リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Dynamics in Jupiter’s inner magnetosphere revealed by EUV spectroscopic observations」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Dynamics in Jupiter’s inner magnetosphere revealed by EUV spectroscopic observations

黒田(疋田), 伶奈 東京大学 DOI:10.15083/0002006505

2023.03.24

概要

論文審査の結果の要旨
氏名

黒田(疋田)伶奈

本論文は6章からなる。第1章は、イントロダクションであり、木星磁気圏の全体のプ
ラズマダイナミクスに関するレビューに続いて、本論文の主要テーマであるイオプラズ
マトーラスに対する最新の理解が記述されている。
第2章では使用したデータセットと手法について述べられている。本論文で使用した
のは惑星分光観測衛星ひさきの極端紫外光データであり,観測器の構成,諸元,データ処
理について詳細が記載されている.また,3章以降で使用される,プラズマ診断法と呼ば
れるデータ解析の原理や仮定が記されている.
第3章以降では,過去に類を見ない長期連続観測というひさき衛星の特長を生かして
得られた,イオプラズマトーラス(IPT)周辺のプラズマ加熱・輸送に関する新たな知見
を示している. 第3章では,観測期間付近で発生したと考えられる火山活発化イベント
5つのうち4つについて,IPT 高温電子密度の増加が起こっていたことを明らかにした。
IPT の高温電子密度増加現象自体は以前から知られていたが,本論文は複数の火山活発
化イベントについて調べることにより,火山活動との対応をこれまでで最も明瞭に示し
ている.
次に,この高温電子密度増加のメカニズムを明らかにするため,第4章では,特に観測
データのカバレージが良かった火山イベントについてプラズマ質量密度の動径勾配を導
出した.この勾配の時間変化は,イオ火山活動の発生に伴って高密度プラズマが磁気圏の
内側から外側に向かって排出されたこと示唆するものであった.理論モデルが予想する
プラズマ交換型不安定では,この動径方向外向きの冷たいプラズマ輸送と入れ替わりで
高温プラズマの内向き輸送が起こる.このことから,高温電子密度の増加は IPT 外部か
らの輸送が主要因であると結論付けている.
さらに第5章ではこれまでに知られていない,新たな現象をレポートしている.それ
は,火山イベント後の高温電子密度に著しい朝夕非対称がみられることである.この非対
称を説明するためには局所的な波動による電子の散乱・ロスや特異なプラズマ輸送が必
要となるが,いずれも現時点では(否定的というわけではないにしろ)観測的サポートが
乏しく,木星内部磁気圏に関する現在の理解の不十分さを改めて浮き彫りにし,将来探査
への一つの指針を与えるものとなっている.
第6章はジェネラルコンクルージョンであり,上述の結果のまとめと,その普遍性の議
論を展開して論文を結んでいる.
なお、本論文第3・5章および Appendix A は、吉岡和夫,村上豪,木村智樹,土屋史
紀,山崎敦,吉川一朗,岩上直幹,鍵谷将人,Fran Bagenal, Nick Schneider,北元との
共同研究であるが、論文提出者が主体となって分析及び検証を行ったもので、論文提出者
の寄与が十分であると判断する。
したがって、博士(理学)の学位を授与できると認める。

この論文で使われている画像

参考文献

Acuna, M. H., K. W. Behannon, and J. E. P. Connerney (1983). Jupiter’s magnetic field and

magnetosphere, in Physics of the Jovian magnetosphere, edited by A. J. Dessler, pp. 2,

Cambridge Univ. Press, Cambridge.

Anderson J. D. and Schubert G. (2007). Saturn’s Gravitational Field, Internal Rotation, and

Interior Structure. Science: 317, 5843, 1384–1387.

Arridge, C.S., André, N., McAndrews, H.J. et al. (2011). Mapping Magnetospheric Equatorial

Regions at Saturn from Cassini Prime Mission Observations. Space Sci. Rev., 164: 1.

https://doi.org/10.1007/s11214-011-9850-4

Azari, A. R., Liemohn, M. W., Jia, X., Thomsen, M. F., Mitchell, D. G., Sergis, N., et al. (2018).

Interchange injections at Saturn: Statistical survey of energetic H+ sudden flux intensifications.

Journal

of

Geophysical

Research:

Space

Physics,

123,

4692–4711.

https://doi.org/10.1029/2018JA025391

Azari, A. R., X. Jia, M. W. Liemohn, G. B. Hospodarsky, G. Provan, S. -Y. Ye, S. W. H. Cowley,

C. Paranicas, N. Sergis, A. M. Rymer, M. F. Thomsen, and D. G. Mitchell (2019). Are Saturn’s

Interchange Injections Organized by Rotational Longitude? Journal of Geophysical Research:

Space Physics. https://doi.org/ 10.1029/2018JA026196

Badman SV, Bonfond B, Fujimoto M, Gray RL, Kasaba Y, Kasahara S, Kimura T, Melin H,

Nichols JD, Steffl AJ, Tao C, Tsuchiya F, Yamazaki A, Yoneda M, Yoshikawa I, Yoshioka K

(2016) Weakening of Jupiter’s main auroral emission during January 2014. Geophys Res Lett

43:988–997. doi:10.1002/2015GL067366

Bagenal, F. (1994). Empirical model of the Io plasma torus: Voyager measurements. Journal of

Geophysical Research, 99(A6), 11,043–11,062. doi:10.1029/93JA02908

Bagenal, F., & P. A. Delamere (2011), Flow of mass and energy in the magnetospheres of

Jupiter

and

Saturn,

Journal

of

Geophysical

Research,

116,

A05209,

doi:10.1029/2010JA016294.

