リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Fission yeast Rad8-dependent PCNA ubiquitination at lysine 107 promotes gross chromosomal rearrangements」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Fission yeast Rad8-dependent PCNA ubiquitination at lysine 107 promotes gross chromosomal rearrangements

蘇, 傑 大阪大学 DOI:10.18910/85277

2021.06.23

概要

Faithful repair of DNA damage is crucial for maintaining genome integrity. Spontaneous double strand breaks (DSBs) and stalled replication forks can induce homologous recombination (HR). HR is considered as an error-free DNA repair mechanism, as it uses intact homologous DNA as the template. However, homologous recombination can occur between ectopic sites from repetitive sequences and when accompanied with crossover or through break-induced replication (BIR), can lead to gross chromosomal rearrangements (GCRs). GCRs, such as deletion, translocation, and inversion, can cause cell death and diseases including cancer. However, how GCRs occur remains unclear. Rad51 recombinase, a key HR factor, catalyzes DNA strand exchange with homologous duplex DNA molecules. Rad51 promotes gene conversion, a non-crossover type of recombination. Loss of Rad51 reduces gene conversion causing the DNA damage be repaired by GCRs. In fission yeast, loss of Rad51 greatly increases the formation of isochromosomes and truncation. Isochromosomes that contain mirrorimaged arms formed between centromere inverted repeats. Truncations formed by addition of de novo telomeres to broken ends. Yeast Rad52 promotes Rad51 loading onto DNA, but this function is not conserved in mammals. Both yeast and mammalian Rad52 catalyzes single-strand annealing (SSA) of complementary single-stranded DNA (ssDNA) molecules. SSA is independent of Rad51. Rad52- dependent SSA can cause GCRs, as the rad52-R45K mutation, which impairs SSA in vitro, largely reduces isochromosome formation in rad51∆ cells. Mus81, a crossover-specific endonuclease is required for Rad52-dependent GCRs probably by cleaving the joint molecule formed by Rad52 to crossover products. Rad52-dependent SSA can also lead to gene conversion, but Mus81 is not required for gene conversion. Does the recruitment of Mus81 determines the fate of the joint molecule leading to GCRs, but not gene conversion? The detailed mechanism of Rad52-dependent GCRs remains unclear.

Here, I provide genetic evidence that fission yeast Rad8 and Mms2-Ubc4 E2 conjugating enzymes catalyze PCNA lysine 107 (K107) ubiquitination to promote Rad52-dependnet GCRs. Rad8 E3 ligase is the homolog of budding yeast Rad5 and human HLTF. Using an extra chromosome, ChLC to monitor GCRs in fission yeast, I found that loss of Rad8 reduced GCRs in rad51Δ cells. Two types of GCRs were detected using ChLC in rad51∆ cells: isochromosome and truncation. rad8Δ reduced 75% of the isochromosomes formed in rad51Δ cells, but did not affect chromosomal truncations, showing that Rad8 is specifically required for homology-mediated GCRs. Rad8 contains three conserved domains: HIRAN, SNF2/SWI2 translocase, and RING finger domains. The HIRAN domain mediates binding to 3' ends of ssDNA. The translocase domain contains an ATP binding motif and catalyzes translocation on doublestranded DNA (dsDNA). The RING domain binds ubiquitin E2 enzyme and transfers ubiquitin from E2 to the substrate. Mutations in HIRAN and RING but not translocase domain of Rad8 reduced GCRs, suggesting that the abilities of Rad8 to bind the 3'-end of ssDNA and to catalyze ubiquitination are required for isochromosome formation. With the aid of Mms2-Ubc13 and Mms2-Ubc4 E2 ubiquitinconjugating complexes, Rad8 catalyzes ubiquitination of the same substrate, PCNA, but at different sites, K164 and K107, respectively. PCNA ubiquitination at K164 promotes a template switching pathway of DNA damage tolerance, while the role of ubiquitination at PCNA K107 is unclear. mms2 and ubc4, but not ubc13 reduced GCRs. PCNA K107R but not K164R reduced GCRs in rad51∆ cells. rad8-RING, ubc4, and PCNA K107R mutations reduced GCRs in epistatic manner, suggesting that, with the aid of Ubc4-Mms2, Rad8 ubiquitinates PCNA at K107 to promote GCRs. I also found that the rad52-R45K, mus81∆ and PCNA K107R mutations epistatically reduced the GCR rate, showing that PCNA K107 works with Mus81 in Rad52-dependent GCRs. PCNA is a homotrimer forming ring structure. K107 is located at the PCNA-PCNA subunits interface, raising the possibility that K107 ubiquitination weakens the subunits interaction. Remarkably, an interface mutation D150E greatly increased the GCR rate of pcn1-K107R cells, showing that the interface mutation bypasses the requirement of PCNA K107 in GCRs. D150E mutation also increased the GCR rate of rad8-RING cells, showing that the mutation bypasses Rad8 ubiquitination activity. Taken together, these results suggest that Rad8-Ubc4-Mms2- dependent PCNA K107 ubiquitination weakens PCNAPCNA subunits interaction to cause GCRs. I hypothesize that PCNA K107 ubiquitination destabilizes the PCNA trimer, which cause the sliding of PCNA to expose ssDNA that can used by Rad52- dependent SSA and/or make space for Mus81 recruitment. This study has uncovered a role of the noncanonical PCNA ubiquitination at K107 in Rad52- dependent GCRs.

