リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Nonlinear triggering process of whistler-mode emissions in a homogeneous magnetic field」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Nonlinear triggering process of whistler-mode emissions in a homogeneous magnetic field

Fujiwara, Yuya Nogi, Takeshi Omura, Yoshiharu 京都大学 DOI:10.1186/s40623-022-01646-x

2022

概要

We perform an electromagnetic particle simulation of triggered emissions in a uniform magnetic field for understanding of nonlinear wave–particle interaction in the vicinity of the magnetic equator. A finite length of a whistler-mode triggering wave packet with a constant frequency is injected by oscillating an external current at the equator. We find that the first subpacket of triggered emissions is generated in the homogeneous magnetic field. By analyzing resonant currents and resonant electron dynamics in the simulation, we find that the formation of an electron hole in a velocity phase space results in resonant currents, and the currents cause wave amplification and frequency increase. We obtain the interaction time of counter-streaming resonant electrons in a triggering wave packet with a finite width. By changing the duration time of the triggering pulse, we evaluate the interaction time necessary for formation of an electron hole. We conduct 4 runs with different duration times of the triggering pulse, 980, 230, 105, 40 Ωe⁻¹, which correspond to cases with interaction times, 370%, 86%, 39%, and 15% of the nonlinear trapping period, respectively. We find generation of triggered emissions in the three cases of 370%, 86%, and 39%, which agrees with the conventional nonlinear model that the nonlinear transition time, which is necessary for formation of resonant currents, is about a quarter of the nonlinear trapping period.

この論文で使われている画像

参考文献

Baker D, Erickson P, Fennell J, Foster J, Jaynes A, Verronen P (2018) Space

weather effects in the earth’s radiation belts. Space Sci Rev 214(1):1–60.

https://​doi.​org/​10.​1007/​s11214-​017-​0452-7

Demekhov A (2011) Generation of vlf emissions with the increasing and

decreasing frequency in the magnetosperic cyclotron maser in the backward wave oscillator regime. Radiophys Quantum Electron 53(11):609–

622. https://​doi.​org/​10.​1007/​s11141-​011-​9256-x

Gołkowski M, Harid V, Hosseini P (2019) Review of controlled excitation of nonlinear wave-particle interactions in the magnetosphere. Front Astronomy

Space Sci 6:2. https://​doi.​org/​10.​3389/​fspas.​2019.​00002

Helliwell RA (1988) VLF wave stimulation experiments in the magnetosphere

from siple station, antarctica. Reviews Geophys 26(3):551–578. https://​

doi.​org/​10.​1029/​RG026​i003p​00551

Helliwell RA (1988) VLF wave-injection experiments from siple station, antarctica. Adv Space Res 8(1):279–289. https://​doi.​org/​10.​1016/​0273-​1177(88)​

90373-0

Helliwell RA, Carpenter DL, Inan US, Katsufrakis JP (1986) Generation of bandlimited VLF noise using the siple transmitter: A model for magnetospheric hiss. J Geophys Res Space Phys 91(A4):4381–4392. https://​doi.​

org/​10.​1029/​JA091​iA04p​04381

Hikishima M, Omura Y (2012) Particle simulations of whistler-mode rising-tone

emissions triggered by waves with different amplitudes. J Geophys Res

Space Phys. https://​doi.​org/​10.​1029/​2011J​A0174​28

Hikishima M, Omura Y, Summers D (2010) Self-consistent particle simulation

of whistler mode triggered emissions. J Geophys Res Space Phys. https://​

doi.​org/​10.​1029/​2010J​A0158​60

Katoh Y, Omura Y (2006) A study of generation mechanism of VLF triggered

emission by self-consistent particle code. J Geophys Res Space Phys.

https://​doi.​org/​10.​1029/​2006J​A0117​04

Nogi T, Omura Y (2022) Nonlinear signatures of vlf-triggered emissions: a simulation study. J Geophys Res Space Phys 127(1):e2021JA029,82629826.

