erratum: Astrophys. J.851,no.1,L22(2017)].

[214] E. Kolbe, K. Langanke, G. Mart´ınez-Pinedo, and P. Vogel, Journal of PhysicsG Nuclear Physics 29, 2569 (2003).

[215] A. Ankowski et al., Supernova Physics at DUNE, in Supernova Physics atDUNE Blacksburg, Virginia, USA, March 11-12, 2016, 2016.

[216] G. Martinez-Pinedo, B. Ziebarth, T. Fischer, and K. Langanke, Eur. Phys. J.A47, 98 (2011).

[217] S. E. Woosley and T. A. Weaver, Astrophys. J. Suppl. 101, 181 (1995).

[218] K. Nomoto, C. Kobayashi, and N. Tominaga, Ann. Rev. Astron. Astrophys.51, 457 (2013).

[219] N. Tominaga, H. Umeda, and K. Nomoto, Astrophys. J. 660, 516 (2007).

[220] W. D. Arnett, J. N. Bahcall, R. P. Kirshner, and S. E. Woosley, Ann. Rev.Astron. Astrophys. 27, 629 (1989).

[221] H. Umeda and K. Nomoto, Astrophys. J. 565, 385 (2002).

[222] K. Nomoto et al., Nuovo Cim. B121, 1207 (2006).

[223] E. Pllumbi, I. Tamborra, S. Wanajo, H.-T. Janka, and L. H¨udepohl, Astrophys.J. 808, 188 (2015).

[224] S. E. Woosley and R. D. Ho↵man, Astrophys. J. 395, 202 (1992).

[225] S. E. Woosley, J. R. Wilson, G. J. Mathews, R. D. Ho↵man, and B. S. Meyer,Astrophys. J. 433, 229 (1994).

[226] K. Otsuki, H. Tagoshi, T. Kajino, and S.-y. Wanajo, Astrophys. J. 533, 424(2000).

[227] R. D. Ho↵man, S. E. Woosley, and Y. Z. Qian, Astrophys. J. 482, 951 (1997).

[228] S. Wanajo, Astrophys. J. 770, L22 (2013).

[229] L. Hudepohl, B. Muller, H. T. Janka, A. Marek, and G. G. Ra↵elt, Phys. Rev.Lett. 104, 251101 (2010), [Erratum: Phys. Rev. Lett.105,249901(2010)].

[230] B. Muller, H.-T. Janka, and A. Marek, Astrophys. J. 756, 84 (2012).

[231] A. Mirizzi et al., Riv. Nuovo Cim. 39, 1 (2016).

[232] N. Nishimura, T. Takiwaki, and F. K. Thielemann, Astrophys. J. 810, 109(2015).

[233] S. Wanajo et al., Astrophys. J. 789, L39 (2014).

[234] LIGO Scientific, Virgo, B. P. Abbott et al., Phys. Rev. Lett. 119, 161101 (2017).

[235] S. J. Smartt et al., Nature 551, 75 (2017).

[236] J-GEM, Y. Utsumi et al., Publ. Astron. Soc. Jap. 69, 101 (2017).

[237] M. Tanaka, Adv. Astron. 2016, 6341974 (2016).

[238] M. Tanaka et al., Publ. Astron. Soc. Jap. 69, Publications of the Astronomical Society of Japan, Volume 69, Issue 6, 1 December 2017, 102,https://doi.org/10.1093/pasj/psx121 (2017).

[239] D. L. Lambert, The Astronomy and Astrophysics Review 3, 201 (1992).

[240] B. S. Meyer, Ann. Rev. Astron. Astrophys. 32, 153 (1994).

[241] S. E. Woosley and W. M. Howard, Astrophys. J. Supplement 36, 285 (1978).

[242] W. M. Howard, B. S. Meyer, and S. E. Woosley, Astrophys. J. Letters 373, L5(1991).

[243] N. Prantzos, M. Hashimoto, M. Rayet, and M. Arnould, Astron. Astrophys.238, 455 (1990).

[244] M. Rayet, M. Arnould, M. Hashimoto, N. Prantzos, and K. Nomoto, Astron.Astrophys. 298, 517 (1995).

[245] T. Rauscher, A. Heger, R. D. Ho↵man, and S. E. Woosley, Astrophys. J. 576,323 (2002).

[246] T. Hayakawa et al., Astrophys. J. 685, 1089 (2008).

[247] S. Wanajo, H.-T. Janka, and S. Kubono, Astrophys. J. 729, 46 (2011).

[248] A. Arcones, C. Frohlich, and G. Martinez-Pinedo, Astrophys. J. 750, 18 (2012).

[249] J. Bliss, A. Arcones, and Y.-Z. Qian, Astrophys. J. 866, 105 (2018).

[250] N. Nishimura et al., Mon. Not. Roy. Astron. Soc. 489, 1379 (2019).

[251] A. B. Balantekin and H. Yuksel, New J. Phys. 7, 51 (2005).

[252] H. Duan, A. Friedland, G. McLaughlin, and R. Surman, J. Phys. G38, 035201(2011).

[253] I. Tamborra, G. G. Ra↵elt, L. Hudepohl, and H.-T. Janka, JCAP 1201, 013(2012).

[254] A. Marek, H. Dimmelmeier, H. T. Janka, E. Muller, and R. Buras, Astron.Astrophys. 445, 273 (2006).

[255] L. Hudepohl, Ph.D. thesis, Technische Universitat Munchen (2013).

[256] S. Fujibayashi, T. Yoshida, and Y. Sekiguchi, Astrophys. J. 810, 115 (2015).

[257] M. Terasawa, T. Kajino, K. Langanke, G. J. Mathews, and E. Kolbe, Astrophys.J. 608, 470 (2004).

[258] T. Yoshida et al., Astrophys. J. 686, 448 (2008).

[259] E. K. Warburton and B. A. Brown, Phys. Rev. C46, 923 (1992).

[260] R. H. Cyburt et al., Astrophys. J. Supplement 189, 240 (2010).

[261] B. Meyer and D. C. Adams, Meteoritics Planet. Sci. Suppl. 42, 5215 (2007).

[262] B. S. Meyer, T. D. Krishnan, and D. D. Clayton, Astrophys. J. 498, 808 (1998).

[263] K. Lodders, Astrophys. J. 591, 1220 (2003).

[264] A. Burrows, D. Vartanyan, J. C. Dolence, M. A. Skinner, and D. Radice, Space Sci. Rev. 214, 33 (2018).

[265] M. Kusakabe, N. Iwamoto, and K. Nomoto, Astrophys. J. 726, 25 (2011).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る