参考文献

Achar YJ, Balogh D, Neculai D, Juhasz S, Morocz M, Gali H, Dhe-Paganon S, Venclovas C, Haracska L. 2015. Human HLTF mediates postreplication repair by its HIRAN domaindependent replication fork remodelling. Nucleic Acids Res 43: 10277-10291.

Adamson AW, Ding YC, Mendez-Dorantes C, Bailis AM, Stark JM, Neuhausen SL. 2020. The RAD52 S346X variant reduces risk of developing breast cancer in carriers of pathogenic germline BRCA2 mutations. Mol Oncol.

Blastyak A, Hajdu I, Unk I, Haracska L. 2010. Role of double-stranded DNA translocase activity of human HLTF in replication of damaged DNA. Mol Cell Biol 30: 684-693.

Blastyak A, Pinter L, Unk I, Prakash L, Prakash S, Haracska L. 2007. Yeast Rad5 protein required for postreplication repair has a DNA helicase activity specific for replication fork regression. Mol Cell 28: 167-175.

Boveri T. 1914. Zur frage der entstehung maligner tumoren. G. Fischer, Jena,.

Butturini A, Gale RP, Verlander PC, Adler-Brecher B, Gillio AP, Auerbach AD. 1994. Hematologic abnormalities in Fanconi anemia: an International Fanconi Anemia Registry study. Blood 84: 1650-1655.

Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E et al. 2012. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2: 401-404.

Choe KN, Moldovan GL. 2017. Forging Ahead through Darkness: PCNA, Still the Principal Conductor at the Replication Fork. Mol Cell 65: 380-392.

Clark AB, Valle F, Drotschmann K, Gary RK, Kunkel TA. 2000. Functional interaction of proliferating cell nuclear antigen with MSH2-MSH6 and MSH2-MSH3 complexes. J Biol Chem 275: 36498-36501.

Clarke L, Amstutz H, Fishel B, Carbon J. 1986. Analysis of centromeric DNA in the fission yeast Schizosaccharomyces pombe. Proc Natl Acad Sci U S A 83: 8253-8257.

Daee DL, Ferrari E, Longerich S, Zheng XF, Xue X, Branzei D, Sung P, Myung K. 2012. Rad5- dependent DNA repair functions of the Saccharomyces cerevisiae FANCM protein homolog Mph1. J Biol Chem 287: 26563-26575.

Daigaku Y, Etheridge TJ, Nakazawa Y, Nakayama M, Watson AT, Miyabe I, Ogi T, Osborne MA, Carr AM. 2017. PCNA ubiquitylation ensures timely completion of unperturbed DNA replication in fission yeast. PLoS Genet 13: e1006789.

