リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「マイケル付加およびアルドール反応におけるナノセルロース増強型不斉有機分子触媒反応」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

マイケル付加およびアルドール反応におけるナノセルロース増強型不斉有機分子触媒反応

ナリハリフェチャ, ジェシカ, ラナイブアリマナナ JESSICA, RANAIVOARIMANANA, NALIHARIFETRA 九州大学

2020.12.31

概要

In the spirit of green chemistry, efforts have been made by chemists toward the elaboration of environmentally friendly processes by creating atom economical reactions or using organocatalysts instead of toxic metal catalysts. Indeed, environmental pollution from chemical industries is raising worldwide concerns. The aim of this dissertation is to use green and sustainable polysaccharide nanofibers to improve the catalytic efficiency and enantioselectivity of various organic reactions in more ecological ways. For this purpose, TEMPO-oxidized cellulose nanofibers (TOCNFs) prepared from wood was chosen, via focusing on the well-defined nanoarchitecture having chiral carbons, high specific surface area and a highly crystalline hydrophobic facet capable of binding various electron-rich compounds. Herein, the (S )-proline catalyzed Michael additions of ketones to nitro olefins and the aldol reactions of ketones with aldehydes were investigated over wood-derived TOCNFs. (S )-Proline is a readily available non-toxic and inexpensive organocatalyst, but poorly catalyzes both reactions, giving a mixture of enantiomers and diastereomers. However, enantio- and diastereo-control is highly desirable as each enantiomer might have different biological activity, and thus both reactions are expected to offer the possibility to synthesize valuable pharmaceutically relevant compounds.

 First, a novel method that substantially enhanced proline-mediated catalysis was successfully developed for the Michael additions of ketones to nitroalkenes through simple incorporation of TOCNFs in the reaction medium at room temperature. The reaction between cyclohexanone and trans-β-nitrostyrene catalyzed by (S)-proline in the presence of TOCNFs yielded 88% of the product with 43% enantioselectivity (ee) versus 35% yield and 32% ee when (S )-proline was used alone. The nanocellulose itself was not catalytically active in the Michael additions. The t rial of different types of matrix with (S)-proline demonstrated the salient role of the highly crystalline structure of TOCNFs with a regular array of carboxylate groups in the increase of the catalytic efficiency. The method was positively applied to different ketones and nitroalkene substrates.

 Furthermore, the catalytic system of TOCNF/(S)-proline performed likewise as a chiral enhancer in direct aldol reactions of 4-nitrobenzaldehyde and cyclopentanone. Despite TOCNF’s being catalytically inactive, the ( R,R)-enantiomer in this reaction was remarkably enriched while the nanofibers were dispersed in the reaction medium, affording 89% ee in the product’s syn form with a very high yield (99%). Nevertheless, nanocellulose-free (S )-proline catalysis resulted in poor selectivity (64% ee, syn form) with a low yield (18%). Two aspects of the enhancement’s mechanism were investigated. The first related to reaction yields showed that TOCNFs prevented proline’s deactivation by inhibiting oxazolidinone formation and other undesirable side polymerization reactions among substrates and/or products. The second part related to enantioselectivity came from molecular dynamics calculations, demonstrating that the aldehyde substrate orientation was governed by carbohydrate–aromatics interactions at the (100) lattice planes of cellulose Iβ surface. The TOCNF/(S )-proline catalyst system favorably enhanced the aldol reactions of different aldehyde substrates.

 To summarize, green organocatalysis occurring on the solid surfaces of nanocellulose bearing regularly aligned chiral carbons on hydrophobic crystalline facets led to highly efficient Michael additions and aldol reactions. Concerted catalysis using polysaccharide nanofibers will bring a fresh perspective into asymmetric synthesis strategies for heterogeneous catalysis . The present study will provide further applications of nanocellulose in sustainable fine chemical productions.

この論文で使われている画像

参考文献

Chapter 1

1. Ashby, M.F. Scaling Up Biopolymer Production. In Materials and Sustainable Development; Elsevier, 2016; pp. 117–133.

2. Eichhorn, S.J.; Baillie, C.A.; Zafeiropoulos, N.; Mwaikambo, L.Y.; Ansell, M.P.; Dufresne, A.; Entwistle, K.M.; Herrera-Franco, P.J.; Escamilla, G.C.; Groom, L.; et al. Current international research into cellulosic fibres and composites. J. Mater. Sci. 2001, 36, 2107–2131.

