リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Nonlinear wave growth theory of whistler-mode chorus and hiss emissions in the magnetosphere」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Nonlinear wave growth theory of whistler-mode chorus and hiss emissions in the magnetosphere

Omura, Yoshiharu 京都大学 DOI:10.1186/s40623-021-01380-w

2021

概要

Nonlinear processes associated with the generation process of whistler-mode chorus emissions are summarized. The nonlinear dynamics of energetic electrons interacting with a coherent whistler-mode wave and the formation of electromagnetic electron holes or hills in the velocity phase space are described. The condition for resonant electrons to be free from the anomalous trapping at low pitch angles is obtained. In the presence of the inhomogeneity due to the frequency variation and the gradient of the magnetic field, the electron holes or hills result in resonant currents generating rising-tone emissions or falling-tone emissions, respectively. After formation of a coherent wave at a frequency of the maximum linear growth rate, triggering of the nonlinear wave growth takes place when the wave amplitude is above the threshold amplitude. The wave grows to a level close to the optimum wave amplitude as an absolute instability near the magnetic equator. The nonlinear growth rate at a position away from the equator is derived for a subtracted Maxwellian momentum distribution function with correction to the formulas in the past publications. The triggering process is repeated sequentially at progressively higher frequencies in the case of a rising-tone emission, generating subpackets forming a chorus element. With a higher plasma density as in the plasmasphere, the triggering of subpackets takes place concurrently over a wide range of frequency forming discrete hiss elements with varying frequencies. The mechanism of nonlinear wave damping due to quasi-parallel propagation from the equator is presented, which results in the formation of a gap at half the electron cyclotron frequency, separating a long rising-tone chorus emission into the upper-band and lower-band chorus emissions. The theoretical formulation of an oblique whistler mode wave and its interaction with energetic electrons at the n-th resonance is also presented along with derivation of the inhomogeneity factor.

この論文で使われている画像

参考文献

Bell TF (1984) The nonlinear gyroresonance interaction between energetic

electrons and coherent VLF waves propagating at an arbitrary angle

with respect to the Earth’s magnetic field. J Geophys Res 89(A2):905–918.

https://​doi.​org/​10.​1029/​JA089​iA02p​00905

Bortnik J, Thorne RM, Meredith NP (2008) The unexpected origin of plasmaspheric hiss from discrete chorus emissions. Nature 452(7183):62–66.

https://​doi.​org/​10.​1038/​natur​e06741

Gao X, Lu Q, Wang S, Wang S (2018) Theoretical analysis on lower band

cascade as a mechanism for multiband chorus. AIP Adv 8:055003. https://​

doi.​org/​10.​1063/1.​50255​07

Golkowski M, Harid V, Hosseini P (2019) Review of controlled excitation of

non-linear wave-particle interactions in the magnetosphere. Front Astron

Space Sci 6:2. https://​doi.​org/​10.​3389/​fspas.​2019.​00002

Foster JC, Erickson PJ, Omura Y, Baker DN, Kletzing CA, Claudepierre SG (2017)

Van Allen Probes observations of prompt MeV radiation belt electron

acceleration in nonlinear interactions with VLF chorus. J Geophys Res

Space Phys 122:324–339. https://​doi.​org/​10.​1002/​2016J​A0234​29

Hanzelka M, Santolik O, Omura Y, Kolmasova I, Kletzing CA (2020) A model of

the subpacket structure of rising tone chorus emissions. J Geophys Res

Space Phys 125:e2020JA028094. https://​doi.​org/​10.​1029/​2020J​A0280​94

Helliwell RA (1993) Whistlers and related ionospheric phenomena. Dover

Publicaitons, New York

Hikishima M, Yagitani S, Omura Y, Nagano I (2009) Full particle simulation of

whistler-mode rising chorus emissions in the magnetosphere. J Geophys

Res 114:A01203. https://​doi.​org/​10.​1029/​2008J​A0136​25

Hikishima M, Omura Y, Summers D (2010) Self-consistent particle simulation of

whistler mode triggered emissions. J Geophys Res 115:A12246. https://​

doi.​org/​10.​1029/​2010J​A0158​60

Hikishima M, Omura Y (2012) Particle simulations of whistler-mode rising-tone

emissions triggered by waves with different amplitudes. J Geophys Res

117:A04226. https://​doi.​org/​10.​1029/​2011J​A0174​28

Hikishima M, Omura Y, Summers D (2020) Particle simulation of the generation

of plasmaspheric hiss. J Geophys Res Space Phys 125:e2020JA027973.

https://​doi.​org/​10.​1029/​2020J​A0279​73

Hiraga R, Omura Y (2020) Acceleration mechanism of radiation belt electrons

through interaction with multisubpacket chorus waves. Earth Planets

Space 72:21. https://​doi.​org/​10.​1186/​s40623-​020-​1134-3

Hsieh Y-K, Omura Y (2017) Nonlinear dynamics of electrons interacting with

oblique whistler mode chorus in the magnetosphere. J Geophys Res

Space Phys 122:675–694. https://​doi.​org/​10.​1002/​2016J​A0232​55

Hsieh Y-K, Omura Y (2018) Nonlinear damping of oblique whistler mode waves

via Landau resonance. J Geophys Res Space Phys 123:7462–7472. https://​

doi.​org/​10.​1029/​2018J​A0258​48

Hsieh Y-K, Kubota Y, Omura Y (2020) Nonlinear evolution of radiation belt

electron fluxes interacting with oblique whistler mode chorus emissions.

