リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Elucidating the Micronuclear Functions in the Central Nervous System」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Elucidating the Micronuclear Functions in the Central Nervous System

矢野, 更紗 筑波大学

2022.11.18

概要

The micronucleus is known to be a biomarker for genomic instability. Normally, micronuclei are produced by segregation errors and mechanical stresses arising from dividing or migrating cells. The quantification of micronuclei is also widely used to test genotoxicity in vitro. While the micronuclei often emerge in damaged tissues, it is unable accurate counting micronuclei because the traditionally systems for counting micronuclei process the two- dimensional information. Here, I introduce a novel MATLAB-based program for quantifying micronuclei (CAMDi: Calculating Automatic Micronuclei Distinction) in vitro and in vivo. CAMDi is adaptable to various experimental imaging techniques and is useful for obtaining reproducible data. Using CAMDi, I revealed a novel link between the emergence of micronuclei and neuroinflammation. I found that administration of LPS into mice slightly increases micronuclei formation in the hippocampus region. On the other hand, direct stimulation of primary neuron did not increase the number of micronuclei, suggesting that the micronuclear formation is mediated through an intercellular communication associated with neuroinflammation. I provide a novel tool, CAMDi, to quantify micronuclei and demonstrate that neuroinflammation cause the production of micronuclei in the brain.

この論文で使われている画像

参考文献

1 Howell, W. H. The New Morphological Element of the Blood. Science 3, 46-48, doi:10.1126/science.ns-3.49.46 (1884).

2 Dawson, D. W. & Bury, H. P. The significance of Howell-Jolly bodies and giant metamyelocytes in marrow smears. J Clin Pathol 14, 374-380, doi:10.1136/jcp.14.4.374 (1961).

3 Sears, D. A. & Udden, M. M. Howell-Jolly bodies: a brief historical review. Am J Med Sci 343, 407-409, doi:10.1097/MAJ.0b013e31823020d1 (2012).

4 Luzhna, L., Kathiria, P. & Kovalchuk, O. Micronuclei in genotoxicity assessment: from genetics to epigenetics and beyond. Front Genet 4, 131, doi:10.3389/fgene.2013.00131 (2013).

5 Krupina, K., Goginashvili, A. & Cleveland, D. W. Causes and consequences of micronuclei. Curr Opin Cell Biol 70, 91-99, doi:10.1016/j.ceb.2021.01.004 (2021).

6 Miller, K. N., Dasgupta, N., Liu, T., Adams, P. D. & Vizioli, M. G. Cytoplasmic chromatin fragments-from mechanisms to therapeutic potential. Elife 10, doi:10.7554/eLife.63728 (2021).

7 Jagetia, G. C. & Adiga, S. K. Correlation between micronuclei induction and cell survival in V79 cells exposed to paclitaxel (taxol) in conjunction with radiation. Mutat Res 377, 105-113, doi:10.1016/s0027-5107(97)00067-5 (1997).

8 Morita, T., MacGregor, J. T. & Hayashi, M. Micronucleus assays in rodent tissues other than bone marrow. Mutagenesis 26, 223-230, doi:10.1093/mutage/geq066 (2011).

9 Fenech, M. & Morley, A. A. Measurement of micronuclei in lymphocytes. Mutat Res 147, 29-36, doi:10.1016/0165-1161(85)90015-9 (1985).

10 Watters, G. P., Smart, D. J., Harvey, J. S. & Austin, C. A. H2AX phosphorylation as a genotoxicity endpoint. Mutat Res 679, 50-58, doi:10.1016/j.mrgentox.2009.07.007 (2009).

11 Wolf, K. et al. Physical limits of cell migration: control by ECM space and nuclear deformation and tuning by proteolysis and traction force. J Cell Biol 201, 1069-1084, doi:10.1083/jcb.201210152 (2013).

12 Denais, C. M. et al. Nuclear envelope rupture and repair during cancer cell migration. Science 352, 353-358, doi:10.1126/science.aad7297 (2016).

13 Raab, M. et al. ESCRT III repairs nuclear envelope ruptures during cell migration to limit DNA damage and cell death. Science 352, 359-362, doi:10.1126/science.aad7611 (2016).

