リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「^<13>N-ammonia PET-derived right ventricular longitudinal strain and myocardial flow reserve in right coronary artery disease」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

^<13>N-ammonia PET-derived right ventricular longitudinal strain and myocardial flow reserve in right coronary artery disease

Kawakubo, Masateru 河窪, 正照 カワクボ, マサテル Nagao, Michinobu 長尾, 充展 ナガオ, ミチノブ Yamamoto, Atsushi ヤマモト, アツシ Nakao, Risako ナカオ, リサコ Matsuo, Yuka マツオ, ユカ Kaneko, Koichiro 金子, 恒一郎 カネコ, コウイチロウ Watanabe, Eri ワタナベ, エリ Sakai, Akiko サカイ, アキコ Sasaki, Masayuki 佐々木, 雅之 ササキ, マサユキ Sakai, Shuji 坂井, 修二 サカイ, シュウジ 九州大学

2021.12.13

概要

Purpose: We developed a feature-tracking algorithm for use with electrocardiography-gated high-resolution ^<13>N-ammonia positron emission tomography (PET) imaging, and we hypothesized it could be use

この論文で使われている画像

参考文献

1.

Kawakubo M, Nagao M, Yamamoto A, Nakao R, Matsuo Y, Fukushima K, et al. 13N-ammonia positron

emission tomography-derived endocardial strain for the assessment of ischemia using feature-tracking in

high-resolution cine imaging. J Nucl Cardiol. 2021 [Epub ahead of print] https://doi.org/10.1007/s12350021-02677-9.

2.

Fiechter M, Ghadri JR, Gebhard C, Fuchs TA, Pazhenkottil AP, Nkoulou RN, et al. Diagnostic value of

13

N-ammonia myocardial perfusion PET: added value of myocardial flow reserve. J Nucl Med.

2012;53:1230 4. https://doi.org/10.2967/jnumed.111.101840.

3.

Herzog BA, Husmann L, Valenta I, Gaemperli O, Siegrist PT, Tay FM, et al. Long-term prognostic value

of 13N-ammonia myocardial perfusion positron emission tomography added value of coronary flow

reserve. J Am Coll Cardiol. 2009;54:150 6. https://doi.org/10.1016/j.jacc.2009.02.069.

4.

Patel KK, Spertus JA, Chan PS, Sperry BW, Al Badarin F, Kennedy KF, et al. Myocardial blood flow

reserve assessed by positron emission tomography myocardial perfusion imaging identifies patients with

a survival benefit from early revascularization. Eur Heart J. 2020;41:759 68.

https://doi.org/10.1093/eurheartj/ehz389.

5.

Khaing T, Raymond CCW, Chan WX, Hao C, Wong SS. Quantification of myocardial blood flow and

myocardial flow reserve with SPECT imaging technique. J Nucl Cardiol. 2019;26:318 23.

https://doi.org/10.1007/s12350-017-1152-0.

6.

Konerman MC, Lazarus JJ, Weinberg RL, Shah RV, Ghannam M, Hummel SL, et al. Reduced

myocardial flow reserve by positron emission tomography predicts cardiovascular events after cardiac

transplantation. Circ Heart Fail. 2018;11:e004473.

https://doi.org/10.1161/CIRCHEARTFAILURE.117.004473.

7.

Spigel ZA, Qureshi AM, Morris SA, Mery CM, Sexson-Tejtel SK, Zea-Vera R, et al. Right ventricledependent coronary circulation: location of obstruction is associated with survival. Ann Thorac Surg.

2020;109:1480 7. https://doi.org/10.1016/j.athoracsur.2019.08.066.

8.

Sevimli S, Gundogdu F, Aksakal E, Arslan S, Tas H, Islamoglu Y, et al. Right ventricular strain and

strain rate properties in patients with right ventricular myocardial infarction. Echocardiography.

2007;24:732 8. https://doi.org/10.1111/j.1540-8175.2007.00470.x.

