リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「神経難病の謎を紐解く分子を求めて」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

神経難病の謎を紐解く分子を求めて

吉良, 潤一 KIRA, Jun-ichi キラ, ジュンイチ 九州大学 DOI:https://doi.org/10.15017/4150461

2020.09.25

概要

Intractable neurological diseases encompass neuroimmunological and neurodegenerative diseases. Recently, many disease-modifying drugs that significantly decrease acute exacerbations have been used in

この論文で使われている画像

参考文献

1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

11)

12)

吉良潤一,糸山泰人,田平武,柴崎浩,黒岩義五郎:日本人多発性硬化症患者の自然経過とステロイド治療に

ついての臨床的研究,臨床神経 23:646-654,1983.

Kira J, Deibler GE, Krutzsch HC and Martenson RE : Amino acid sequence of porcine myelin basic protein. J.

Neurochem. 44 : 134-142, 1985.

Kira J and Isobe N : Multiple sclerosis. In Mitoma H, Manto M, (ed) : Neuroimmune diseases ; from cells to the

living brain. pp. 487-521. Springer. Cham, 2019.

Lisak RP and Zweiman B : In vitro cell-mediated immunity of cerebrospinal-fluid lymphocytes to myelin

basic protein in primary demyelinating diseases. N. Engl. J. Med. 297 : 850-853, 1977.

Weinshenker BG, Bass B, Rice GP, Noseworthy J, Carriere W, Baskerville J and Eberset GC : The natural

history of multiple sclerosis : a geographically based study. I. clinical course and disability. Brain 112 : 133-146,

1989.

Sorensen PS : New management algorithms in multiple sclerosis. Curr. Opin. Neurol. 27(3) : 246-259, 2014.

Kappos L, Bar-Or A, Cree BAC, Fox RJ, Giovannoni G, Gold R, Vermersch P, Arnold DL, Arnould S, Scherz T,

Wolf C, Wallström E, Dahlke F and EXPAND Clinical Investigators : Siponimod versus placebo in secondary

progressive multiple sclerosis (EXPAND) : a double-blind, randomised, phase 3 study. Lancet 391 : 1263-1273,

2018.

Montalban X, Hauser SL, Kappos L, Arnold DL, Bar-Or A, Comi G, de Seze J, Giovannoni G, Hartung H-P,

Hemmer B, Lublin F, Rammohan KW, Selmaj K, Traboulsee A, Sauter A, Masterman D, Fontoura P,

Belachew S, Garren H, Mairon N, Chin P, Wolinsky JS and ORATORIO Clinical Investigators : Ocrelizumab

versus placebo in primary progressive multiple sclerosis. N. Engl. J. Med. 376 : 209-220, 2017.

De Stefano N, Strmillo ML, Giorgio A, Bartolozzi ML, Battaglini M, Baldini M, Portaccio E, Amato MP and

Sormani MP : Establishing pathological cut-offs of brain atrophy rates in multiple sclerosis. J. Neurol.

Neurosurg. Psychiatry 87 : 93-99, 2016.

De Stefano N, Giorgio A, Battaglini M, Battaglini M, Rovaris M, Sormani MP, Barkhof F, Korteweg T,

Enzinger C, Fazekas F, Calabrese M, Dinacci D, Tedeschi G, Gass A, Montalban X, Rovira A, Thompson A,

Comi G, Miller DH and Filippi M : Assessing brain atrophy rates in a large population of untreated multiple

sclerosis subtypes. Neurology 74(23) : 1868-1876, 2010.

Lassmann H, van Horssen J and Mahad D : Progressive multiple sclerosis : pathology and pathogenesis. Nat.

Rev. Neurol. 8 : 647-656, 2012.

Saez JC, Retamal MA, Basilio D, Bukauskas FF and Bennett MVL : Connexin-based gap junction

神経難病の謎を紐解く分子を求めて

13)

14)

15)

16)

17)

18)

19)

20)

21)

22)

23)

24)

25)

26)

27)

28)

29)

30)

31)

109

hemichannels : gating mechanisms. Biochim. Biophys. Acta 1711(2) : 215-224, 2005.