3. Lavoine, N.; Desloges, I.; Dufresne, A.; Bras, J. Microfibrillated cellulose - Its barrier properties and applications in cellulosic materials: A review. Carbohydr. Polym. 2012, 90, 735–764.

4. Klemm, D.; Kramer, F.; Moritz, S.; Lindström, T.; Ankerfors, M.; Gray, D.; Dorris, A. Nanocelluloses: A new family of nature-based materials. Angew. Chemie - Int. Ed. 2011, 50, 5438–5466.

5. Klemm, D.; Heublein, B.; Fink, H.-P.; Bohn, A. Cellulose: Fascinating Biopolymer and Sustainable Raw Material. Angew. Chem. Int. Ed 2005, 44, 3358–3393.

6. Habibi, Y.; Lucia, L.A.; Rojas, O.J. Cellulose nanocrystals: Chemistry, self-assembly, and applications. Chem. Rev. 2010, 110, 3479–3500.

7. Balat, M. Production of bioethanol from lignocellulosic materials via the biochemical pathway: A review. Energy Convers. Manag. 2011, 52, 858–875.

8. Isogai, A. Wood nanocelluloses: Fundamentals and applications as new bio-based nanomaterials. J. Wood Sci. 2013, 59, 449–459.

9. Turbak, A.F.; Snyder, F.W.; Sandberg, K.R. Microfibrillated cellulose, a new cellulose product: Properties, uses, and commercial potential. J. Appl. Polym. Sci., Appl. Polym. Symp. 1983.

10. Taniguchi, T. Microfibrillation of natural fibrous materials. J. Soc. Mater. Sci. 1996, 45, 472–473.

11. Missoum, K.; Belgacem, M.; Bras, J. Nanofibrillated Cellulose Surface Modification: A Review. Materials (Basel). 2013, 6, 1745–1766.

12. Moon, R.J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. Cellulose nanomaterials review: Structure, properties and nanocomposites. Chem. Soc. Rev. 2011, 40, 3941– 3994.

13. Nickerson, R.F.; Habrle, J.A. Cellulose intercrystalline structure. Ind. Eng. Chem. 1947, 39, 1507–1512.

14. Chen, Y.; Liu, C.; Chang, P.R.; Cao, X.; Anderson, D.P. Bionanocomposites based on pea starch and cellulose nanowhiskers hydrolyzed from pea hull fibre: Effect of hydrolysis time. Carbohydr. Polym. 2009, 76, 607–615.

15. Bondeson, D.; Mathew, A.; Oksman, K. Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 2006, 13, 171–180.

16. Eichhorn, S.J.; Dufresne, A.; Aranguren, M.; Marcovich, N.E.; Capadona, J.R.; Rowan, S.J.; Weder, C.; Thielemans, W.; Roman, M.; Renneckar, S.; et al. Review: current international research into cellulose nanofibres and nanocomposites. J. Mater. Sci. 2010, 45, 1–33.

17. Mondal, S. Preparation, properties and applications of nanocellulosic materials. Carbohydr. Polym. 2017, 163, 301–316.

18. Okita, Y.; Saito, T.; Isogai, A. Entire surface oxidation of various cellulose microfibrils by TEMPO-mediated oxidation. Biomacromolecules 2010, 11, 1696–1700.

19. Isogai, A.; Saito, T.; Fukuzumi, H. TEMPO-oxidized cellulose nanofibers. Nanoscale 2011, 3, 71–85.

20. Fukuzumi, H.; Saito, T.; Iwata, T.; Kumamoto, Y.; Isogai, A. Transparent and High Gas Barrier Films of Cellulose Nanofibers Prepared by TEMPO-Mediated Oxidation. Biomacromolecules 2009, 10, 162–165.

21. Nemoto, J.; Saito, T.; Isogai, A. Simple Freeze-Drying Procedure for Producing Nanocellulose Aerogel-Containing, High-Performance Air Filters. ACS Appl. Mater. Interfaces 2015, 7, 19809–19815.

22. Hamou, K. Ben; Kaddami, H.; Dufresne, A.; Boufi, S.; Magnin, A.; Erchiqui, F. Impact of TEMPO-oxidization strength on the properties of cellulose nanofibril reinforced polyvinyl acetate nanocomposites. Carbohydr. Polym. 2018, 181, 1061–1070.