9.

Mazur ES, Mazur VV, Rabinovich RM, Myasnikov KS. Right ventricular longitudinal strain in acute

14

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

pulmonary embolism and right ventricular myocardial infarction in patients with McConnell's sign.

Kardiologiia. 2020;60:20 7. https://doi.org/10.18087/cardio.2020.7.n1151.

10. Chang WT, Tsai WC, Liu YW, Lee CH, Liu PY, Chen JY, et al. Changes in right ventricular free wall

strain in patients with coronary artery disease involving the right coronary artery. J Am Soc

Echocardiogr. 2014;27:230 8. https://doi.org/10.1016/j.echo.2013.11.010.

11. Risum N, Valeur N, Søgaard P, Hassager C, Køber L, Ersbøll M. Right ventricular function assessed by

2D strain analysis predicts ventricular arrhythmias and sudden cardiac death in patients after acute

myocardial infarction. Eur Heart J Cardiovasc Imaging. 2018;19:800 7.

https://doi.org/10.1093/ehjci/jex184.

12. Ivey-Miranda JB, Almeida-Gutiérrez E, Borrayo-Sánchez G, Antezana-Castro J, Contreras-Rodríguez A,

Posada-Martínez EL, et al. Right ventricular longitudinal strain predicts acute kidney injury and shortterm prognosis in patients with right ventricular myocardial infarction. Int J Cardiovasc Imaging.

2019;35:107 16. https://doi.org/10.1007/s10554-018-1447-5.

13. Nakao R, Nagao M, Yamamoto A, Fukushima K, Watanabe E, Sakai S, et al. Papillary muscle ischemia

on high-resolution cine imaging of nitrogen-13 ammonia positron emission tomography: Association

with myocardial flow reserve and prognosis in coronary artery disease. J Nucl Cardiol. 2020 [Epub ahead

of print] https://doi.org/10.1007/s12350-020-02231-z.

14. Dilsizian V, Bacharach SL, Beanlands RS, Bergmann SR, Delbeke D, Dorbala S, et al. ASNC imaging

guidelines/SNMMI procedure standard for positron emission tomography (PET) nuclear cardiology

procedures. J Nucl Cardiol. 2016;23:1187 226. https://doi.org/10.1007/s12350-016-0522-3.

15. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized

myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for

healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of

the American Heart Association. J Nucl Cardiol. 2002;9:240 5.

https://doi.org/10.1067/mnc.2002.123122.

16. Fang LL, Zhang PY, Wang C, Wang LM, Ma XM, Shi HW, et al. Two-dimensional strain combined with

adenosine stress echocardiography assessment of viable myocardium. Heart Vessels. 2011;26:206 13.

https://doi.org/10.1007/s00380-010-0068-2.

17. Qu HY, Yao GH, Sun WY, Chen L, Li XN, Zhang PF, et al. Assessment of ischemic myocardium by

15

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

strain-rate imaging during adenosine stress echocardiography. Int J Cardiovasc Imaging.

2007;23:725 32. https://doi.org/10.1007/s10554-006-9183-7.

18. Ran H, Zhang PY, Fang LL, Ma XW, Wu WF, Feng WF. Clinic value of two-dimensional speckle

tracking combined with adenosine stress echocardiography for assessment of myocardial viability.

Echocardiography. 2012;29:688 94. https://doi.org/10.1111/j.1540-8175.2012.01690.x.

19. Pedrizzetti G, Claus P, Kilner PJ, Nagel E. Principles of cardiovascular magnetic resonance feature

tracking and echocardiographic speckle tracking for informed clinical use. J Cardiovasc Magn Reson.

2016;18:51. https://doi.org/10.1186/s12968-016-0269-7.