14 Dou, Z. et al. Autophagy mediates degradation of nuclear lamina. Nature 527, 105-109, doi:10.1038/nature15548 (2015).

15 Mochida, K. et al. Receptor-mediated selective autophagy degrades the endoplasmic reticulum and the nucleus. Nature 522, 359-362, doi:10.1038/nature14506 (2015).

16 Rello-Varona, S. et al. Autophagic removal of micronuclei. Cell Cycle 11, 170- 176, doi:10.4161/cc.11.1.18564 (2012).

17 Zink, D., Fischer, A. H. & Nickerson, J. A. Nuclear structure in cancer cells. Nat Rev Cancer 4, 677-687, doi:10.1038/nrc1430 (2004).

18 Dou, Z. et al. Cytoplasmic chromatin triggers inflammation in senescence and cancer. Nature 550, 402-406, doi:10.1038/nature24050 (2017).

19 Bakhoum, S. F. et al. Chromosomal instability drives metastasis through a cytosolic DNA response. Nature 553, 467-472, doi:10.1038/nature25432 (2018).

20 Zhang, C. Z. et al. Chromothripsis from DNA damage in micronuclei. Nature. 522, 179-184, doi:10.1038/nature14493 (2015).

21 S. Yue. et al., Cell-type-specific role of lamin-B1 in thymus development and its inflammation-driven reduction in thymus aging. Aging Cell. 18(4), doi: 10.1111/acel.12952 (2019)

22 Amy H. Yang et al., Chromosome Segregation Defects Contribute to Aneuploidy in Normal Neural Progenitor Cells. J Neuro Sci. 23(32):10454 – 10462. (2003)

23 Migliore, L., Coppede, F., Fenech, M. & Thomas, P. Association of micronucleus frequency with neurodegenerative diseases. Mutagenesis 26, 85- 92, doi:10.1093/mutage/geq067 (2011).

24 Jaiswal, M., LaRusso, N. F., Burgart, L. J. & Gores, G. J. Inflammatory cytokines induce DNA damage and inhibit DNA repair in cholangiocarcinoma cells by a nitric oxide-dependent mechanism. Cancer Res 60, 184-190 (2000).

25 Sommer, S., Buraczewska, I. & Kruszewski, M. Micronucleus Assay: The State of Art, and Future Directions. Int J Mol Sci 21, doi:10.3390/ijms21041534 (2020).

26 Shibai-Ogata, A., Kakinuma, C., Hioki, T. & Kasahara, T. Evaluation of high- throughput screening for in vitro micronucleus test using fluorescence-based cell imaging. Mutagenesis 26, 709-719, doi:10.1093/mutage/ger037 (2011).

27 Wilson, A. et al. Transforming early pharmaceutical assessment of genotoxicity: applying statistical learning to a high throughput, multi end point in vitro micronucleus assay. Sci Rep 11, 2535, doi:10.1038/s41598-021-82115-5 (2021)

28 Shuryak, I. et al. Machine learning methodology for high throughput personalized neutron dose reconstruction in mixed neutron + photon exposures. Sci Rep 11, 4022, doi:10.1038/s41598-021-83575-5 (2021)

29 Tsuruta, F., Okajima, T., Yano, S. & Chiba, T. Quantification of Endosome and Lysosome Motilities in Cultured Neurons Using Fluorescent Probes. J Vis Exp, doi:10.3791/55488 (2017).

30 Okun, E., Griffioen, K. J. & Mattson, M. P. Toll-like receptor signaling in neural plasticity and disease. Trends Neurosci 34, 269-281, doi:10.1016/j.tins.2011.02.005 (2011).

31 Probert, L. TNF and its receptors in the CNS: The essential, the desirable and the deleterious effects. Neuroscience 302, 2-22, doi:10.1016/j.neuroscience.2015.06.038 (2015).

32 Ablasser, A. & Chen, Z. J. cGAS in action: Expanding roles in immunity and inflammation. Science 363, doi:10.1126/science.aat8657 (2019).