https://​doi.​org/​10.​1029/​2021J​A0298​26

Nogi T, Nakamura S, Omura Y (2020) Full particle simulation of whistler-mode

triggered falling-tone emissions in the magnetosphere. J Geophys Res

Space Phys 125(10):e2020JA027,953,753. https://​doi.​org/​10.​1029/​2020J​

A0279​53

Nunn D, Omura Y (2012) A computational and theoretical analysis of falling

frequency VLF emissions. J Geophys Res Space Phys. https://​doi.​org/​10.​

1029/​2012J​A0175​57

Nunn D, Manninen J, Turunen T, Trakhtengerts V, Erokhin N (1999) On the

nonlinear triggering of vlf emissions by power line harmonic radiation.

Annales Geophysicae 17(1):79–94, https://​doi.​org/​10.​1007/​s00585-​999-​

0079-​4,https://​angeo.​coper​nicus.​org/​artic​les/​17/​79/​1999/

Omura Y (2007) One-dimensional electromagnetic particle code KEMPO1: A

tutorial on microphysics in space plasmas. In Advanced Methods for Space

Simulations, Edited by H Usui and Y Omura (Terra Sci, Tokyo, 2007) pp

1–21

Page 14 of 14

Omura Y (2021) Nonlinear wave growth theory of whistler-mode chorus and

hiss emissions in the magnetosphere. Earth Planets Space 73(1):1–28.

https://​doi.​org/​10.​1186/​s40623-​021-​01380-w

Omura Y, Matsumoto H (1993) KEMPO1: Technical guide to one-dimensional

electromagnetic particle code. In Computer Space Plasma Physics: Simulation Techniques and Softwares, Edited by H Matsumoto and Y Omura,

(Terra Sci, Tokyo, 1993) pp 21–65

Omura Y, Nunn D (2011) Triggering process of whistler mode chorus emissions

in the magnetosphere. J Geophys Res Space Phys. https://​doi.​org/​10.​

1029/​2010J​A0162​80

Omura Y, Katoh Y, Summers D (2008) Theory and simulation of the generation

of whistler-mode chorus. J Geophys Res Space Phys. https://​doi.​org/​10.​

1029/​2007J​A0126​22

Omura Y, Hikishima M, Katoh Y, Summers D, Yagitani S (2009) Nonlinear

mechanisms of lower-band and upper-band VLF chorus emissions in

the magnetosphere. J Geophys Res Space Phys. https://​doi.​org/​10.​1029/​

2009J​A0142​06

Omura Y, Hsieh YK, Foster JC, Erickson PJ, Kletzing CA, Baker DN (2019) Cyclotron acceleration of relativistic electrons through landau resonance with

obliquely propagating whistler-mode chorus emissions. J Geophys Res

Space Phys 124(4):2795–2810. https://​doi.​org/​10.​1029/​2018J​A0263​74

Sugiyama H, Singh S, Omura Y, Shoji M, Nunn D, Summers D (2015) Electromagnetic ion cyclotron waves in the earth’s magnetosphere with

a kappa-maxwellian particle distribution. J Geophys Res Space Phys

120(10):8426–8439. https://​doi.​org/​10.​1002/​2015J​A0213​46

Sun J, Chen L, Wang X, Boardsen S, Lin Y, Xia Z (2020) Particle-in-cell

simulation of rising-tone magnetosonic waves. Geophys Res Lett

47(18):e2020GL089,67. https://​doi.​org/​10.​1029/​2020G​L0896​71

Trakhtengerts VY, Demekhov AG, Hobara Y, Hayakawa M (2003) Phase-bunching effects in triggered vlf emissions: Antenna effect. J Geophys Res

Space Phys. https://​doi.​org/​10.​1029/​2002J​A0094​15

Yagitani S, Nagano I, Omura Y, Matsumoto H (1992) Comparison between

particle simulation and full-wave analysis for wave propagation in a

nonuniform plasma. Radio Sci 27(4):449–462. https://​doi.​org/​10.​1029/​

92RS0​0854

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

...

参考文献をもっと見る