20. Xu L, Pagano JJ, Haykowksy MJ, Ezekowitz JA, Oudit GY, Mikami Y, et al. Layer-specific strain in

patients with heart failure using cardiovascular magnetic resonance: not all layers are the same. J

Cardiovasc Magn Reson. 2020;22:81. https://doi.org/10.1186/s12968-020-00680-6.

21. Nakatani S. Left ventricular rotation and twist: why should we learn? J Cardiovasc Ultrasound.

2011;19:1 6. https://doi.org/10.4250/jcu.2011.19.1.1.

22. Kowallick JT, Lamata P, Hussain ST, Kutty S, Steinmetz M, Sohns JM, et al. Quantification of left

ventricular torsion and diastolic recoil using cardiovascular magnetic resonance myocardial feature

tracking. PLoS One. 2014;9:e109164. https://doi.org/10.1371/journal.pone.0109164.

23. Sakuma M, Ishigaki H, Komaki K, Oikawa Y, Katoh A, Nakagawa M, et al. Right ventricular ejection

function assessed by cineangiography--Importance of bellows action. Circ J. 2002;66:605 9.

https://doi.org/10.1253/circj.66.605.

24. Kovács A, Lakatos B, Tokodi M, Merkely B. Right ventricular mechanical pattern in health and disease:

beyond longitudinal shortening. Heart Fail Rev. 2019;24:511 20. https://doi.org/10.1007/s10741-01909778-1.

25. Kawaguchi N, Okayama H, Kawamura G, Shigematsu T, Takahashi T, Kawada Y, et al. Clinical

usefulness of coronary flow reserve ratio for the detection of significant coronary artery disease on 13NAmmonia positron emission tomography. Circ J. 2018;82:486 93. https://doi:10.1253/circj.CJ-17-0745.

26. Kawakubo M, Yamasaki Y, Kamitani T, Sagiyama K , Matsuura Y, Hino T, et al. Clinical usefulness of

right ventricular 3D area strain in the assessment of treatment effects of balloon pulmonary angioplasty in

chronic thromboembolic pulmonary hypertension: comparison with 2D feature-tracking MRI. Eur

Radiol. 2019;29:4583 92. https://doi.org/10.1007/s00330-019-6008-3.

16

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

27. Kawakubo M, Nagao M, Ishizaki U, Shiina Y, Inai K, Yamasaki Y, et al. Feature-tracking MRI fractal

analysis of right ventricular remodeling in adults with congenitally corrected transposition of the great

arteries. Radiol Cardiothorac Imaging. 2019;1:e190026. https://doi.org/10.1148/ryct.2019190026.

17

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

FIGURE LEGENDS

Fig.1 Semi-automatic feature-tracking in cine imaging of positron emission tomography

Images from left to right indicate the flow of the image processing. First, the endocardial border was manually

defined as a freehand line at end-diastole (green square). Then, the line was replaced with 7 points, and the

template image centered on each point was tracked through a cardiac cycle. The upper row indicates the

tracking of the right ventricular free wall on horizontal long-axis images (magenta square). The lower row

indicates the tracking of the left ventricular inferior wall on vertical long-axis images (yellow square).

Fig.2 Systolic longitudinal strain values according to myocardial flow reserve status

(a) Right ventricular free-wall longitudinal strain values in patients with RCA-MFR<2.0 (purple/dark purple),

with LAD/LCx-MFR<2.0 (blue/dark blue), with regional

for all territories (red/dark red), and

control (green/dark green). (b) Left ventricular inferior-wall longitudinal strain values in patients with RCAMFR<2.0 (purple/dark purple), with LAD/LCx-MFR<2.0 (blue/dark blue), with regional

for all

territories (red/dark red), and control (green/dark green).

**P<0.01, *P<0.05. RV, right ventricular; LV, left ventricular; MFR, myocardial flow reserve; RCA, right

coronary artery; LAD, left anterior descending artery; LCx, left circumflex coronary artery.