Das-Bradoo S, Nguyen HD, Wood JL, Ricke RM, Haworth JC, Bielinsky AK. 2010a. Defects in DNA ligase I trigger PCNA ubiquitylation at Lys 107. Nat Cell Biol 12: 74-79; sup pp 71-20. -. 2010b. Defects in DNA ligase I trigger PCNA ubiquitylation at Lys 107. Nat Cell Biol 12: 74- 79.

Dave A, Pai CC, Durley SC, Hulme L, Sarkar S, Wee BY, Prudden J, Tinline-Purvis H, Cullen JK, Walker C et al. 2020. Homologous recombination repair intermediates promote efficient de novo telomere addition at DNA double-strand breaks. Nucleic Acids Res 48: 1271-1284.

Davies AA, Masson JY, McIlwraith MJ, Stasiak AZ, Stasiak A, Venkitaraman AR, West SC. 2001. Role of BRCA2 in control of the RAD51 recombination and DNA repair protein. Mol Cell 7: 273-282.

Ding L, Forsburg SL. 2014. Essential domains of Schizosaccharomyces pombe Rad8 required for DNA damage response. G3 (Bethesda) 4: 1373-1384.

Doe CL, Osman F, Dixon J, Whitby MC. 2004. DNA repair by a Rad22-Mus81-dependent pathway that is independent of Rhp51. Nucleic Acids Res 32: 5570-5581.

Egozcue S, Blanco J, Vendrell JM, Garcia F, Veiga A, Aran B, Barri PN, Vidal F, Egozcue J. 2000. Human male infertility: chromosome anomalies, meiotic disorders, abnormal spermatozoa and recurrent abortion. Hum Reprod Update 6: 93-105.

Elliott B, Richardson C, Jasin M. 2005. Chromosomal translocation mechanisms at intronic alu elements in mammalian cells. Mol Cell 17: 885-894.

Frampton J, Irmisch A, Green CM, Neiss A, Trickey M, Ulrich HD, Furuya K, Watts FZ, Carr AM, Lehmann AR. 2006. Postreplication repair and PCNA modification in Schizosaccharomyces pombe. Mol Biol Cell 17: 2976-2985.

Gekas J, Thepot F, Turleau C, Siffroi JP, Dadoune JP, Briault S, Rio M, Bourouillou G, CarrePigeon F, Wasels R et al. 2001. Chromosomal factors of infertility in candidate couples for ICSI: an equal risk of constitutional aberrations in women and men. Hum Reprod 16:82-90.

Goellner EM, Smith CE, Campbell CS, Hombauer H, Desai A, Putnam CD, Kolodner RD. 2014. PCNA and Msh2-Msh6 activate an Mlh1-Pms1 endonuclease pathway required for Exo1- independent mismatch repair. Mol Cell 55: 291-304.

Gupta S, Gellert M, Yang W. 2011. Mechanism of mismatch recognition revealed by human MutSbeta bound to unpaired DNA loops. Nat Struct Mol Biol 19: 72-78.

Haaf T, Ward DC. 1994. Structural analysis of alpha-satellite DNA and centromere proteins using extended chromatin and chromosomes. Hum Mol Genet 3: 697-709.

Haber JE. 2000. Lucky breaks: analysis of recombination in Saccharomyces. Mutat Res 451: 53-69.

Heisterkamp N, Stephenson JR, Groffen J, Hansen PF, de Klein A, Bartram CR, Grosveld G. 1983. Localization of the c-ab1 oncogene adjacent to a translocation break point in chronic myelocytic leukaemia. Nature 306: 239-242.

Hiraoka Y, Henderson E, Blackburn EH. 1998. Not so peculiar: fission yeast telomere repeats. Trends Biochem Sci 23: 126.

Hishiki A, Hara K, Ikegaya Y, Yokoyama H, Shimizu T, Sato M, Hashimoto H. 2015. Structure of a Novel DNA-binding Domain of Helicase-like Transcription Factor (HLTF) and Its Functional Implication in DNA Damage Tolerance. J Biol Chem 290: 13215-13223.

