リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Comparison of Ventilated and Unventilated Air Temperature Measurements in Inland Dronning Maud Land on the East Antarctic Plateau」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Comparison of Ventilated and Unventilated Air Temperature Measurements in Inland Dronning Maud Land on the East Antarctic Plateau

Morino, Shohei Kurita, Naoyuki Hirasawa, Naohiko Motoyama, Hideaki Sugiura, Konosuke Lazzara, Matthew Mikolajczyk, David Welhouse, Lee Keller, Linda Weidner, George 名古屋大学

2021.12.21

概要

Surface temperature measurements with naturally ventilated (NV) sensors over the Antarctic Plateau are largely subject to systematic errors caused by solar radiative heating. Here we examined the radiative heating error in Dronning Maud Land on the East Antarctic Plateau using both the newly installed automatic weather stations (AWSs) at NDF and Relay Station and the existing AWSs at Relay Station and Dome Fuji. Two types of NV shields were used in these AWSs: a multiplate radiation shield and a simple cylinder-shaped shield. In austral summer, the temperature bias between the force-ventilated (FV) sensor and the NV sensor never reached zero because of continuous sunlight. The hourly mean temperature errors reached up to 8°C at noon on a sunny day with weak wind conditions. The errors increased linearly with increasing reflected shortwave radiation and decreased nonlinearly with increasing wind speed. These features were observed in both the multiplate and the cylinder-shaped shields. The magnitude of the errors of the multiplate shield was much larger than that of the cylinder-shaped shield. To quantify the radiative errors, we applied an existing correction model based on the regression approach and successfully reduced the errors by more than 70% after the correction. This indicates that we can use the corrected temperature data instead of quality controlled data, which removed warm bias during weak winds in inland Dronning Maud Land.

この論文で使われている画像

参考文献

Anderson, S. P., and M. F. Baumgartner, 1998: Radiative heating errors in naturally ventilated air temperature measurements made from buoys. J. Atmos. Oceanic Technol., 15, 157–173, https://doi.org/10.1175/1520-0426(1998)015,0157:RHEINV.2.0. CO;2.

Arck, M., and D. Scherer, 2001: A physically based method for correcting temperature data measured by naturally ventilated sensors over snow. J. Glaciol., 47, 665–670, https://doi.org/10. 3189/172756501781831774.

Blonquist, M., and B. Bugbee, 2017: Instruments and approaches for accurate measurement of air temperature. Agroclimatol- ogy, J. Hatfield, Ed., American Society of Agronomy, 51–72.

Bracegirdle, T., and G. Marshall, 2012: The reliability of Antarctic tropospheric pressure and temperature in the latest global reanalyses. J. Climate, 25, 7138–7146, https://doi.org/10.1175/ JCLI-D-11-00685.1.

Genthon, C., M. S. Town, D. Six, V. Favier, S. Argentini, and A. Pellegrini, 2010: Meteorological atmospheric boundary layer measurements and ECMWF analyses during summer at Dome C, Antarctica. J. Geophys. Res., 115, D05104, https:// doi.org/10.1029/2009JD012741.

----, D. Six, V. Favier, M. Lazzara, and L. Keller, 2011: Atmo- spheric temperature measurement biases on the Antarctic Plateau. J. Atmos. Oceanic Technol., 28, 1598–1605, https:// doi.org/10.1175/JTECH-D-11-00095.1.

Georges, C., and G. Kaser, 2002: Ventilated and unventilated air temperature measurements for glacier-climate studies on a tropical high mountain site. J. Geophys. Res., 107, 4775, https://doi.org/10.1029/2002JD002503.

Gonza´lez, S., F. Vasallo, P. Sanz, A. Quesada, and A. Justel, 2021: Characterization of the summer surface mesoscale dynamics at Dome F, Antarctica. Atmos. Res., 259, 105699, https://doi.org/10.1016/j.atmosres.2021.105699.

Hardy, D. R., M. Vuille, C. Braun, F. Keimig, and R. S. Bradkey, 1998: Annual and daily meteorological cycles at high altitude on a tropical mountain. Bull. Amer. Meteor. Soc., 79, 1899–1913, https://doi.org/10.1175/1520-0477(1998)079,1899: AADMCA.2.0.CO;2.

Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10. 1002/qj.3803.

Huwald, H., C. W. Higgins, M.-O. Boldi, E. Bou-Zeid, M. Lehn- ing, and M. B. Parlange, 2009: Albedo effect on radiative errors in air temperature measurements. Water Resour. Res., 45, W08431, https://doi.org/10.1029/2008WR007600.

Lazzara, M. A., G. A. Weidner, L. M. Keller, J. E. Thom, and J. J. Cassano, 2012: Antarctic automatic weather station program: 30 years of polar observation. Bull. Amer. Meteor. Soc., 93, 1519–1537, https://doi.org/10.1175/BAMS-D-11-00015.1.

Mauder, M., R. L. Desjardins, and R. Haarlem, 2008: Errors of naturally ventilated air temperature measurements in a spa- tial observation network. J. Atmos. Oceanic Technol., 25, 2145–2151, https://doi.org/10.1175/2008JTECHA1046.1.

Nakamura, R., and L. Mahrt, 2005: Air temperature measurement errors in naturally ventilated radiation shields. J. Atmos. Oceanic Technol., 22, 1046–1058, https://doi.org/10.1175/JTECH1762.1.

Richardson, S. J., F. V. Brock, S. R. Semmer, and C. Jirak, 1999: Minimizing errors associated with multiplate radiation shields.J. Atmos. Oceanic Technol., 16, 1862–1872, https://doi.org/10. 1175/1520-0426(1999)016,1862:MEAWMR.2.0.CO;2.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る