Fig.3 Systolic longitudinal strain values according to the presence of ischemic image findings

Right ventricular free-wall longitudinal strain values in patients with RCA ischemia (purple/dark purple), with

LAD/LCx ischemia (blue/dark blue), without ischemia (red/dark red), and control (green/dark green).

**P<0.01, *P<0.05. RV, right ventricular; RCA, right coronary artery; LAD, left anterior descending artery;

LCx, left circumflex coronary artery

Fig.4 13N-ammonia PET images (left) and the RV-LS curve (right) for a woman in her 50s with RCAMFR=1.20 (blue) and for a man in his late 60s with RCA-MFR

.0 (red)

In the patients with RCA-MFR=1.20, stressed RV-LS (blue solid curve) was reduced compared to the resting

state (blue dashed line). In patients with RCAto that in the resting state (red dashed line).

3.0, stressed RV-LS (red solid curve) increased compared

18

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

PET, positron emission tomography; RV-LS, right ventricular longitudinal strain; RCA, right coronary artery;

MFR, myocardial flow reserve.

Fig.5 Correlations between right ventricular free-wall strains and regional myocardial flow reserves

Scatter plots show the correlations between longitudinal strain and regional myocardial flow reserve. Plots in

the upper and lower rows indicate the values in the stressed and resting states, respectively.

rS

, right ventricular; MFR,

myocardial flow reserve; RCA, right coronary artery; LAD, left anterior descending artery; LCx, left

circumflex coronary artery.

Fig.6 Correlations between left ventricular inferior-wall strains and regional myocardial flow reserves.

Scatter plots show the correlations between longitudinal strain and regional myocardial flow reserve. Plots in

the upper and lower rows indicate the values in the stressed and resting states, respectively.

rS

, left ventricular; MFR,

myocardial flow reserve; RCA, right coronary artery; LAD, left anterior descending artery; LCx, left

circumflex coronary artery.

Endocardial line

End-diastole

End-systole

Mid-diastole

RV free-wall tracking

LV inferior-wall tracking

FIGURE 1. Semi-automatic feature-tracking in cine imaging of positron emission tomography.

Images from left to right indicate the flow of the image processing. First, the endocardial border was manually defined as a

freehand line at end-diastole (green square). Then, the line was replaced with 7 points, and the template image centered on

each point was tracked through a cardiac cycle. The upper row indicates the tracking of the right ventricular free wall on

horizontal long-axis images (magenta square). The lower row indicates the tracking of the left ventricular inferior wall on

vertical long-axis images (yellow square).

a. RV free-wall strain

b. LV inferior-wall strain

FIGURE 2. Systolic longitudinal strain values according to myocardial flow reserve status.

(a) Right ventricular free-wall longitudinal strain values in patients with RCA-MFR<2.0 (purple/dark purple), with

LAD/LCxgreen). (b) Left ventricular inferior-wall longitudinal strain values in patients with RCA-MFR<2.0 (purple/dark purple), with

LAD/LCxgreen).

**P<0.01, *P<0.05. RV, right ventricular; LV, left ventricular; MFR, myocardial flow reserve; RCA, right coronary artery;

LAD, left anterior descending artery; LCx, left circumflex coronary artery.

FIGURE 3. Systolic longitudinal strain values according to presence of ischemic image findings.

Right ventricular free-wall longitudinal strain values in patients with RCA ischemia (purple/dark purple), with LAD/LCxischemia (blue/dark blue), without ischemia (red/dark red), and control (green/dark green).

**P<0.01, *P<0.05. RV, right ventricular; RCA, right coronary artery; LAD, left anterior descending artery; LCx, left

circumflex coronary artery.

End-systole

RV longitudinal strain [%]

RCA-MFR=1.20

End-diastole

R-R duration [%]

FIGURE 4. 13N-ammonia PET images (left) and the RV-LS curve (right) for a woman in her 50s with RCAMFR=1.20 (blue) and for a man in his late 60s with RCAIn the patients with RCA-MFR=1.20, stressed RV-LS (blue solid curve) was reduced compared to the resting state (blue

dashed line). In patients with RCA-LS (red solid curve) increased compared to that in the resting

state (red dashed line).