Hoege C, Pfander B, Moldovan GL, Pyrowolakis G, Jentsch S. 2002. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419: 135-141.

Hollingsworth NM, Brill SJ. 2004. The Mus81 solution to resolution: generating meiotic crossovers without Holliday junctions. Genes Dev 18: 117-125.

Irie H, Yamamoto I, Tarumoto Y, Tashiro S, Runge KW, Ishikawa F. 2019. Telomere-binding proteins Taz1 and Rap1 regulate DSB repair and suppress gross chromosomal rearrangements in fission yeast. PLoS Genet 15: e1008335.

Ivanov EL, Sugawara N, Fishman-Lobell J, Haber JE. 1996. Genetic requirements for the singlestrand annealing pathway of double-strand break repair in Saccharomyces cerevisiae. Genetics 142: 693-704.

Jalan M, Oehler J, Morrow CA, Osman F, Whitby MC. 2019. Factors affecting template switch recombination associated with restarted DNA replication. Elife 8.

Johnson C, Gali VK, Takahashi TS, Kubota T. 2016a. PCNA Retention on DNA into G2/M Phase Causes Genome Instability in Cells Lacking Elg1. Cell Rep 16: 684-695.

-. 2016b. PCNA Retention on DNA into G2/M Phase Causes Genome Instability in Cells Lacking Elg1. Cell Reports 16: 684-695.

Kakarougkas A, Jeggo PA. 2014. DNA DSB repair pathway choice: an orchestrated handover mechanism. Br J Radiol 87: 20130685.

Kile AC, Chavez DA, Bacal J, Eldirany S, Korzhnev DM, Bezsonova I, Eichman BF, Cimprich KA. 2015. HLTF's ancient HIRAN domain binds 3' DNA ends to drive replication fork reversal. Mol Cell 58: 1090-1100.

Kim W, Bennett EJ, Huttlin EL, Guo A, Li J, Possemato A, Sowa ME, Rad R, Rush J, Comb MJ et al. 2011. Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol Cell 44: 325-340.

Klein HL. 2020. Stressed DNA replication generates stressed DNA. Proc Natl Acad Sci U S A 117: 10108-10110.

Kobayashi H, Ohno S, Sasaki Y, Matsuura M. 2013. Hereditary breast and ovarian cancer susceptibility genes (review). Oncol Rep 30: 1019-1029.

Kobbe D, Kahles A, Walter M, Klemm T, Mannuss A, Knoll A, Focke M, Puchta H. 2016. AtRAD5A is a DNA translocase harboring a HIRAN domain which confers binding to branched DNA structures and is required for DNA repair in vivo. Plant J 88: 521-530.

Kowalczykowski SC. 2015. An overview of the molecular mechanisms of recombinational DNA repair. Cold Spring Harb Perspect Biol 7.

Kubota T, Katou Y, Nakato R, Shirahige K, Donaldson AD. 2015. Replication-Coupled PCNA Unloading by the Elg1 Complex Occurs Genome-wide and Requires Okazaki Fragment Ligation. Cell Rep 12: 774-787.

Kumar V, Abbas AK, Aster JC. 2012. Robbins Basic Pathology E-Book. Elsevier Health Sciences.

Lambert S, Mizuno K, Blaisonneau J, Martineau S, Chanet R, Freon K, Murray JM, Carr AM, Baldacci G. 2010. Homologous recombination restarts blocked replication forks at the expense of genome rearrangements by template exchange. Mol Cell 39: 346-359.

Lambert S, Watson A, Sheedy DM, Martin B, Carr AM. 2005. Gross chromosomal rearrangements and elevated recombination at an inducible site-specific replication fork barrier. Cell 121: 689-702.

Lander ES Linton LM Birren B Nusbaum C Zody MC Baldwin J Devon K Dewar K Doyle M FitzHugh W et al. 2001. Initial sequencing and analysis of the human genome. Nature 409: 860-921.

Leung W, Baxley RM, Moldovan GL, Bielinsky AK. 2018. Mechanisms of DNA Damage Tolerance: Post-Translational Regulation of PCNA. Genes (Basel) 10: 10.

