リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「新規癌治療法である近赤外光線免疫治療法(NIR-PIT)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

新規癌治療法である近赤外光線免疫治療法(NIR-PIT)

長屋, 匡信 信州大学

2020.04.13

概要

現在,癌の治療方法としては,① 手術療法(外科 的切除や内視鏡的切除など),② 化学療法,③ 放射線 治療の3つが主体である。これら既存の癌治療は癌細 胞のみではなく,周囲の正常組織や臓器にも傷害を与 えることになってしまう。例えば抗癌剤治療において は,正常細胞と癌細胞の双方に傷害を与えるが,正常 細胞が癌細胞より早期に回復することに基づいた治療 法である。また,手術であれば癌の周囲にある正常組 織を含めての切除が必要であるし,放射線治療におい ても照射範囲内にある正常細胞にも傷害が及んでしま う。これらの正常細胞・組織への傷害は副作用として 患者の体に大きな負担を強いるわけである。

 従って,正常細胞や組織を傷害することなく,特異 的に体内の癌細胞のみに傷害を与えることができるよ うな極めて特異的な癌治療法があれば,癌に対しては 強力でありつつも,副作用がない治療法となり得る。 この理論に基づいた新しい癌治療法として近赤外線を 用いた近赤外光線免疫療法(Near Infrared Photoim- munotherapy ; NIR-PIT) が2011年に Nature Medi- cine に発表された1)。

本稿ではこの新しい癌治療法である NIR-PIT の開 発経緯,基本理念や原理に加え,実際の作用と効果, 他の癌治療,特に既存の光線力学療法との違い,さま ざまな臓器の癌への応用法,本治療による抗腫瘍免疫 増強効果などにつき論じる。

参考文献

1) Mitsunaga M, Ogawa M, Kosaka N, Rosenblum LT, Choyke PL, Kobayashi H : Cancer cell-selective in vivo near infrared photoimmunotherapy targeting specific membrane molecules. Nat Med 17 : 1685-1691, 2011

2) Beaurain M, Salabert AS, Ribeiro MJ, et al : Innovative Molecular Imaging for Clinical Research, Therapeutic Stratification, and Nosography in Neuroscience. Front Med (Lausanne) 6 : 268, 2019

3) Chen F, Madajewski B, Ma K, et al : Molecular phenotyping and image-guided surgical treatment of melanoma using spectrally distinct ultrasmall core-shell silica nanoparticles. Sci Adv 5 : eaax5208, 2019

4) Digital M, Digital I, Liver C, Clinical P, Medical I, Molecular I : [Guidelines for application of computer-assisted indocyanine green molecular fluorescence imaging in diagnosis and surgical navigation of liver tumors (2019)]. Nan Fang Yi Ke Da Xue Xue Bao 39 : 1127-1140, 2019

5) Mochida A, Ogata F, Nagaya T, Choyke PL, Kobayashi H : Activatable fluorescent probes in fluorescence-guided surgery : Practical considerations. Bioorg Med Chem 26 : 925-930, 2018

6) Nagaya T, Nakamura YA, Choyke PL, Kobayashi H : Fluorescence-Guided Surgery. Front Oncol 7 : 314, 2017

7) Krag DN, Weaver DL, Alex JC, Fairbank JT : Surgical resection and radiolocalization of the sentinel lymph node in breast cancer using a gamma probe. Surg Oncol 2 : 335-339 ; discussion 340, 1993

8) Morton DL, Wen DR, Wong JH, et al : Technical details of intraoperative lymphatic mapping for early stage melanoma. Arch Surg 127 : 392-399, 1992

9) Norman J Jr., Cruse W, Ruas E, et al : The expanding role of lymphoscintigraphy in the management of cutaneous melanoma. First Place Winner : Conrad Jobst award. Am Surg 55 : 689-694, 1989

10) Buss NA, Henderson SJ, McFarlane M, Shenton JM, de Haan L : Monoclonal antibody therapeutics : history and future. Curr Opin Pharmacol 12 : 615-622, 2012