Willebrords J, Maes M, Yanguas SC and Vinken M : Inhibitors of connexin and pannexin channels as potential

therapeutics. Pharmacol. Ther. 180 : 144-160, 2017.

Nagy JI, Ionescu AV, Lynn BD and Rash JE : Coupling of astrocyte connexins Cx26, Cx30, Cx43 to

oligodendrocyte Cx29, Cx32, Cx47 : Implications from normal and connexin32 knockout mice. Glia 44(3) :

205-218, 2003.

Kleopa KA, Orthmann JL, Enriquez A, Paul DL and Scherer SS : Unique distributions of the gap junction

proteins connexin29, connexin32, and connexin47 in oligodendrocytes. Glia47(4) : 346-357, 2004.

Goldberg GS, Valiunas V and Brink PR : Selective permeability of gap junction channels. Biochim. Biophys.

Acta 1662(1-2) : 96-101, 2004.

Fünfschilling U, Supplie LM, Mahad D, Boretius S, Saab AS, Edgar J, Brinkmann BG, Kassmann CM,

Tzvetanova ID, Möbius W, Diaz F, Meijer D, Suter U, Hamprecht B, Sereda MW, Moraes CT, Frahm J,

Goebbels S and Nave K-A : Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity.

Nature 485 : 517-521, 2012.

Kamasawa N, Sik A, Morita M, Yasumura T, Davidson KGV, Nagy JI and Rash JE : Connexin-47 and

connexin-32 in gap junctions of oligodendrocyte somata, myelin sheaths, paranodal loops and Schmidt-Lanterman incisures : implications for ionic homeostasis and potassium siphoning. Neuroscience 136 : 65-86, 2005.

Matsushita T, Masaki K, Isobe N, Sato S, Yamamoto K, Nakamura Y, Watanabe M, Suenaga T, Kira J and the

Japan Multiple Sclerosis Genetic Consortium : Genetic factors for susceptibility to and manifestations of

neuromyelitis optica. Ann. Clin. Transl. Neurol. (in press).

Prineas JW, Kwon EE, Cho ES, Sharer LR, Barnett MH, Oleszak EL, Hoffman B and Morgan BP :

Immunopathology of secondary-progressive multiple sclerosis. Ann. Neurol. 50 : 646-657, 2001.

Masaki K, Suzuki SO, Matsushita T, Yonekawa T, Matsuoka T, Isobe N, Motomura K, Wu XM, Tabira T,

Iwaki T and Kira J : Extensive loss of connexins in Balóʼ s disease : evidence for an auto- antibodyindependent astrocytopathy via impaired astrocyte-oligodendrocyte/myelin interaction. Acta Neuropathol.

123 : 887-900, 2012.

Kira J : Astrocytopathy in Balόs disease. Mult. Scler. 17 : 771-779, 2011.

Masaki K, Suzuki SO, Matsusita T, Matsuoka T, Imamura S, Yamasaki R, Suzuki M, Suenaga T, Iwaki T and

Kira J : Connexin 43 astrocytopathy linked to rapidly progressive multiple sclerosis and neuromyelitis optica.

PLOS ONE 22 : 8(8) : e72919, 2013.

Hayashida S, Masaki K, Yonekawa T, Suzuki OS, Hiwatashi A, Matsushita T, Watanabe M, Yamasaki R,

Suenaga T, Iwaki T, Murai H and Kira J : Early and extensive spinal white matter involvement in

neuromyelitis optica. Brain Pathol. 27(3) : 249-265, 2017.

Watanabe M, Masaki K, Yamasaki R, Kawanouchi J, Takeuchi H, Matsushita T, Suzumura A and Kira J : Th1

cells downregulate connexin 43 gap junctions in astrocytes via microglial activation. Sci. Rep. 6 : 38387, 2016.

doi : 10.1038/srep38387.

Luts SE, Raine CS and Brosnan CF : Loss of astrocyte connexins 43 and 30 does not significantly alter

susceptibility or severity of acute experimental autoimmune encephalomyelitis in mice. J. Neuroimmunol. 245

(1-2) : 8-14, 2012.