23. Fukuzumi, H.; Fujisawa, S.; Saito, T.; Isogai, A. Selective Permeation of Hydrogen Gas Using Cellulose Nanofibril Film. Biomacromolecules 2013, 14, 1705–1709.

24. Ma, H.; Burger, C.; Hsiao, B.S.; Chu, B. Ultrafine Polysaccharide Nanofibrous Membranes for Water Purification. Biomacromolecules 2011, 12, 970–976.

25. Nyström, G.; Mihranyan, A.; Razaq, A.; Lindström, T.; Nyholm, L.; Strømme, M. A nanocellulose polypyrrole composite based on microfibrillated cellulose from wood. J. Phys. Chem. B 2010, 114, 4178–4182.

26. Koga, H.; Nogi, M.; Komoda, N.; Nge, T.T.; Sugahara, T.; Suganuma, K. Uniformly connected conductive networks on cellulose nanofiber paper for transparent paper electronics. NPG Asia Mater. 2014, 6, e93–e93.

27. Favier, V.; Canova, G.R.; Shrivastava, S.C.; Cavaillé, J.Y. Mechanical percolation in cellulose whisker nanocomposites. Polym. Eng. Sci. 1997, 37, 1732–1739.

28. Shen, J.; Ikai, T.; Okamoto, Y. Synthesis and application of immobilized polysaccharide-based chiral stationary phases for enantioseparation by high- performance liquid chromatography. J. Chromatogr. A 2014, 1363, 51–61.

29. Kim, B.-H.; Lee, S.U.; Moon, D.C. Chiral Recognition of N -Phthaloyl, N - Tetrachlorophthaloyl, and N -Naphthaloyl α-Amino Acids and Their Esters on Polysaccharide-Derived Chiral Stationary Phases. Chirality 2012, 24, 1037–1046.

30. Usov, I.; Nyström, G.; Adamcik, J.; Handschin, S.; Schütz, C.; Fall, A.; Bergström, L.; Mezzenga, R. Understanding nanocellulose chirality and structure–properties relationship at the single fibril level. Nat. Commun. 2015, 6, 7564.

31. Yu, H.; Deng, J. Alkynylated Cellulose Nanocrystals Simultaneously Serving as Chiral Source and Stabilizing Agent for Constructing Optically Active Helical Polymer Particles. Macromolecules 2016, 49, 7728–7736.

32. Conley, K.; Whitehead, M.A.; van de Ven, T.G.M. Probing the structural chirality of crystalline cellulose with induced circular dichroism. Cellulose 2017, 24, 479–486.

33. Shopsowitz, K.E.; Qi, H.; Hamad, W.Y.; MacLachlan, M.J. Free-standing mesoporous silica films with tunable chiral nematic structures. Nature 2010, 468, 422–426.

34. Kaushik, M.; Moores, A. Review: nanocelluloses as versatile supports for metal nanoparticles and their applications in catalysis. Green Chem. 2016, 18, 622–637.

35. Kaushik, M.; Basu, K.; Benoit, C.; Cirtiu, C.M.; Vali, H.; Moores, A. Cellulose nanocrystals as chiral inducers: Enantioselective catalysis and transmission electron microscopy 3D characterization. J. Am. Chem. Soc. 2015, 137, 6124–6127.

36. Serizawa, T.; Sawada, T.; Wada, M. Chirality-specific hydrolysis of amino acid substrates by cellulose nanofibers. Chem. Commun. 2013, 49, 8827–8829.

37. Koga, H.; Namba, N.; Takahashi, T.; Nogi, M.; Nishina, Y. Renewable Wood Pulp Paper Reactor with Hierarchical Micro/Nanopores for Continuous-Flow Nanocatalysis. ChemSusChem 2017, 10, 2560–2565.

38. Gaunt, M.J.; Johansson, C.C.C.; McNally, A.; Vo, N.T. Enantioselective organocatalysis. Drug Discov. Today 2007, 12, 8–27.

39. Khan, A.; Khan, S.; Khan, M.A.; Qamar, Z.; Waqas, M. The uptake and bioaccumulation of heavy metals by food plants, their effects on plants nutrients, and associated health risk: a review. Environ. Sci. Pollut. Res. 2015, 22, 13772–13799.

40. Hajos, Z.G.; Parrish, D.R. Asymmetric Synthesis of Bicyclic Intermediates of Natural product chemistry. J. Org. Chem. 1974, 39, 1615–1621.