33 Cui-Wang, T. et al. Local zones of endoplasmic reticulum complexity confine cargo in neuronal dendrites. Cell 148, 309-321, doi:10.1016/j.cell.2011.11.056 (2012).

34 Spacek, J. & Harris, K. M. Three-dimensional organization of smooth endoplasmic reticulum in hippocampal CA1 dendrites and dendritic spines of the immature and mature rat. J Neurosci 17, 190-203 (1997).

35 Paul, B. D., Snyder, S. H. & Bohr, V. A. Signaling by cGAS-STING in Neurodegeneration, Neuroinflammation, and Aging. Trends Neurosci 44, 83-96, doi:10.1016/j.tins.2020.10.008 (2021).

36 Yu, C. H. et al. TDP-43 Triggers Mitochondrial DNA Release via mPTP to Activate cGAS/STING in ALS. Cell 183, 636-649 e618, doi:10.1016/j.cell.2020.09.020 (2020).

37 Smith, H. L. et al. Astrocyte Unfolded Protein Response Induces a Specific Reactivity State that Causes Non-Cell-Autonomous Neuronal Degeneration. Neuron 105, 855-866 e855, doi:10.1016/j.neuron.2019.12.014 (2020).

38 Zhao, J. et al. Neuroinflammation induced by lipopolysaccharide causes cognitive impairment in mice. Sci Rep 9, 5790, doi:10.1038/s41598-019-42286- 8 (2019).

39 Li, Q. & Barres, B. A. Microglia and macrophages in brain homeostasis and disease. Nat Rev Immunol 18, 225-242, doi:10.1038/nri.2017.125 (2018).

40 Wolf, S. A., Boddeke, H. W. & Kettenmann, H. Microglia in Physiology and Disease. Annu Rev Physiol 79, 619-643, doi:10.1146/annurev-physiol-022516- 034406 (2017).

41 Masuda, T., Sankowski, R., Staszewski, O. & Prinz, M. Microglia Heterogeneity in the Single-Cell Era. Cell Rep 30, 1271-1281, doi:10.1016/j.celrep.2020.01.010 (2020).

42 Keren-Shaul, H. et al. A Unique Microglia Type Associated with Restricting Development of Alzheimer's Disease. Cell 169, 1276-1290 e1217, doi:10.1016/j.cell.2017.05.018 (2017).

43 M. van der Poel, M. et al. Transcriptional profiling of human microglia reveals grey-white matter heterogeneity and multiple sclerosis-associated changes. Nat Commun 10, 1139, doi:10.1038/s41467-019-08976-7 (2019).

44 Nimmerjahn, A., Kirchhoff, F. & Helmchen, F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308, 1314- 1318, doi:10.1126/science.1110647 (2005).

45 Haynes, S. E. et al. The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat Neurosci 9, 1512-1519, doi:10.1038/nn1805 (2006).

46 Wake, H., Moorhouse, A. J., Jinno, S., Kohsaka, S. & Nabekura, J. Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J Neurosci 29, 3974-3980, doi:10.1523/JNEUROSCI.4363-08.2009 (2009).

47 Davalos, D. et al. ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8, 752-758, doi:10.1038/nn1472 (2005).

48 Cunningham, C. L., Martinez-Cerdeno, V. & Noctor, S. C. Microglia regulate the number of neural precursor cells in the developing cerebral cortex. J Neurosci 33, 4216-4233, doi:10.1523/JNEUROSCI.3441-12.2013 (2013).

49 Perez-Pouchoulen, M., VanRyzin, J. W. & McCarthy, M. M. Morphological and Phagocytic Profile of Microglia in the Developing Rat Cerebellum. eNeuro 2, doi:10.1523/ENEURO.0036-15.2015 (2015).

50 Block, M. L., Zecca, L. & Hong, J. S. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8, 57-69, doi:10.1038/nrn2038 (2007).

51 Crasta, K. et al. DNA breaks and chromosome pulverization from errors in mitosis. Nature 482, 53-58, doi:10.1038/nature10802 (2012).

52 Shi, L., Qalieh, A., Lam, M. M., Keil, J. M. & Kwan, K. Y. Robust elimination of genome-damaged cells safeguards against brain somatic aneuploidy following Knl1 deletion. Nat Commun 10, 2588, doi:10.1038/s41467-019-10411-w (2019).