Markoullis K, Sargiannidou I, Gardner C, Hadjisavvas A, Reynolds R and Kleopa KA : Disruption of

oligodendrocyte gap junctions in experimental autoimmune encephalomyelitis. Glia 60(7) : 1053-1066, 2012.

Zhao Y, Yamasaki R, Yamaguchi H, Nagata S, Une H, Cui Y, Masaki K, Nakamuta Y, Iinuma K, Watanabe M,

Matsushita T, Isobe N and Kira J : Oligodendroglial connexin 47 regulates neuroinflammation upon

autoimmune demyelination in a novel mouse model of multiple sclerosis. Proc. Natl. Acad. Sci. USA 117(4) :

2160-219, 2020.

Fang M, Yamasaki R, Li G, Masaki K, Yamaguchi H, Fujita A, Isobe N and Kira J : Connexin 30 deficiency

attenuates chronic but not acute phases of experimental autoimmune encephalomyelitis through induction of

neuroprotective microglia. Front. Immunol. 9 : 2588, 2018.

Yamasaki R : Novel animal model of multiple sclerosis : The glial connexin gap junction as an environmental

tuner for neuroinflammation. Clin. Exp. Neuroimmunol. 2020. https : //doi.org/10.1111/cen3.12568

Cui Y, Masaki K, Yamasaki R, Imamura S, Suzuki SO, Hayashi S, Sato S, Nagara Y, Kawamura MF and Kira J :

Extensive dysregulations of oligodendrocytic and astrocytic connexins are associated with disease

progression in an amyotrophic lateral sclerosis mouse model. J. Neuroinflamm. 11 : 42-57, 2014.

110

32)

Ogata H, Matsuse D, Yamasaki R, Kawamura N, Matsushita T, Yonekawa T, Hirotani M, Murai H and Kira J :

A nationwide survey of combined central and peripheral demyelination in Japan. J. Neurol. Neurosurg,

Psychiatry 87 : 29-36, 2016.

33) Kawamura N, Yamasaki R, Yonekawa T, MatsushitaT, Kusunoki S, Nagayama S, Fukuda Y, Ogata H,

Matsuse D, Murai H and Kira J : Anti-neurofascin antibody in patients with combined central and peripheral

demyelination. Neurology 81 : 714-722, 2013.

34) Ogata H, Yamasaki R, Hiwatashi A, Oka N, Kawamura N, Matsuse D, Kuwahara M, Suzuki H, Kusunoki S,

Fujimoto Y, Ikezoe K, Kishida H, Tanaka F, Matsushita T, Murai H and Kira J : Characterization of IgG4

anti-neurofascin 155 antibody-positive neuropathy. Ann. Clin. Transl. Neurol. 2 : 960-971, 2015.

35) Ogata H, Zhang X, Inamizu S, Yamashita K, Yamasaki R, Matsushita T, Isobe N, Hiwatashi A, Tobimatsu S

and Kira J : Optic, trigeminal and facial neuropathy related to anti-neurofascin 155 antibody. Ann. Clin. Transl.

Neurol. (in press)

36) Fujita A, Ogata H, Yamasaki R, Matsushita T and Kira J : Parallel Fluctuation of anti-neurofascin 155 antibody

levels with clinico-electrophysiological findings in patients with chronic inflammatory demyelinating

polyradiculoneuropathy. J. Neurol. Sci. 384 : 107-112, 2018.

37) Koike H, Kadoya M, Kaida K, Ito H, Hattori N, Umehara F, Arimura K, Ikeda S, Ando Y, Nakazato M, Kaji R,

Hayasaka K, Nakagawa M, Sakoda S, Matsumura K, Onodera O, Baba M, Yasuda H, Saito T, Kira J,

Nakashima K, Oka N and Sobue G : Paranodal dissection in chronic inflammatory demyelinating

polyneuropathy with anti-neurofascin 155 and anti-contactin 1 antibodies. J. Neurol. Neurosurg. Psychiatry 88

(6) : 465-473, 2017.

