リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Nonlinear Wave Growth of Whistler-Mode Hiss Emissions in a Uniform Magnetic Field」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Nonlinear Wave Growth of Whistler-Mode Hiss Emissions in a Uniform Magnetic Field

Liu, Yin Omura, Yoshiharu 京都大学 DOI:10.1029/2022JA030428

2022.05

概要

We conduct electromagnetic particle simulations in a uniform magnetic environment to verify the nonlinear wave growth process of plasmaspheric hiss in the equatorial plasmasphere. The satisfaction of the separability criterion for coexisting multiple frequency waves in the initial stage of wavenumber-time evolution declares that wave packets are coherent and capable of growing nonlinearly. Spatial and temporal evolutions of two typical modes located in wavenumber-time evolution demonstrate the consistency among wave growths, frequency variations, and inhomogeneity factor S in coherent wave packets, showing that rising and falling tones occur at negative and positive S values, respectively, and an obvious wave growth happens in a reasonable range of S satisfying the second-order resonance condition. Wave packets extracted from wave fields in space and time by a frequency band-pass filter confirm a good agreement between the nonlinear theory and simulation results. The nonlinear growth rates of the extracted wave packets possess similar magnitudes to the growth rates of wave packets in the simulation, and they are much greater than the theoretical linear growth rate, indicating that the nonlinear process is essential in the generation of plasmaspheric hiss.

この論文で使われている画像

参考文献

Bortnik, J., Thorne, R. M., & Meredith, N. P. (2008). The unexpected origin of plasmaspheric hiss from discrete chorus emissions. Nature,

452(7183), 62–66. https://doi.org/10.1038/nature06741

Breneman, A., Halford, A., Millan, R., McCarthy, M., Fennell, J., Sample, J., et al. (2015). Global-scale coherence modulation of radiation-belt

electron loss from plasmaspheric hiss. Nature, 523(7559), 193–195. https://doi.org/10.1038/nature14515

Chen, L., Thorne, R. M., Bortnik, J., Li, W., Horne, R. B., Reeves, G., et al. (2014). Generation of unusually low frequency plasmaspheric hiss.

Geophysical Research Letters, 41(16), 5702–5709. https://doi.org/10.1109/ursigass.2014.6929883

Draganov, A., Inan, U., Sonwalkar, V., & Bell, T. (1992). Magnetospherically reflected whistlers as a source of plasmaspheric hiss. Geophysical

Research Letters, 19(3), 233–236. https://doi.org/10.1029/91gl03167

Hikishima, M., Omura, Y., & Summers, D. (2020). Particle simulation of the generation of plasmaspheric hiss. Journal of Geophysical Research:

Space Physics, 125(8), e2020JA027. https://doi.org/10.1029/2020ja027973

Hikishima, M., Yagitani, S., Omura, Y., & Nagano, I. (2009). Full particle simulation of whistler-mode rising chorus emissions in the magnetosphere. Journal of Geophysical Research, 114(A1). https://doi.org/10.1029/2008ja013625

Kennel, C. F., & Petschek, H. (1966). Limit on stably trapped particle fluxes. Journal of Geophysical Research, 71(1), 1–28.

https://doi.org/10.1029/jz071i001p00001

12 of 13

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Journal of Geophysical Research: Space Physics

10.1029/2022JA030428

Li, W., Ni, B., Thorne, R., Bortnik, J., Nishimura, Y., Green, J., et al. (2014). Quantifying hiss-driven energetic electron precipitation: A detailed

conjunction event analysis. Geophysical Research Letters, 41(4), 1085–1092. https://doi.org/10.1002/2013gl059132

Liu, Y., Omura, Y., & Hikishima, M. (2021). Simulation study on parametric dependence of whistler-mode hiss generation in the plasmasphere.

Earth Planets and Space, 73(1), 1–17. https://doi.org/10.1186/s40623-021-01554-6

Matsumoto, H., & Omura, Y. (1985). Particle simulation of electromagnetic waves and its application to space plasmas. Computer Simulation of

Space Plasmas, 43, 43–102. https://doi.org/10.1007/978-94-009-5321-5_2

Meredith, N. P., Horne, R. B., Glauert, S. A., Thorne, R. M., Summers, D., Albert, J. M., & Anderson, R. R. (2006). Energetic outer zone electron

loss timescales during low geomagnetic activity. Journal of Geophysical Research, 111(A5), A05212. https://doi.org/10.1029/2005ja011516

Nakamura, S., Omura, Y., Summers, D., & Kletzing, C. A. (2016). Observational evidence of the nonlinear wave growth theory of plasmaspheric

hiss. Geophysical Research Letters, 43(19), 10–040. https://doi.org/10.1002/2016gl070333

Omura, Y. (2021). Nonlinear wave growth theory of whistler-mode chorus and hiss emissions in the magnetosphere. Earth Planets and Space,

73(1), 1–28. https://doi.org/10.1186/s40623-021-01380-w

Omura, Y., Katoh, Y., & Summers, D. (2008). Theory and simulation of the generation of whistler-mode chorus. Journal of Geophysical

Research, 113(A4), A04223. https://doi.org/10.1029/2007JA012622

Omura, Y., Matsumoto, H., Miyake, T., & Kojima, H. (1996). Electron beam instabilities as generation mechanism of electrostatic solitary waves

in the magnetotail. Journal of Geophysical Research, 101(A2), 2685–2697. https://doi.org/10.1029/95ja03145

Omura, Y., Nakamura, S., Kletzing, C. A., Summers, D., & Hikishima, M. (2015). Nonlinear wave growth theory of coherent hiss emissions in the

plasmasphere. Journal of Geophysical Research: Space Physics, 120(9), 7642–7657. https://doi.org/10.1002/2015ja021520

Sugiyama, H., Singh, S., Omura, Y., Shoji, M., Nunn, D., & Summers, D. (2015). Electromagnetic ion cyclotron waves in the earth’s magnetosphere with a kappa-maxwellian particle distribution. Journal of Geophysical Research: Space Physics, 120(10), 8426–8439. https://doi.

org/10.1002/2015ja021346

Summers, D., Ni, B., & Meredith, N. P. (2007). Timescales for radiation belt electron acceleration and loss due to resonant wave-particle interactions: 2. Evaluation for vlf chorus, elf hiss, and electromagnetic ion cyclotron waves. Journal of Geophysical Research, 112(A4). https://doi.

org/10.1029/2006ja011993

Summers, D., Omura, Y., Nakamura, S., & Kletzing, C. A. (2014). Fine structure of plasmaspheric hiss. Journal of Geophysical Research: Space

Physics, 119(11), 9134–9149. https://doi.org/10.1002/2014ja020437

Umeda, T., Omura, Y., & Matsumoto, H. (2001). An improved masking method for absorbing boundaries in electromagnetic particle simulations.

Computer Physics Communications, 137(2), 286–299. https://doi.org/10.1016/s0010-4655(01)00182-5

LIU AND OMURA

13 of 13

...

参考文献をもっと見る