J Geophys Res Space Phys 125:e2019JA027465. https://​doi.​org/​10.​1029/​

2019J​A0274​65

Katoh Y, Omura Y (2006) A study of generation mechanism of VLF triggered

emission by self-consistent particle code. J Geophys Res 111:A12207.

https://​doi.​org/​10.​1029/​2006J​A0117​04

Katoh Y, Omura Y (2007) Computer simulation of chorus wave generation in

the Earth’s inner magnetosphere. Geophys Res Lett 34:L03102. https://​

doi.​org/​10.​1029/​2006G​L0285​94

Katoh Y, Omura Y (2011) Amplitude dependence of frequency sweep rates of

whistler mode chorus emissions. J Geophys Res 116:A07201. https://​doi.​

org/​10.​1029/​2011J​A0164​96

Katoh Y, Omura Y (2013) Effect of the background magnetic field inhomogeneity on generation processes of whistler-mode chorus and broadband

hiss-like emissions. J Geophys Res 118:4189–198. https://​doi.​org/​10.​1002/​

jgra.​50395

Katoh Y, Omura Y (2016) Electron hybrid code simulation of whistler-mode

chorus generation with real parameters in the Earth’s inner magnetosphere. Earth Planets Space 68:192. https://​doi.​org/​10.​1186/​

s40623-​016-​0568-0

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Omura Earth, Planets and Space

(2021) 73:95

Katoh Y, Omura Y, Miyake Y, Usui H, Nakashima H (2018) Dependence of generation of whistler mode chorus emissions on the temperature anisotropy

and density of energetic electrons in the Earth’s inner magnetosphere. J

Geophys Res Space Phys. https://​doi.​org/​10.​1002/​2017J​A0248​01

Ke Y, Gao X, Lu Q, Wang X, Wang S (2017) Generation of rising-tone chorus in a

two-dimensional mirror field by using the general curvilinear PIC code. J

Geophys Res Space Phys. https://​doi.​org/​10.​1002/​2017J​A0241​78

Kitahara M, Katoh Y (2019) Anomalous trapping of low pitch angle electrons

by coherent whistler mode waves. J Geophys Res Space Phys 124:5568–

5583. https://​doi.​org/​10.​1029/​2019J​A0264​93

Kubota Y, Omura Y (2017) Rapid precipitation of radiation belt electrons

induced by EMIC rising tone emissions localized in longitude inside

and outside the plasmapause. J Geophys Res Space Phys 122:293–309.

https://​doi.​org/​10.​1002/​2016J​A0232​67

Kubota Y, Omura Y (2018) Nonlinear dynamics of radiation belt electrons interacting with chorus emissions localized in longitude. J Geophys Res Space

Phys 123:4835–4857. https://​doi.​org/​10.​1029/​2017J​A0250​50

Kurita S, Katoh Y, Omura Y, Angelopoulos V, Cully CM, Le Contel O, Misawa H

(2012) THEMIS observation of chorus elements without a gap at half the

gyrofrequency. J Geophys Res 117:A11223. https://​doi.​org/​10.​1029/​2012J​

A0180​76

Lu Q, Ke Y, Wang X, Liu K, Gao X, Chen L, Wang S (2019) Two dimensional

general curvilinear particle in cell (gcPIC) simulation of rising tone chorus

waves in a dipole magnetic field. J Geophys Res Space Phys. https://​doi.​

org/​10.​1029/​2019J​A0265​86

Nakamura S, Omura Y, Summers D, Kletzing CA (2016) Observational evidence

of the nonlinear wave growth theory of plasmaspheric hiss. Geophys Res

Lett 43:10040–10049. https://​doi.​org/​10.​1002/​2016G​L0703​33

Nakamura S, Omura Y, Summers D (2018) Fine structure of whistler mode hiss

in plasmaspheric plumes observed by the Van Allen Probes. J Geophys

Res Space Phys 123:9055–9064. https://​doi.​org/​10.​1029/​2018J​A0258​03

Nogi T, Nakamura S, Omura Y (2020) Full particle simulation of whistler-mode

triggered falling-tone emissions in the magnetosphere. J Geophys Res

Space Phys 125:e2020JA027953. https://​doi.​org/​10.​1029/​2020J​A0279​53

Nunn D, Omura Y (2012) A computational and theoretical analysis of falling

frequency VLF emissions. J Geophys Res 117:A08228. https://​doi.​org/​10.​

1029/​2012J​A0175​57

Nunn D, Omura Y (2015) A computational and theoretical investigation of

nonlinear wave-particle interactions in oblique whistlers. J Geophys Res

Space Phys 120:2890–2911. https://​doi.​org/​10.​1002/​2014J​A0208​98

Omura Y, Nunn D, Matsumoto H, Rycroft MJ (1991) A review of observational,

theoretical and numerical studies of VLF triggered emissions. J Atmos Terr

Phys 53:351–368

Omura Y, Katoh Y, Summers D (2008) Theory and simulation of the generation

of whistler-mode chorus. J Geophys Res 113:A04223. https://​doi.​org/​10.​

1029/​2007J​A0126​22

Omura Y, Hikishima M, Katoh Y, Summers D, Yagitani S (2009) Nonlinear mechanisms of lower band and upper band VLF chorus emissions in the magnetosphere. J Geophys Res 114:A07217. https://​doi.​org/​10.​1029/​2009J​A0142​06