11) Rosenblum LT, Choyke PL, Kobayashi H : Quantitative and specific molecular imaging of cancer with labeled engineered monoclonal antibody fragments. Ther Deliv 2 : 345-358, 2011

12) Hanaoka H, Nagaya T, Sato K, et al : Glypican-3 targeted human heavy chain antibody as a drug carrier for hepatocellular carcinoma therapy. Mol Pharm 12 : 2151-2157, 2015

13) Harada T, Nakamura Y, Sato K, et al : Near-infrared photoimmunotherapy with galactosyl serum albumin in a model of diffuse peritoneal disseminated ovarian cancer. Oncotarget 7 : 79408-79416, 2016

14) Maruoka Y, Nagaya T, Sato K, et al : Near Infrared Photoimmunotherapy with Combined Exposure of External and Interstitial Light Sources. Mol Pharm 15 : 3634-3641, 2018

15) Nagaya T, Nakamura Y, Okuyama S, et al : Syngeneic Mouse Models of Oral Cancer Are Effectively Targeted by Anti-CD44-Based NIR-PIT. Mol Cancer Res 15 : 1667-1677, 2017

16) Nagaya T, Nakamura Y, Okuyama S, et al : Near-Infrared Photoimmunotherapy Targeting Prostate Cancer with Prostate-Specific Membrane Antigen (PSMA) Antibody. Mol Cancer Res 15 : 1153-1162, 2017

17) Nagaya T, Nakamura Y, Sato K, et al : Near infrared photoimmunotherapy with avelumab, an anti-programmed death-ligand 1 (PD-L1) antibody. Oncotarget 8 : 8807-8817, 2017

18) Nagaya T, Nakamura Y, Sato K, Harada T, Choyke PL, Kobayashi H : Near infrared photoimmunotherapy of B-cell lymphoma. Mol Oncol 10 : 1404-1414, 2016

19) Nagaya T, Nakamura Y, Sato K, et al : Near infrared photoimmunotherapy with an anti-mesothelin antibody. Oncotarget 7 : 23361-23369, 2016

20) Nagaya T, Okuyama S, Ogata F, et al : Near infrared photoimmunotherapy targeting bladder cancer with a canine anti-epidermal growth factor receptor (EGFR) antibody. Oncotarget 9 : 19026-19038, 2018

21) Nagaya T, Sato K, Harada T, Nakamura Y, Choyke PL, Kobayashi H : Near Infrared Photoimmunotherapy Targeting EGFR Positive Triple Negative Breast Cancer : Optimizing the Conjugate-Light Regimen. PLoS One 10 : e0136829, 2015

22) Nakamura Y, Ohler ZW, Householder D, et al : Near Infrared Photoimmunotherapy in a Transgenic Mouse Model of Spontaneous Epidermal Growth Factor Receptor (EGFR)-expressing Lung Cancer. Mol Cancer Ther 16 : 408-414, 2017

23) Ogata F, Nagaya T, Nakamura Y, et al : Near-infrared photoimmunotherapy : a comparison of light dosing schedules. Oncotarget 8 : 35069-35075, 2017

24) Sato K, Nagaya T, Choyke PL, Kobayashi H : Near infrared photoimmunotherapy in the treatment of pleural disseminated NSCLC : preclinical experience. Theranostics 5 : 698-709, 2015

25) Sato K, Nagaya T, Mitsunaga M, Choyke PL, Kobayashi H : Near infrared photoimmunotherapy for lung metastases. Cancer Lett 365 : 112-121, 2015

26) Watanabe R, Hanaoka H, Sato K, et al : Photoimmunotherapy targeting prostate-specific membrane antigen : are antibody fragments as effective as antibodies ? J Nucl Med 56 : 140-144, 2015

27) Sato K, Ando K, Okuyama S, et al : Photoinduced Ligand Release from a Silicon Phthalocyanine Dye Conjugated with Monoclonal Antibodies : A Mechanism of Cancer Cell Cytotoxicity after Near-Infrared Photoimmunotherapy. ACS Cent Sci 4 : 1559-1569, 2018