53 Tabata, H. & Nakajima, K. Efficient in utero gene transfer system to the developing mouse brain using electroporation: visualization of neuronal migration in the developing cortex. Neuroscience 103, 865-872, doi:10.1016/s0306-4522(01)00016-1 (2001).

54 Komatsu, M. et al. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol 169, 425-434, doi:10.1083/jcb.200412022 (2005).

55 Mo, A. et al. Epigenomic Signatures of Neuronal Diversity in the Mammalian Brain. Neuron 86, 1369-1384, doi:10.1016/j.neuron.2015.05.018 (2015).

56 Moriyama, M., Koshiba, T. & Ichinohe, T. Influenza A virus M2 protein triggers mitochondrial DNA-mediated antiviral immune responses. Nat Commun 10, 4624, doi:10.1038/s41467-019-12632-5 (2019).

57 Goebbels, S. et al. Genetic targeting of principal neurons in neocortex and hippocampus of NEX-Cre mice. Genesis 44, 611-621, doi:10.1002/dvg.20256 (2006).

58 Kim, J. et al. USP15 Deubiquitinates TUT1 Associated with RNA Metabolism and Maintains Cerebellar Homeostasis. Mol Cell Biol 40, doi:10.1128/MCB.00098-20 (2020).

59 Tabata, H. & Nakajima, K. Labeling embryonic mouse central nervous system cells by in utero electroporation. Dev Growth Differ 50, 507-511, doi:10.1111/j.1440-169X.2008.01043.x (2008).

60 Morrison, H., Young, K., Qureshi, M., Rowe, R. K. & Lifshitz, J. Quantitative microglia analyses reveal diverse morphologic responses in the rat cortex after diffuse brain injury. Sci Rep 7, 13211, doi:10.1038/s41598-017-13581-z (2017).

61 Mure, K., Takeshita, T. & Morimoto, K. Categorization of micronuclei by size and measurement of each ratio in cytokinesis-block and conventional cultures of human lymphocytes exposed to mitomycin C and colchicine. Environ Health Prev Med 1, 93-99, doi:10.1007/BF02931197 (1996).

62 Sekine, K., Honda, T., Kawauchi, T., Kubo, K. & Nakajima, K. The outermost region of the developing cortical plate is crucial for both the switch of the radial migration mode and the Dab1-dependent "inside-out" lamination in the neocortex. J Neurosci 31, 9426-9439, doi:10.1523/JNEUROSCI.0650-11.2011 (2011).

63 Kubo, K. et al. Ectopic Reelin induces neuronal aggregation with a normal birthdate-dependent "inside-out" alignment in the developing neocortex. J Neurosci 30, 10953-10966, doi:10.1523/JNEUROSCI.0486-10.2010 (2010).

64 Kaizuka, T. et al. An Autophagic Flux Probe that Releases an Internal Control. Mol Cell 64, 835-849, doi:10.1016/j.molcel.2016.09.037 (2016).

65 Chennakrishnaiah, S. et al. Extracellular vesicles from genetically unstable, oncogene-driven cancer cells trigger micronuclei formation in endothelial cells. Sci Rep 10, 8532, doi:10.1038/s41598-020-65640-7 (2020).

66 Ginhoux, F., Lim, S., Hoeffel, G., Low, D. & Huber, T. Origin and differentiation of microglia. Front Cell Neurosci 7, 45, doi:10.3389/fncel.2013.00045 (2013).

67 Bennett, M. L. et al. New tools for studying microglia in the mouse and human CNS. Proc Natl Acad Sci U S A 113, E1738-1746, doi:10.1073/pnas.1525528113 (2016).

68 Harding, S. M. et al. Mitotic progression following DNA damage enables pattern recognition within micronuclei. Nature 548, 466-470, doi:10.1038/nature23470 (2017).

69 Gluck, S. et al. Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence. Nat Cell Biol 19, 1061-1070, doi:10.1038/ncb3586 (2017).