Omura Y, Pickett J, Grison B, Santolik O, Dandouras I, Engebretson M, Dcrau

PME, Masson A (2010) Theory and observation of electromagnetic ion

cyclotron triggered emissions in the magnetosphere. J Geophys Res

115:A07234. https://​doi.​org/​10.​1029/​2010J​A0153​00

Omura Y, Nunn D (2011) Triggering process of whistler mode chorus emissions

in the magnetosphere. J Geophys Res 116:A05205. https://​doi.​org/​10.​

1029/​2010J​A0162​80

Page 28 of 28

Omura Y, Zhao Q (2012) Nonlinear pitch angle scattering of relativistic

electrons by EMIC waves in the inner magnetosphere. J Geophys Res

117:A08227. https://​doi.​org/​10.​1029/​2012J​A0179​43

Omura Y, Zhao Q (2013) Relativistic electron microbursts due to nonlinear

pitch angle scattering by EMIC triggered emissions. J Geophys Res Space

Phys 118:5008–5020. https://​doi.​org/​10.​1002/​jgra.​50477

Omura Y, Nakamura S, Kletzing CA, Summers D, Hikishima M (2015a) Nonlinear

wave growth theory of coherent hiss emissions in the plasmasphere. J

Geophys Res Space Phys 120:7642–7657. https://​doi.​org/​10.​1002/​2015J​

A0215​20

Omura Y, Miyashita Y, Yoshikawa M, Summers D, Hikishima M, Ebihara Y,

Kubota Y (2015b) Formation process of relativistic electron flux through

interaction with chorus emissions in the Earth’s inner magnetosphere. J

Geophys Res Space Phys 120:9545–9562. https://​doi.​org/​10.​1002/​2015J​

A0215​63

Omura Y, Hsieh Y-K, Foster JC, Erickson PJ, Kletzing CA, Baker DN (2019) Cyclotron acceleration of relativistic electrons through Landau resonance with

obliquely propagating whistler-mode chorus emissions. J Geophys Res

Space Phys 124:2795–2810. https://​doi.​org/​10.​1029/​2018J​A0263​74

Santolik O, Kletzing CA, Kurth WS, Hospodarsky GB, Bounds SR (2014) Fine

structure of large-amplitude chorus wave packets. Geophys Res Lett.

https://​doi.​org/​10.​1002/​2013G​L0588​89

Shoji M, Omura Y (2013) Triggering process of electromagnetic ion cyclotron

rising tone emissions in the inner magnetosphere. J Geophys Res Space

Phys 118:5553–5561. https://​doi.​org/​10.​1002/​jgra.​50523

Stix TH (1992) Waves in plasmas. American Institute of Physics, College Park

Tao X (2014) A numerical study of chorus generation and the related variation

of wave intensity using the DAWN code. J Geophys Res Space Phys.

https://​doi.​org/​10.​1002/​2014J​A0198​20

Tao X, Zonca F, Chen L, Wu Y (2020) Theoretical and numerical studies of

chorus waves: a review. Sci China Earth Sci 63:78–92. https://​doi.​org/​10.​

1007/​s11430-​019-​9384-6

Sugiyama H, Singh S, Omura Y, Shoji M, Nunn D, Summers D (2015) Electromagnetic ion cyclotron waves in the Earth’s magnetosphere with

a kappa-Maxwellian particle distribution. J Geophys Res Space Phys

120:8426–8439. https://​doi.​org/​10.​1002/​2015J​A0213​46

Summers D, Omura Y, Miyashita Y, Lee D-H (2012) Nonlinear spatiotemporal

evolution of whistler mode chorus waves in Earth’s inner magnetosphere.

J Geophys Res 117:A09206. https://​doi.​org/​10.​1029/​2012J​A0178​42

Summers D, Omura Y, Nakamura S, Kletzing CA (2014) Fine structure of

plasmaspheric hiss. J Geophys Res Space Phys. https://​doi.​org/​10.​1002/​

2014J​A0204​37

Yagitani S, Habagishi T, Omura Y (2014) Geotail observation of upper band and

lower band chorus elements in the outer magnetosphere. J Geophys Res

Space Phys. https://​doi.​org/​10.​1002/​2013J​A0196​78

Yoon YD, Bellan PM (2020) Nondiffusive pitch-angle scattering of a distribution

of energetic particles by coherent whistler waves. J Geophys Res Space

Phys 125:e2020JA027796. https://​doi.​org/​10.​1029/​2020J​A0277​96

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る