41. Knoche, B.; Blaschke, G. Investigations on the in vitro racemization of thalidomide by high-performance liquid chromatography. J. Chromatogr. A 1994, 666, 235–240.

42. Hanley, S.J.; Revol, J.F.; Godbout, L.; Gray, D.G. Atomic force microscopy and transmission electron microscopy of cellulose from Micrasterias denticulata; evidence for a chiral helical microfibril twist. Cellulose 1997, 4, 209–220.

43. Usov, I.; Nyström, G.; Adamcik, J.; Handschin, S.; Schütz, C.; Fall, A.; Bergström, L.; Mezzenga, R. Understanding nanocellulose chirality and structure-properties relationship at the single fibril level. Nat. Commun. 2015, 6, 7564.

44. Goto, H.; Jwa, J.; Nakajima, K.; Wang, A. Textile-surface interfacial asymmetric polymerization. J. Appl. Polym. Sci. 2014, 131, n/a-n/a.

45. Koga, H.; Tokunaga, E.; Hidaka, M.; Umemura, Y.; Saito, T.; Isogai, A.; Kitaoka, T. Topochemical synthesis and catalysis of metal nanoparticles exposed on crystalline cellulose nanofibers. Chem. Commun 2010, 46, 8567–8569.

46. Tamura, Y.; Kanomata, K.; Kitaoka, T. Interfacial Hydrolysis of Acetals on Protonated TEMPO-oxidized Cellulose Nanofibers. Sci. Rep. 2018, 8, 5021.

47. Notz, W.; Tanaka, F.; Barbas, C.F. Enamine-based organocatalysis with proline and diamines: The development of direct catalytic asymmetric aldol, Mannich, Michael, and Diels-Alder reactions. Acc. Chem. Res. 2004, 37, 580–591.

48. Stoimenova, A.; Ivanov, K.; Obreshkova, D.; Saso, L. Biotechnology in the production of pharmaceutical industry ingredients: Amino acids. Biotechnol. Biotechnol. Equip. 2013, 27, 3620–3626.

49. Berner, O.M.; Tedeschi, L.; Enders, D. Asymmetric Michael additions to nitroalkenes. Eur. J. Org. Chem. 2002, 2002, 1877–1894.

50. List, B.; Pojarliev, P.; Martin, H.J. Efficient Proline-Catalyzed Michael Additions of Unmodified Ketones to Nitro Olefins. Org. Lett. 2001, 3, 2423–2425.

51. Betancort, J.M.; Sakthivel, K.; Thayumanavan, R.; Barbas, C.F. Catalytic enantioselective direct Michael additions of ketones to alkylidene malonates. Tetrahedron Lett. 2001, 42, 4441–4444.

52. Yang, H.; Wong, M.W. (S)-Proline-catalyzed nitro-Michael reactions: towards a better understanding of the catalytic mechanism and enantioselectivity. Org. Biomol. Chem. 2012, 10, 3229.

53. Hayashi, Y.; Ogasawara, S. Time Economical Total Synthesis of (−)-Oseltamivir. Org. Lett. 2016, 18, 3426–3429.

54. Enders, D.; Fronert, J.; Bisschops, T.; Boeck, F. Asymmetric total synthesis of smyrindiol employing an organocatalytic aldol key step. Beilstein J. Org. Chem. 2012, 8, 1112–1117.

55. Sakthivel, K.; Notz, W.; Bui, T.; Barbas, C.F. Amino acid catalyzed direct asymmetric aldol reactions: A bioorganic approach to catalytic asymmetric carbon-carbon bond- forming reactions. J. Am. Chem. Soc. 2001, 123, 5260–5267.

56. List, B.; Pojarliev, P.; Castello, C. Proline-catalyzed asymmetric aldol reactions between ketones and alpha-unsubstituted aldehydes. Org. Lett. 2001, 3, 573–575.

57. Ranaivoarimanana, N.; Kanomata, K.; Kitaoka, T. Concerted Catalysis by Nanocellulose and Proline in Organocatalytic Michael Additions. Molecules 2019, 24, 1231.

Chapter 2

1. Okita, Y.; Saito, T.; Isogai, A. Entire surface oxidation of various cellulose microfibrils by TEMPO-mediated oxidation. Biomacromolecules 2010, 11, 1696–1700.