70 Sekine, K., Kubo, K. & Nakajima, K. How does Reelin control neuronal migration and layer formation in the developing mammalian neocortex? Neurosci Res 86, 50-58, doi:10.1016/j.neures.2014.06.004 (2014).

71 Loncle, N., Agromayor, M., Martin-Serrano, J. & Williams, D. W. An ESCRT module is required for neuron pruning. Sci Rep 5, 8461, doi:10.1038/srep08461 (2015).

72 Gong, Y. N. et al. ESCRT-III Acts Downstream of MLKL to Regulate Necroptotic Cell Death and Its Consequences. Cell 169, 286-300 e216, doi:10.1016/j.cell.2017.03.020 (2017).

73 Claude-Taupin, A. et al. ATG9A protects the plasma membrane from programmed and incidental permeabilization. Nat Cell Biol 23, 846-858, doi:10.1038/s41556-021-00706-w (2021).

74 Martini-Stoica, H., Xu, Y., Ballabio, A. & Zheng, H. The Autophagy-Lysosomal Pathway in Neurodegeneration: A TFEB Perspective. Trends Neurosci 39, 221- 234, doi:10.1016/j.tins.2016.02.002 (2016).

75 Pastore, N. et al. TFEB and TFE3 cooperate in the regulation of the innate immune response in activated macrophages. Autophagy 12, 1240-1258, doi:10.1080/15548627.2016.1179405 (2016).

76 Ponpuak, M. et al. Secretory autophagy. Curr Opin Cell Biol 35, 106-116, doi:10.1016/j.ceb.2015.04.016 (2015).

77 Ejlerskov, P. et al. Tubulin polymerization-promoting protein (TPPP/p25alpha) promotes unconventional secretion of alpha-synuclein through exophagy by impairing autophagosome-lysosome fusion. J Biol Chem 288, 17313-17335, doi:10.1074/jbc.M112.401174 (2013).

78 Gui, X. et al. Autophagy induction via STING trafficking is a primordial function of the cGAS pathway. Nature 567, 262-266, doi:10.1038/s41586-019- 1006-9 (2019).

79 Dupont, N. et al. Autophagy-based unconventional secretory pathway for extracellular delivery of IL-1beta. EMBO J 30, 4701-4711, doi:10.1038/emboj.2011.398 (2011).

80 Hayakawa, K. et al. Transfer of mitochondria from astrocytes to neurons after stroke. Nature 535, 551-555, doi:10.1038/nature18928 (2016).

81 Joshi, A. U. et al. Fragmented mitochondria released from microglia trigger A1 astrocytic response and propagate inflammatory neurodegeneration. Nat Neurosci 22, 1635-1648, doi:10.1038/s41593-019-0486-0 (2019).

82 Budnik, V., Ruiz-Canada, C. & Wendler, F. Extracellular vesicles round off communication in the nervous system. Nat Rev Neurosci 17, 160-172, doi:10.1038/nrn.2015.29 (2016).

83 Asai, H. et al. Depletion of microglia and inhibition of exosome synthesis halt tau propagation. Nat Neurosci 18, 1584-1593, doi:10.1038/nn.4132 (2015).

84 Yokoi, A. et al. Mechanisms of nuclear content loading to exosomes. Sci Adv 5, eaax8849, doi:10.1126/sciadv.aax8849 (2019).

85 Goldmann, T. et al. Origin, fate and dynamics of macrophages at central nervous system interfaces. Nat Immunol 17, 797-805, doi:10.1038/ni.3423 (2016).

86 Utz, S. G. et al. Early Fate Defines Microglia and Non-parenchymal Brain Macrophage Development. Cell 181, 557-573 e518, doi:10.1016/j.cell.2020.03.021 (2020).

87 Bialas, A. R. et al. Microglia-dependent synapse loss in type I interferon- mediated lupus.

88 Mackenzie, K. J. et al. cGAS surveillance of micronuclei links genome instability to innate immunity. Nature 548, 461-465, doi:10.1038/nature23449 (2017)

89 Bialas, A. R. et al. Microglia-dependent synapse loss in type I interferon- mediated lupus. Nature 546, 539-543, doi:10.1038/nature22821 (2017).

参考文献をもっと見る