Li J, Holzschu DL, Sugiyama T. 2013. PCNA is efficiently loaded on the DNA recombination intermediate to modulate polymerase delta, eta, and zeta activities. Proc Natl Acad Sci U S A 110: 7672-7677.

Li JY, Gaillard F, Moreau A, Harousseau JL, Laboisse C, Milpied N, Bataille R, Avet-Loiseau H. 1999. Detection of translocation t(11;14)(q13;q32) in mantle cell lymphoma by fluorescence in situ hybridization. Am J Pathol 154: 1449-1452.

Li X, Stith CM, Burgers PM, Heyer WD. 2009. PCNA is required for initiation of recombinationassociated DNA synthesis by DNA polymerase delta. Mol Cell 36: 704-713.

Lin M, Chang CJ, Green NS. 1996. A new method for estimating high mutation rates in cultured cells. Mutat Res 351: 105-116.

Lindahl T. 1993. Instability and decay of the primary structure of DNA. Nature 362: 709-715.

Lurie IW, Lazjuk GI, Ussova YI, Presman EB, Gurevich DB. 1980. The Wolf-Hirschhorn syndrome. I. Genetics. Clin Genet 17: 375-384.

Majka J, Burgers PM. 2004. The PCNA-RFC families of DNA clamps and clamp loaders. Prog Nucleic Acid Res Mol Biol 78: 227-260.

Masuda Y, Mitsuyuki S, Kanao R, Hishiki A, Hashimoto H, Masutani C. 2018. Regulation of HLTF-mediated PCNA polyubiquitination by RFC and PCNA monoubiquitination levels determines choice of damage tolerance pathway. Nucleic Acids Res 46: 11340-11356.

Matsumoto T, Fukui K, Niwa O, Sugawara N, Szostak JW, Yanagida M. 1987. Identification of healed terminal DNA fragments in linear minichromosomes of Schizosaccharomyces pombe. Mol Cell Biol 7: 4424-4430.

Mattina T, Perrotta CS, Grossfeld P. 2009. Jacobsen syndrome. Orphanet J Rare Dis 4: 9.

McVey M, Lee SE. 2008. MMEJ repair of double-strand breaks (director's cut): deleted sequences and alternative endings. Trends Genet 24: 529-538.

Mendez-Dorantes C, Bhargava R, Stark JM. 2018. Repeat-mediated deletions can be induced by a chromosomal break far from a repeat, but multiple pathways suppress such rearrangements. Genes Dev 32: 524-536.

Metzger MB, Pruneda JN, Klevit RE, Weissman AM. 2014. RING-type E3 ligases: master manipulators of E2 ubiquitin-conjugating enzymes and ubiquitination. Biochim Biophys Acta 1843: 47-60.

Meyer D, Fu BX, Heyer WD. 2015. DNA polymerases δ and λ cooperate in repairing doublestrand breaks by microhomology-mediated end-joining in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 112: E6907-6916.

Miyazaki T, Bressan DA, Shinohara M, Haber JE, Shinohara A. 2004. In vivo assembly and disassembly of Rad51 and Rad52 complexes during double-strand break repair. Embo J 23: 939-949.

Mizuno K, Lambert S, Baldacci G, Murray JM, Carr AM. 2009. Nearby inverted repeats fuse to generate acentric and dicentric palindromic chromosomes by a replication template exchange mechanism. Genes Dev 23: 2876-2886.

Moldovan GL, Pfander B, Jentsch S. 2007. PCNA, the maestro of the replication fork. Cell 129:665-679.

Mortensen UH, Bendixen C, Sunjevaric I, Rothstein R. 1996. DNA strand annealing is promoted by the yeast Rad52 protein. Proc Natl Acad Sci U S A 93: 10729-10734.

Motegi A, Liaw HJ, Lee KY, Roest HP, Maas A, Wu X, Moinova H, Markowitz SD, Ding H, Hoeijmakers JH et al. 2008. Polyubiquitination of proliferating cell nuclear antigen by HLTF and SHPRH prevents genomic instability from stalled replication forks. Proc Natl Acad Sci U S A 105: 12411-12416.