2. Saito, T.; Isogai, A. TEMPO-Mediated Oxidation of Native Cellulose. The Effect of Oxidation Conditions on Chemical and Crystal Structures of the Water-Insoluble Fractions. Biomacromolecules 2004, 5, 1983–1989.

3. Segal, L.; Creely, J.J.; Martin, A.E.; Conrad, C.M. An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer. Text. Res. J. 1959, 29, 786–794.

4. Kondo, T.; Kose, R.; Naito, H.; Kasai, W. Aqueous counter collision using paired water jets as a novel means of preparing bio-nanofibers. Carbohydr. Polym. 2014, 112, 284– 290.

5. Jalal, S.; Sarkar, S.; Bera, K.; Maiti, S.; Jana, U. Synthesis of nitroalkenes involving a cooperative catalytic action of iron(III) and piperidine: A one-pot synthetic strategy to 3-alkylindoles, 2H-chromenes and N-arylpyrrole. European J. Org. Chem. 2013, 2013, 4823–4828.

6. Syu, S.; Kao, T.-T.; Lin, W. A new type of organocatalyst for highly stereoselective Michael addition of ketones to nitroolefins on water. Tetrahedron 2010, 66, 891–897.

7. Kaplaneris, N.; Koutoulogenis, G.; Raftopoulou, M.; Kokotos, C.G. 4-Fluoro and 4- Hydroxy Pyrrolidine-thioxotetrahydropyrimidinones: Organocatalysts for Green Asymmetric Transformations in Brine. J. Org. Chem. 2015, 80, 5464–5473.

8. Daicho, K.; Saito, T.; Fujisawa, S.; Isogai, A. The Crystallinity of Nanocellulose: Dispersion-Induced Disordering of the Grain Boundary in Biologically Structured Cellulose. ACS Appl. Nano Mater. 2018, 1, 5774–5785.

9. Ranaivoarimanana, N.; Kanomata, K.; Kitaoka, T. Concerted Catalysis by Nanocellulose and Proline in Organocatalytic Michael Additions. Molecules 2019, 24, 1231.

10. Betancort, J.M.; Sakthivel, K.; Thayumanavan, R.; Tanaka, F.; Barbas III, C.F. Catalytic Direct Asymmetric Michael Reactions: Addition of Unmodified Ketone and Aldehyde Donors to Alkylidene Malonates and Nitro Olefins. Synthesis (Stuttg). 2004, 2004, 1509–1521.

11. Yang, H.; Wong, M.W. (S)-Proline-catalyzed nitro-Michael reactions: towards a better understanding of the catalytic mechanism and enantioselectivity. Org. Biomol. Chem. 2012, 10, 3229.

12. Nemoto, J.; Saito, T.; Isogai, A. Simple Freeze-Drying Procedure for Producing Nanocellulose Aerogel-Containing, High-Performance Air Filters. ACS Appl. Mater. Interfaces 2015, 7, 19809–19815.

13. Patil, M.P.; Sunoj, R.B. The role of noninnocent solvent molecules in organocatalyzed asymmetric michael addition reactions. Chem. Eur. J. 2008, 14, 10472–10485.

Chapter 3

1. Saito, T.; Uematsu, T.; Kimura, S.; Enomae, T.; Isogai, A. Self-aligned integration of native cellulose nanofibrils towards producing diverse bulk materials. Soft Matter 2011, 7, 8804–8809.

2. Kobayashi, Y.; Saito, T.; Isogai, A. Aerogels with 3D Ordered Nanofiber Skeletons of Liquid-Crystalline Nanocellulose Derivatives as Tough and Transparent Insulators. Angew. Chemie Int. Ed. 2014, 53, 10394–10397.

3. Wu, C.; Long, X.; Li, S.; Fu, X. Simple and inexpensive threonine-based organocatalysts as highly active and recoverable catalysts for large-scale asymmetric direct stoichiometric aldol reactions on water. Tetrahedron: Asymmetry 2012, 23, 315–328.

4. Kirschner, K.N.; Yongye, A.B.; Tschampel, S.M.; González-Outeiriño, J.; Daniels, C.R.; Foley, B.L.; Woods, R.J. GLYCAM06: A generalizable biomolecular force field. Carbohydrates. J. Comput. Chem. 2008, 29, 622–655.

5. Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and testing of a general amber force field. J. Comput. Chem. 2004, 25, 1157–1174.