38) Ogata H, Zhang X, Yamasaki R, Fujii T, Machida A, Morimoto N, Kaida K, Masuda T, Ando Y, Kuwahara M,

Kusunoki S, Nakamura Y, Matsushita T, Isobe N and Kira J : Intrathecal cytokine profile in neuropathy with

anti-neurofascin 155 antibody. Ann. Clin. Transl. Neurol. 6(11) : 2304-2316, 2019.

39) Ogata H, Isobe N, Zhang X, Yamasaki R, Fujii T, Machida A, Morimoto N, Kaida K, Masuda T, Ando Y,

Kuwahara M, Kusunoki S, Nakamura Y, Matsushita T and Kira J : Unique HLA haplotype associations in IgG4

anti-neurofascin 155 antibody-positive chronic inflammatory demyelinating polyneuropathy. J. Neuroimmunol. 339, 577139, 2020.

40) Miura Y, Devaux JJ, Fukami Y, Manso C, Belghazi M, Wong AHY, Yuki N and CNTN1-CIDP Study Group :

Contactin 1 IgG4 associates to chronic inflammatory demyelinating polyneuropathy with sensory ataxia.

Brain 138(Pt 6) : 1484-1491, 2015.

41) Querol L, Nogales-Gadea G, Rojas-Garciaet R, Martinez-Hernandez E, Diaz-Manera J, Suárez-Calvet X,

Navas M, Araque J, Gallardo E and Illa I : Antibodies to contactin-1 in chronic inflammatory demyelinating

polyneuropathy. Ann. Neurol. 73(3) : 370-380, 2013.

42) Hashimoto Y, Ogata H, Yamasaki R, Sasaguri T, Ko S, Yamashita K, Zhang X, Matsushita T, Tateishi T,

Akiyama S, Maruyama S, Yamamoto A and Kira J : Chronic inflammatory demyelinating polyneuropathy

with concurrent membranous nephropathy : an anti-paranode and podocyte protein antibody study and

literature survey. Front. Neurol. 9 : 997, 2018.

43) Doppler K, Appeltshauser L, Villmann C, Martin C, Peles E, Krämer HH, Haarmann A, Buttmann M and

Sommer C : Auto-antibodies to contactin-associated protein 1 (Caspr) in two patients with painful

inflammatory neuropathy. Brain 139(Pt 10) : 2617-2630, 2016.

44) Kira J, Yamasaki K, Kawano Y and Kobayashi T : Acute myelitis associated with hyper IgE emia and atopic

dermatitis. J. Neurol. Sci. 148 : 199-203, 1997.

45) Osoegawa M, Ochi H, Minohara M, Murai H, Umehara F, Furuya H, Yamada T and Kira J : Myelitis with

atopic diathesis : a nationwide survey of 79 cases in Japan. J. Neurol. Sci. 209 : 5-11, 2003.

46) Isobe N, Kira J, Kawamura N, Ishizu T, Arimura K and Kawano Y : Neural damage associated with atopic

diathesis : a nationwide survey in Japan. Neurology 73 : 790-797, 2009.

47) Murai H, Arahata H, Osoegawa M, Ochi H, Minohara M, Taniwaki T, Tobimatsu S, Mihara F, Tsuruta Y, Inaba

S and Kira J : Effect of immunotherapy in myelitis with atopic diathesis. J. Neurol. Sci. 227 : 39-47, 2004.

48) Tanaka M, Matsushita T, Tateishi T, Ochi H, Kawano Y, Mei F-J, Minohara M, Murai H and Kira J : Distinct

CSF cytokine/chemokine profiles in atopic myelitis and other causes of myelitis. Neurology 71 : 974-981, 2008.

49) Fujii T, Yamasaki R, Iinuma K, Tsuchimoto D, Hayashi Y, Saitoh B, Matsushita T, Kido MA, Aishima S,

Nakanishi M, Nakabeppu Y and Kira J : A novel autoantibody against plexin D1 in patients with neuropathic

pain. Ann. Neurol. 84(2) : 208-224, 2018.

神経難病の謎を紐解く分子を求めて

111

50) Worzfeld T and Offermanns S : Semaphorins and plexins as therapeutic targets. Nat. Rev. Drug Discov. 13 :

603-621, 2014.