28) Ogawa M, Tomita Y, Nakamura Y, et al : Immunogenic cancer cell death selectively induced by near infrared photoimmunotherapy initiates host tumor immunity. Oncotarget 8 : 10425-10436, 2017

29) Grant WE, Speight PM, Hopper C, Bown SG : Photodynamic therapy : an effective, but non-selective treatment for superficial cancers of the oral cavity. Int J Cancer 71 : 937-942, 1997

30) Kobayashi W, Liu Q, Nakagawa H, et al : Photodynamic therapy with mono-L-aspartyl chlorin e6 can cause necrosis of squamous cell carcinoma of tongue : experimental study on an animal model of nude mouse. Oral Oncol 42 : 46-50, 2006

31) Shirasu N, Yamada H, Shibaguchi H, Kuroki M, Kuroki M : Potent and specific antitumor effect of CEA-targeted photoimmunotherapy. Int J Cancer 135 : 2697-2710, 2014

32) Henderson TA, Morries LD : Near-infrared photonic energy penetration : can infrared phototherapy effectively reach the human brain? Neuropsychiatr Dis Treat 11 : 2191-2208, 2015

33) Nakamura YA, Okuyama S, Furusawa A, et al : Near-infrared photoimmunotherapy through bone. Cancer Sci 110 : 3689-3694, 2019

34) Mitsunaga M, Nakajima T, Sano K, Choyke PL, Kobayashi H : Near-infrared theranostic photoimmunotherapy (PIT) : repeated exposure of light enhances the effect of immunoconjugate. Bioconjug Chem 23 : 604-609, 2012

35) Nagaya T, Friedman J, Maruoka Y, et al : Host Immunity Following Near-Infrared Photoimmunotherapy Is Enhanced with PD-1 Checkpoint Blockade to Eradicate Established Antigenic Tumors. Cancer Immunol Res 7 : 401-413, 2019

36) Kobayashi H, Choyke PL : Super enhanced permeability and retention (SUPR) effects in tumors following near infrared photoimmunotherapy. Nanoscale 8 : 12504-12509, 2016

37) Sano K, Nakajima T, Choyke PL, Kobayashi H : The effect of photoimmunotherapy followed by liposomal daunorubicin in a mixed tumor model : a demonstration of the super-enhanced permeability and retention effect after photoimmunotherapy. Mol Cancer Ther 13 : 426-432, 2014

38) Tang Q, Nagaya T, Liu Y, et al : 3D mesoscopic fluorescence tomography for imaging micro-distribution of antibody-photon absorber conjugates during near infrared photoimmunotherapy in vivo. J Control Release 279 : 171-180, 2018

39) Nagaya T, Okuyama S, Ogata F, Maruoka Y, Choyke PL, Kobayashi H : Endoscopic near infrared photoimmunother- apy using a fiber optic diffuser for peritoneal dissemination of gastric cancer. Cancer Sci 109 : 1902-1908, 2018

40) Nagaya T, Okuyama S, Ogata F, Maruoka Y, Choyke PL, Kobayashi H : Near infrared photoimmunotherapy using a fiber optic diffuser for treating peritoneal gastric cancer dissemination. Gastric Cancer 22 : 463-472, 2019

41) Maawy AA, Hiroshima Y, Zhang Y, et al : Photoimmunotherapy lowers recurrence after pancreatic cancer surgery in orthotopic nude mouse models. J Surg Res 197 : 5-11, 2015

42) Sato K, Sato N, Xu B, et al : Spatially selective depletion of tumor-associated regulatory T cells with near-infrared photoimmunotherapy. Sci Transl Med 8 : 352ra110, 2016

43) Kerr JF : Shrinkage necrosis : a distinct mode of cellular death. J Pathol 105 : 13-20, 1971

44) Willingham MC : Cytochemical methods for the detection of apoptosis. J Histochem Cytochem 47 : 1101-1110, 1999 45) Ziegler U, Groscurth P : Morphological features of cell death. News Physiol Sci 19 : 124-128, 2004

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る