PET, positron emission tomography; RV-LS, right ventricular longitudinal strain; RCA, right coronary artery; MFR,

myocardial flow reserve.

RV free-wall strain vs. RCA-MFR

RV free-wall strain vs. LAD-MFR

rS

P <0.0001

-40

-50

-10

RV longitudinal strain [%]

RV longitudinal strain [%]

RV longitudinal strain [%]

Stress state

-30

-20

-30

-40

-50

-60

P = 0.74

-30

-40

-50

Myocardial flow reserve

-20

-30

-40

-60

rS

P = 0.67

-10

-50

Myocardial flow reserve

RV longitudinal strain [%]

-20

-40

-60

P = 0.72

RV longitudinal strain [%]

RV longitudinal strain [%]

Resting state

-10

-30

Myocardial flow reserve

-10

-60

-20

-50

Myocardial flow reserve

rS

P <0.0001

-10

-20

-60

rS

P <0.0001

-10

RV free-wall strain vs. LCx-MFR

-20

-30

-40

-50

Myocardial flow reserve

-60

Myocardial flow reserve

FIGURE 5. Correlations between right ventricular free-wall strains andregional myocardial flow reserves.

Scatter plots show the correlations between longitudinal strain and regional myocardial flow reserve. Plots in the upper and

lower rows indicate the values in the stressed and resting states, respectively.

rS

reserve; RCA, right coronary artery; LAD, left anterior descending artery; LCx, left circumflex coronary artery.

rS

P = 0.22

-10

-20

-30

-40

-10

-20

-30

-40

-50

P = 0.15

-30

-40

Myocardial flow reserve

-10

-20

-30

-40

-50

P = 0.07

-10

-20

-30

-40

-50

Myocardial flow reserve

Myocardial flow reserve

rS

P = 0.42

LV longitudinal strain [%]

-20

LV longitudinal strain [%]

LV longitudinal strain [%]

Resting state

-10

-50

rS

P = 0.10

Myocardial flow reserve

Myocardial flow reserve

LV inferior-wall strain vs. LCx-MFR

rS

P = 0.09

LV longitudinal strain [%]

LV longitudinal strain [%]

Stress state

-50

LV inferior-wall strain vs. LAD-MFR

LV longitudinal strain [%]

LV inferior-wall strain vs. RCA-MFR

-10

-20

-30

-40

-50

Myocardial flow reserve

FIGURE 6. Correlations between left ventricular inferior-wall strains and regional myocardial flow reserves.

Scatter plots show the correlations between longitudinal strain and regional myocardial flow reserve. Plots in the upper and

lower rows indicate the values in the stressed and resting states, respectively.

rS

reserve; RCA, right coronary artery; LAD, left anterior descending artery; LCx, left circumflex coronary artery.

a. RV free-wall strain

b. LV inferior-wall strain

FIGURE 3. Systolic longitudinal strain values according to presence of ischemic image findings.

(a) Right ventricular free-wall longitudinal strain values in patients with RCA ischemia (purple/dark purple), with LAD/LCxischemia (blue/dark blue), without ischemia (red/dark red), and control (green/dark green). (b) Left ventricular inferior-wall

longitudinal strain values in patients with RCA ischemia (purple/dark purple), with LAD/LCx-MFR ischemia (blue/dark

blue), without ischemia (red/dark red), and control (green/dark green).

**P<0.01, *P<0.05. RV, right ventricular; LV, left ventricular; RCA, right coronary artery; LAD, left anterior descending

artery; LCx, left circumflex coronary artery.