Nakamura K, Okamoto A, Katou Y, Yadani C, Shitanda T, Kaweeteerawat C, Takahashi TS, Itoh T, Shirahige K, Masukata H et al. 2008. Rad51 suppresses gross chromosomal rearrangement at centromere in Schizosaccharomyces pombe. Embo J 27: 3036-3046.

Nasmyth KA. 1977. Temperature-sensitive lethal mutants in the structural gene for DNA ligase in the yeast Schizosaccharomyces pombe. Cell 12: 1109-1120.

Nguyen HD, Becker J, Thu YM, Costanzo M, Koch EN, Smith S, Myung K, Myers CL, Boone C, Bielinsky AK. 2013. Unligated Okazaki Fragments Induce PCNA Ubiquitination and a Requirement for Rad59-Dependent Replication Fork Progression. Plos One 8: e66379.

Nguyen MO, Jalan M, Morrow CA, Osman F, Whitby MC. 2015. Recombination occurs within minutes of replication blockage by RTS1 producing restarted forks that are prone to collapse. Elife 4: e04539.

Nielsen FC, van Overeem Hansen T, Sorensen CS. 2016. Hereditary breast and ovarian cancer: new genes in confined pathways. Nat Rev Cancer 16: 599-612.

Niwa O, Matsumoto T, Yanagida M. 1986. Construction of a mini-chromosome by deletion and its mitotic and meiotic behaviour in fission yeast. Molecular and General Genetics MGG 203: 397-405.

Nowell PC, Hungerford DA. 1960. Chromosome studies on normal and leukemic human leukocytes. J Natl Cancer Inst 25: 85-109.

Ogawa Y, Takahashi T, Masukata H. 1999. Association of fission yeast Orp1 and Mcm6 proteins with chromosomal replication origins. Mol Cell Biol 19: 7228-7236.

Okita AK, Zafar F, Su J, Weerasekara D, Kajitani T, Takahashi TS, Kimura H, Murakami Y, Masukata H, Nakagawa T. 2019. Heterochromatin suppresses gross chromosomal rearrangements at centromeres by repressing Tfs1/TFIIS-dependent transcription. Commun Biol 2: 17.

Onaka AT, Su J, Katahira Y, Tang C, Zafar F, Aoki K, Kagawa W, Niki H, Iwasaki H, Nakagawa T. 2020. DNA replication machinery prevents Rad52-dependent single-strand annealing that leads to gross chromosomal rearrangements at centromeres. Commun Biol 3: 202.

Onaka AT, Toyofuku N, Inoue T, Okita AK, Sagawa M, Su J, Shitanda T, Matsuyama R, Zafar F, Takahashi TS et al. 2016. Rad51 and Rad54 promote noncrossover recombination between centromere repeats on the same chromatid to prevent isochromosome formation. Nucleic Acids Res 44: 10744-10757.

Osman F, Dixon J, Doe CL, Whitby MC. 2003. Generating crossovers by resolution of nicked Holliday junctions: a role for Mus81-Eme1 in meiosis. Mol Cell 12: 761-774.

Payen C, Koszul R, Dujon B, Fischer G. 2008. Segmental duplications arise from Pol32- dependent repair of broken forks through two alternative replication-based mechanisms. PLoS Genet 4: e1000175.

Pennaneach V, Putnam CD, Kolodner RD. 2006. Chromosome healing by de novo telomere addition in Saccharomyces cerevisiae. Mol Microbiol 59: 1357-1368.

Poppe B, Van Limbergen H, Van Roy N, Vandecruys E, De Paepe A, Benoit Y, Speleman F. 2001. Chromosomal aberrations in Bloom syndrome patients with myeloid malignancies. Cancer Genet Cytogenet 128: 39-42.

Rastogi RP, Richa, Kumar A, Tyagi MB, Sinha RP. 2010. Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair. J Nucleic Acids 2010: 592980.