6. Elstner, M.; Porezag, D.; Jungnickel, G.; Elsner, J.; Haugk, M.; Frauenheim, T. Self- consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys. Rev. B - Condens. Matter Mater. Phys. 1998, 58, 7260–7268.

7. Seabra, G.D.M.; Walker, R.C.; Elstner, M.; Case, D.A.; Roitberg, A.E. Implementation of the SCC-DFTB method for hybrid QM/MM simulations within the Amber molecular dynamics package. In Proceedings of the Journal of Physical Chemistry A; American Chemical Society , 2007; Vol. 111, pp. 5655–5664.

8. Salomon-Ferrer, R.; Götz, A.W.; Poole, D.; Le Grand, S.; Walker, R.C. Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh ewald. J. Chem. Theory Comput. 2013, 9, 3878–3888.

9. Le Grand, S.; Götz, A.W.; Walker, R.C. SPFP: Speed without compromise - A mixed precision model for GPU accelerated molecular dynamics simulations. Comput. Phys. Commun. 2013, 184, 374–380.

10. Case, D.A.; Ben-Shalom, I.Y.; Brozell, S.R.; Cerutti, D.S.; Cheatham III, T.E.; Cruzeiro, V.W.D.; Darden, T.A.; Duke, R.E.; Ghoreishi, D.; Gilson, M.K. Amber 2018. Univ. California, San Fr. 2018.

11. Roe, D.R.; Cheatham, T.E. PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput. 2013, 9, 3084–3095.

12. Nishiyama, Y.; Langan, P.; Chanzy, H. Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J. Am. Chem. Soc. 2002, 124, 9074–9082.

13. Park, S.; Khalili-Araghi, F.; Tajkhorshid, E.; Schulten, K. Free energy calculation from steered molecular dynamics simulations using Jarzynski’s equality. J. Chem. Phys. 2003, 119, 3559–3566.

14. Kanomata, K.; Tatebayashi, N.; Habaki, X.; Kitaoka, T. Cooperative catalysis of cellulose nanofiber and organocatalyst in direct aldol reactions. Sci. Rep. 2018, 8, 4098.

15. Mazeau, K. On the external morphology of native cellulose microfibrils. Carbohydr. Polym. 2011.

16. Mazeau, K.; Wyszomirski, M. Modelling of Congo red adsorption on the hydrophobic surface of cellulose using molecular dynamics. Cellulose 2012, 19, 1495–1506.

17. Kanemitsu, T.; Umehara, A.; Miyazaki, M.; Nagata, K.; Itoh, T. L-t-Leucine-Catalyzed Direct Asymmetric Aldol Reaction of Cyclic Ketones. European J. Org. Chem. 2011, 2011, 993–997.

18. Orlandi, M.; Ceotto, M.; Benaglia, M. Kinetics versus thermodynamics in the proline catalyzed aldol reaction. Chem. Sci. 2016, 7, 5421–5427.

19. Rosenthal, J.; Schuster, D.I. The anomalous reactivity of fluorobenzene in electrophilic aromatic substitution and related phenomena. J. Chem. Educ. 2003, 80, 679–690.

20. Zotova, N.; Franzke, A.; Armstrong, A.; Blackmond, D.G. Clarification of the role of water in proline-mediated aldol reactions. J. Am. Chem. Soc. 2007, 129, 15100–15101.

21. Kano, T.; Takai, J.; Tokuda, O.; Maruoka, K. Design of an axially chiral amino acid with a binaphthyl backbone as an organocatalyst for a direct asymmetric aldol reaction. Angew. Chemie - Int. Ed. 2005, 44, 3055–3057.

22. Tayeb, A.H.; Amini, E.; Ghasemi, S.; Tajvidi, M. Cellulose nanomaterials-binding properties and applications: A review. Molecules 2018, 23, 2684.

23. Bahmanyar, S.; Houk, K.N. Transition states of amine-catalyzed aldol reactions involving enamine intermediates- theoretical studies of mechanism, reactivity, and stereoselectivity. J. Am. Chem. Soc. 2001, 123, 11273–11283.

24. Bahmanyar, S.; Houk, K.N. The origin of stereoselectivity in proline-catalyzed intramolecular aldol reactions. J. Am. Chem. Soc. 2001, 123, 12911–12912.