51) Fujii T, Yamasaki R, Miyachi Y, Iinuma K, Hashimoto Y, Isobe N, Matsushita T and Kira J : Painful trigeminal

neuropathy associated with anti-Plexin D1 antibody. Neurology : Neuroimmunology & Neuroinflammation (in

press).

52) Yamasaki R, Fujii T, Wang B, Masaki K, Kido MA, Yoshida M, Matsushita T and Kira J : Allergic inflammation

leads to neuropathic pain via glial cell activation. J. Neurosci. 36(47) : 11929-11945, 2016.

53) Üçeyler N, Zeller D, Kahn A-K, Kewenig S, Kittel-Schneider S, Schmid A, Casanova-Molla J, Reiners K and

Sommer C : Small fibre pathology in patients with fibromyalgia syndrome, Brain 136(Pt 6) : 1857-1867, 2013.

54) Serra J, Collado A, Solà R, Antonelli F, Torres X, Salgueiro M, Quiles C and Bostock H : Hyperexcitable C

nociceptors in fibromyalgia. Ann. Neurol. 75(2) : 196-208, 2014.

55) Klein CJ, Lennon VA, Aston AP, McKeon A and Pittock SJ : Chronic pain as a manifestation of potassium

channel-complex autoimmunity. Neurology 79(11) : 1136-1144, 2012.

56) Binks SNM, Klein CJ, Waters P, Pittock SJ and Irani SR : LGI1, CASPR2 and Related Antibodies : A Molecular

Evolution of the Phenotypes. J. Neurol. Neurosurg. Psychiatry 89(5) : 526-534, 2018.

57) Xu M, Bennett DLH, Querol LA, Wu L-J, Irani SR, Watson JC, Pittock SJ and Klein CJ : Pain and the immune

system : emerging concepts of IgG-mediated autoimmune pain and immunotherapies. J. Neurol. Neurosurg.

Psychiatry 91 : 177-188, 2019.

58) Levine T, Kafaie J, Zeidman LA, Saperstein DS, Massaquoi R, Bland RJ and Pestronk A : Cryptogenic

small-fiber neuropathies : serum autoantibody binding to trisulfated heparan disaccharide and fibroblast

growth factor receptor-3. Muscle Nerve 61(4) : 512-515, 2020.

59) Thorance Y, Moritz CP, Rosier C, Ferraud K, Lassablière F, Reynaud-Federspiel E, França Jr MC, Martinez

ARM, Camdessanché J-P, Antoine J-C and anti-FGFR3 antibody Study Group : Clinical characterisation of

sensory neuropathy with anti-FGFR3 autoantibodies. J. Neurol. Neurosurg. Psychiatry 91(1) : 49-57, 2020.

60) Kovvuru S, Cardenas YC, Huttner A, Nowak RJ and Roy B : Clinical characteristics of fibroblast growth factor

receptor 3 antibody-related polyneuropathy : a retrospective study. Eur. J. Neurol. doi : 10.1111/ene.14180,

2020.

(特に重要な文献については,番号をゴシック体で表記している.)

著者プロフィール

吉良 潤一(きら じゅんいち)

国際医療福祉大学教授(大学院医学研究科トランスレーショナルニューロサイエンスセンター・福岡

薬学部)

.福岡中央病院脳神経センター長.医学博士.

◆略歴 1954 年大分県佐伯市に生まれる.1979 年九州大学医学部医学科卒業.1982 年米国国立衛

生研究所 visiting fellow.1985 年九州大学医学部附属病院助手.1991 年九州大学医学部附

属病院講師.1995 年九州大学医学部神経内科助教授.1997 年九州大学医学部神経内科教

授.2000 年九州大学大学院医学研究院神経内科学分野教授.2020 年より現職.

◆研究テーマと抱負 難治性神経疾患の分子メカニズムの解明と治療開発.特に多発性硬化症や慢

性炎症性脱髄性多発神経炎などの神経免疫疾患を対象としている.臨床の現場での診察に

基づいた気づきから分子レベルの病態解明をめざしている.新しい病気を発見すること,

新しい病因を解明すること,新しい治療法を開発することが,今でも夢です.