Rattray AJ, Symington LS. 1994. Use of a chromosomal inverted repeat to demonstrate that the

RAD51 and RAD52 genes of Saccharomyces cerevisiae have different roles in mitotic recombination. Genetics 138: 587-595.

Reddy G, Golub EI, Radding CM. 1997. Human Rad52 protein promotes single-strand DNA annealing followed by branch migration. Mutat Res 377: 53-59.

Rosenberg RN. 2008. The Molecular and Genetic Basis of Neurologic and Psychiatric Disease. Wolters Kluwer Health/Lippincott Williams & Wilkins.

Rowley JD. 1973. Letter: A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 243: 290- 293.

Saffhill R, Margison GP, O'Connor PJ. 1985. Mechanisms of carcinogenesis induced by alkylating agents. Biochim Biophys Acta 823: 111-145.

Seino H, Kishi T, Nishitani H, Yamao F. 2003. Two ubiquitin-conjugating enzymes, UbcP1/Ubc4 and UbcP4/Ubc11, have distinct functions for ubiquitination of mitotic cyclin. Mol Cell Biol 23: 3497-3505.

Sfeir A, Symington LS. 2015. Microhomology-Mediated End Joining: A Back-up Survival Mechanism or Dedicated Pathway? Trends Biochem Sci 40: 701-714.

Shin S, Hyun K, Kim J, Hohng S. 2018. ATP Binding to Rad5 Initiates Replication Fork Reversal by Inducing the Unwinding of the Leading Arm and the Formation of the Holliday Junction. Cell Rep 23: 1831-1839.

Shinohara A, Ogawa T. 1998. Stimulation by Rad52 of yeast Rad51-mediated recombination. Nature 391: 404-407.

Sisakova A, Altmannova V, Sebesta M, Krejci L. 2017. Role of PCNA and RFC in promoting Mus81-complex activity. BMC Biol 15: 90.

Sugiyama T, Kowalczykowski SC. 2002. Rad52 protein associates with replication protein A (RPA)-single-stranded DNA to accelerate Rad51-mediated displacement of RPA and presynaptic complex formation. J Biol Chem 277: 31663-31672.

Surtees JA, Alani E. 2006. Mismatch repair factor MSH2-MSH3 binds and alters the conformation of branched DNA structures predicted to form during genetic recombination. J Mol Biol 360: 523-536.

Tamang S, Kishkevich A, Morrow CA, Osman F, Jalan M, Whitby MC. 2019. The PCNA unloader Elg1 promotes recombination at collapsed replication forks in fission yeast. Elife 8: e47277.

Therman E, Susman B, Denniston C. 1989. The nonrandom participation of human acrocentric chromosomes in Robertsonian translocations. Ann Hum Genet 53: 49-65.

Tsurimoto T, Stillman B. 1991. Replication factors required for SV40 DNA replication in vitro. I. DNA structure-specific recognition of a primer-template junction by eukaryotic DNA polymerases and their accessory proteins. J Biol Chem 266: 1950-1960.

Tsutsui Y, Kurokawa Y, Ito K, Siddique MS, Kawano Y, Yamao F, Iwasaki H. 2014. Multiple regulation of Rad51-mediated homologous recombination by fission yeast Fbh1. PLoS Genet 10: e1004542.

Ulrich HD. 2003. Protein-protein interactions within an E2-RING finger complex. Implications for ubiquitin-dependent DNA damage repair. J Biol Chem 278: 7051-7058.

Ulrich HD, Jentsch S. 2000. Two RING finger proteins mediate cooperation between ubiquitinconjugating enzymes in DNA repair. Embo J 19: 3388-3397.

Vilenchik MM, Knudson AG. 2003. Endogenous DNA double-strand breaks: production, fidelity of repair, and induction of cancer. Proc Natl Acad Sci U S A 100: 12871-12876.

Zhang H, Lawrence CW. 2005. The error-free component of the RAD6/RAD18 DNA damage tolerance pathway of budding yeast employs sister-strand recombination. Proc Natl Acad Sci U S A 102: 15954-15959.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る