25. Bahmanyar, S.; Houk, K.N.; Martin, H.J.; List, B. Quantum mechanical predictions of the stereoselectivities of proline-catalyzed asymmetric intermolecular aldol reactions. J. Am. Chem. Soc. 2003, 125, 2475–2479.

Chapter 4

1. Shaikh, I.R. Organocatalysis: Key Trends in Green Synthetic Chemistry, Challenges, Scope towards Heterogenization, and Importance from Research and Industrial Point of View. J. Catal. 2014, 2014, 1–35.

2. Sunagar, V.; Dixit, S.R.; Chougala, B.M.; Samundeeswari, S.; Holiyachi, M.; Shaikh, F.; Madar, J.; Kulkarni, R. 3,4-Dihydropyrimidinone-coumarin analogues as a new class of selective agent against S. aureus: Synthesis, biological evaluation and molecular modelling study. Bioorganic Med. Chem. 2017, 25, 1413–1422.

3. Heravi, M.M.; Moradi, R.; Mohammadkhani, L.; Moradi, B. Current progress in asymmetric Biginelli reaction: an update. Mol. Divers. 2018, 22, 751–767.

4. Clark, J.H.; Macquarrie, D.J.; Sherwood, J. The Combined Role of Catalysis and Solvent Effects on the Biginelli Reaction: Improving Efficiency and Sustainability. Chem. - A Eur. J. 2013, 19, 5174–5182.

5. Noguchi, Y.; Homma, I.; Matsubara, Y. Complete nanofibrillation of cellulose prepared by phosphorylation. Cellulose 2017, 24, 1295–1305.

6. Bui, T.; Barbas, C.F. A proline-catalyzed asymmetric Robinson annulation reaction. Tetrahedron Lett. 2000, 41, 6951–6954.

7. Hajos, Z.G.; Parrish, D.R. Asymmetric Synthesis of Bicyclic Intermediates of Natural product chemistry. J. Org. Chem. 1974, 39, 1615–1621.

8. Bradshaw, B.; Etxebarria-Jardi, G.; Bonjoch, J.; Viózquez, S.F.; Guillena, G.; Nájera, C. Efficient solvent-free robinson annulation protocols for the highly enantioselective synthesis of the wieland-miescher ketone and analogues. Adv. Synth. Catal. 2009, 351, 2482–2490.

9. Bradshaw, B.; Bonjoch, J. The Wieland-Miescher ketone: A journey from organocatalysis to natural product synthesis. Synlett 2012, 337–356.

10. Chemistry, B.; Ramachary, D.B.; Sakthidevi, R. Combining multi-catalysis and multi- component systems for the development of one-pot asymmetric reactions : stereoselective synthesis of highly. 2008, 2488–2492.

11. Bañón-Caballero, A.; Guillena, G.; Nájera, C.; Faggi, E.; Sebastián, R.M.; Vallribera, A. Recoverable silica-gel supported binam-prolinamides as organocatalysts for the enantioselective solvent-free intra- and intermolecular aldol reaction. Tetrahedron 2013, 69, 1307–1315.

12. Zhou, P.; Zhang, L.; Luo, S.; Cheng, J.-P. Asymmetric Synthesis of Wieland–Miescher and Hajos–Parrish Ketones Catalyzed by an Amino-Acid-Derived Chiral Primary Amine. J. Org. Chem. 2012, 77, 2526–2530.

13. Zeng, X.P.; Cao, Z.Y.; Wang, Y.H.; Zhou, F.; Zhou, J. Catalytic Enantioselective Desymmetrization Reactions to All-Carbon Quaternary Stereocenters. Chem. Rev. 2016, 116, 7330–7396.

14. List, B.; Hoang, L.; Martin, H.J. Asymmetric Catalysis Special Feature Part II: New mechanistic studies on the proline-catalyzed aldol reaction. Proc. Natl. Acad. Sci. 2004, 101, 5839–5842.

Chapter 6

1. Syu, S.; Kao, T.-T.; Lin, W. A new type of organocatalyst for highly stereoselective Michael addition of ketones to nitroolefins on water. Tetrahedron 2010, 66, 891–897.

2. Kaplaneris, N.; Koutoulogenis, G.; Raftopoulou, M.; Kokotos, C.G. 4-Fluoro and 4- Hydroxy Pyrrolidine-thioxotetrahydropyrimidinones: Organocatalysts for Green Asymmetric Transformations in Brine. J. Org. Chem. 2015, 80, 5464–5473.

参考文献をもっと見る