TABLE 1 Baseline patient characteristics and 13N-ammonia PET measurements

Characteristics

Number

RCA-MFR<2.0

LAD-MFR<2.0 or

Control

LCx-MFR<2.0

34

11

48

10

69 ± 11

68 ± 11

67 ± 10

41 ± 15

20/14

7/4

34/14

6/4

Hypertension

24

36

Dyslipidemia

15

23

Diabetes mellitus

20

38

Smoking

15

22

Positive family history

13

History of myocardial infarction

Previous PCI

Previous CABG

SSS

9±9

8±8

2±3

2±3

SRS

3±4

3±4

1±1

1±1

SDS

6±8

5±5

2±3

1±2

Stress MBF [mL/g/min]

1.60 ± 0.56

1.98 ± 0.40

2.43 ± 0.54

2.43 ± 1.00

Resting MBF [mL/g/min]

1.05 ± 0.29

1.00 ± 0.21

0.92 ± 0.22

1.06 ± 0.28

Global-MFR

1.5 ± 0.4

2.0 ± 0.1

2.7 ± 0.6

2.2 ± 0.6

RCA-MFR

1.5 ± 0.4

2.3 ± 0.2

2.8 ± 0.5

2.3 ± 0.6

LAD-MFR

1.6 ± 0.4

2.0 ± 0.2

2.7 ± 0.6

2.3 ± 0.6

LCx-MFR

1.6 ± 0.4

1.8 ± 0.3

2.7 ± 0.6

2.2 ± 0.6

Stress LVEDV [mL]

105 ± 33

101 ± 27

99 ± 25

76 ± 15

Age [year]

Male/Female

Cardiovascular risk factor

Clinical history of CAD

Ammonia PET measurements

Stress LVESV [mL

44 ± 29

38 ± 20

30± 16

17 ± 5

Stress LVEF [%]

62 ± 16

64 ± 12

71 ± 9

78 ± 4

Resting LVEDV [mL]

92 ± 35

89 ± 28

85 ± 23

71 ± 15

Resting LVESV [mL]

38 ± 29

31 ± 20

25 ± 13

17 ± 5

Resting LVEF [%]

66 ± 15

67 ± 14

72 ± 9

76 ± 5

Unless otherwise indicated, data are presented as the mean ± standard deviation. CAD, coronary artery

disease; PCI, percutaneous coronary intervention; CABG, coronary artery bypass grafting; PET, positron

emission tomography; SSS, summed stress score; SRS, summed rest score; SDS, summed difference score;

MBF, myocardial blood flow; MFR, myocardial flow reserve; RCA, right coronary artery; LV, left ventricular;

EDV, end-diastolic volume; ESV, end-systole volume; EF, ejection fraction.

TABLE 2 Reproducibility of longitudinal strain analyses

Intra-observer reproducibility

Parameter

Bias (LOA)

Stress

1.40 ( 16.8

RV-LS

to 14.1)

Resting

0.3 ( 14.0

RV-LS

to 13.4)

Stress

0.8 ( 4.0 to

LV-LS

5.5)

Resting

0.46 ( 4.4

LV-LS

to 3.5)

SDD

7.9

7.0

2.4

2.0

ICC (95%

CI)

Inter-observer reproducibility

Bias (LOA)

0.85 (0.83 to

1.0 ( 18.3

0.87)

to 16.3)

0.88 (0.85 to

0.03( 16.1

0.90)

to 16.1)

0.97 (0.83 to

0.29 ( 4.97

0.99)

to 4.39)

0.98 (0.97 to

0.15 ( 4.24

0.98)

to 3.94)

SDD

8.8

8.2

2.5

2.1

ICC (95%

CI)

0.82 (0.80 to

0.87)

0.83 (0.80 to

0.86)

0.97 (0.96 to

0.97)

0.97 (0.97 to

0.98)

RV, right ventricular; LV, left ventricular; LS, longitudinal strain; LOA, limit of agreement; SDD, standard

deviation of the difference; ICC, intraclass correlation coefficient; CI, confidence interval.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る