112

Key Molecules to Decipher the Mechanisms of

Intractable Neurological Diseases

Jun-ichi KIRA

Translational Neuroscience Center, Graduate School of Medicine and School of

Pharmacy at Fukuoka, International University of Health and Welfare

Department of Neurology, Brain and Nerve Center, Fukuoka Central Hospital

Professor Emeritus, Kyushu University

Abstract

Intractable neurological diseases encompass neuroimmunological and neurodegenerative diseases.

Recently, many disease-modifying drugs that significantly decrease acute exacerbations have been

used in clinical practice for neuroimmunological diseases such as multiple sclerosis (MS) ; however,

none have been reported to ameliorate progressive disease. Since its establishment in 1963, the

Department of Neurology at Kyushu University has focused on deciphering the mechanisms of

intractable neurological diseases. Recently, key molecules with critical roles in disease cascades of

intractable neurological diseases have been discovered. We used molecular immunopathology of

autopsied materials to identify marked alterations in glial connexins (Cxs) in acute and chronic

demyelinating lesions of MS as well as neuromyelitis optica (NMO) and Balóʼs concentric sclerosis.

Similar changes were also observed in acute and chronic experimental autoimmune encephalomyelitis

(EAE), an animal model of MS. Glial Cxs form gap junction (GJ) channels, which connect glial cells

constituting the glial syncytium. The glial syncytium is critical for maintaining brain homeostasis by

supplying energy and buffering potassium ions via Cx GJ channels. We established oligodendroglial

Cx47-inducible conditional knockout (Cx47 icKO) mice and induced EAE by immunization with myelin

oligodendrocyte glycoprotein. Cx47 icKO mice showed a marked exacerbation of acute and chronic

EAE with progressive demyelination. Microarray and immunohistochemistry demonstrated Cx47

icKO mice had markedly increased numbers of proinflammatory A1 astrocytes and proinflammatory

and injury-responsive microglia producing inflammatory chemokines, which attracted T-helper 17

cells that potentiated autoimmune demyelination. By contrast, astroglial Cx30 KO mice had attenuated

chronic EAE with preserved myelin and axons. These findings suggest a novel role for glial Cxs in

regulating brain inflammation in addition to metabolic functions that maintain brain homeostasis. Our

large scale genome-wide association studies identified a single nucleotide polymorphism in potassium

calcium-activated channel subfamily M alpha 1 (KCNMA1), which can reduce its expression in cells,

was the largest genetic risk for severe disability caused by transverse myelitis in NMO. KCNMA1

expression in NMO lesions was markedly diminished. KCNMA1 in astrocyte endfeet is critical for

potassium ion buffering mediated by the glial syncytium by discharging potassium ions to blood

vessels. Therefore, the decreased expression of KCNMA1 may disturb axonal functions by impairing

potassium buffering necessary for repeatable axonal excitability in NMO. The exploration of

autoantibodies against neural tissues revealed that neurofascin 155 (NF155) in the nodes of Ranvier is a

target antigen in combined central and peripheral demyelination (CCPD) /chronic inflammatory

demyelinating polyneuropathy (CIDP). This finding has contributed to the establishment of the novel

concept of autoimmune nodopathy. We also found that plexin D1, expressed by pain-conducting small

dorsal ganglion neurons, is a target antigen in neuropathic pain. Intrathecally-administered anti-plexin

D1 antibody successfully reproduced mechanical and thermal allodynia in experimental animals,

suggesting this antibody is pathogenic. These observations have contributed to the establishment of

the disease concept of autoantibody-mediated neuropathic pain, which can be treated by

immunotherapy. Through further pathological, immunological, and genetic studies, key molecules in

intractable neurological diseases will be discovered and enable us to reclassify intractable neurological

diseases based on their molecular pathomechanisms and hopefully eradicate intractable neurological

diseases in the future.

Key Words : demyelinating disease, neuropathic pain, connexin, neurofascin 155, plexin D1

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る