Barbosa, D. D., & Kivelson, M. G. (1983). Dawn-dusk electric field asymmetry of the Io

plasma torus. Geophysical Research Letters, 10, 210-213. doi:10.1029/GL010i003p00210

Book, D. L., (1990). NRL Plasma Formulary, Naval Res. Lab., Washington, D. C.

131

Broadfoot, A. L., Belton, M. J., Takacs, P. Z., Sandel, B. R., Shemansky, D. E., Holberg, J. B.,

Ajello, J. M., Moos, H. W., Atreya, S. K., Donahue, T. M., Bertaux, J. L., Blamont, J. E., Strobel,

D. F., McConnell, J. C., Goody, R., Dalgarno, A., and McElroy, M. B. (1979). Extreme

ultraviolet observations from Voyager 1 encounter with Jupiter. Science, 204: 979–982.10. doi:

1126/science.204.4396.979

Brown, R. A. (1976). A model of Jupiter’s sulfur nebula. The Astrophysical Journal, 206:L179–

L183.

Brown, M. E., and Bouchez, A. H. (1997). The response of Jupiter’s magnetosphere to an

outburst on Io. Science, 278, 268–271.

Clarke, J. T., et al. (1998), Hubble Space Telescope imaging of Jupiter’s UV aurora during the

Galileo orbiter mission, J. Geophys. Res., 103( E9), 20217– 20236, doi:10.1029/98JE01130

Clarke J. T., D. Grodent, S. W. H. Cowley, E. J. Bunce, P. Zarka, J. E. P. Connerney, and T.

Satoh (2005). Jupiter’s aurora, in Jupiter: The Planet, Satellites, and Magnetosphere, edited by

F. Bagenal, T. E. Dowling, and W. B. McKinnon, pp. 639–670, Cambridge Univ. Press, New

York.

Copper, M., P. A. Delamere, and K. Overcast-Howe (2016), Modeling physical chemistry of

the Io plasma torus in two dimensions, Journal of Geophysical Research, 121, 6602–6619,

doi:10.1002/2016JA022767.

Connerney, J. E. P., Acuña, M. H., and Ness, N. F. (1982), Voyager 1 assessment of Jupiter’s

planetary

magnetic

field,

J.

Geophys.

Res.,

87(A5),

3623–

3627,

doi:10.1029/JA087iA05p03623

de Kleer, K., & de Pater, I. (2016a). Time variability of Io’s volcanic activity from near-IR

adaptive optics observations on 100 nights in 2013–2015. Icarus, 280, 378–404.

https://doi.org/10.1016/j.icarus.2016.06.019

de Kleer, K., Nimmo, F., & Kite, E. (2019). Variability in Io’s volcanism on timescales of

periodic

orbital

changes.

Geophysical

Research

Letters,

46,

6327–6332.

https://doi.org/10.1029/2019GL082691

Delamere, P. A., & Bagenal, F. (2003). Modeling variability of plasma conditions in the Io torus.

Journal of Geophysical Research, 108(A7), 1276. https://doi.org/10.1029/2002JA009706

132

Delamere, P. A., Steffl, A., & Bagenal, F. (2004). Modeling temporal variability of plasma

conditions in the Io torus during the Cassini era. Journal of Geophysical Research, 109, A10216.

https://doi.org/10.1029/2003JA010354

Delamere, P. A., Bagenal, F., & Steffl, A. (2005). Radial variations in the Io plasma torus during

the

Cassini

era.

Journal

of

Geophysical

Research,

110,

A12223.

https://doi.org/10.1029/2005JA011251

Delamere, P. A., and Bagenal, F. (2010), Solar wind interaction with Jupiter’s magnetosphere,

J. Geophys. Res., 115, A10201, doi:10.1029/2010JA015347.

Delamere, P. A., Otto, A., Ma, X., Bagenal, F., & Wilson, R. J. (2015). Magnetic flux circulation

in the rotationally driven giant magnetosphere. Journal of Geophysical Research, 120, 4229–

4245. https://doi.org/10.1002/2015JA021036

Del Zanna, G., Dere, K.P., Young, P. R., Landi, E., and Mason, H. E. (2015). CHIANTI - An

atomic database for Emission Lines. Version 8, Astronomy & Astrophysics, 582, A56.

doi:10.1051/0004-6361/201526827

Dere, K. P., Landi, E., Mason, H. E., Monsignori Fossi, B. C., and Young, P. R. (1997).

CHIANTI—An atomic database for emission lines—Paper I: Wavelengths greater than 50 Å

(version 1). Astronomy and Astrophysics Supplement Series, 125, 149–173.

doi:10.1051/aas:1997368

Divine, N., and Garrett, H. B. (1983), Charged particle distributions in Jupiter’s magnetosphere,

J. Geophys. Res., 88(A9), 6889– 6903, doi:10.1029/JA088iA09p06889.

Durrance, S. T., Feldman, P. D., and Weaver H. A. (1983). Rocket detection of ultraviolet

emission from neutral oxygen and sulfur in the Io torus. The Astrophysical Journal, 267: L125–

L129.

Feldman P. D., B. A. Thomas, A. F. Berman, H. W. Moos, D. J. Sahnow, D. F. Strobel, and H.

A. Weaver (2001). Detection of chlorine ions in the far ultraviolet spectroscopic explorer

spectrum of the Io plasma torus. The Astrophysical Journal, 554:123–126.

Feldman, P. D., Strobel, D. F., Moos, H. W., and Weaver H. A. (2004). The Far Ultraviolet

Spectrum of the Io Plasma Torus. The Astrophysical Journal, 601:583–591.

133

Frank, L. A., and Paterson, W. R. (2000a). Observations of plasmas in the Io torus with the

Galileo spacecraft. Journal of Geophysical Research, 105(A7), 16,017–16,034.

doi:10.1029/1999JA000250

Fukazawa, K., T. Ogino, and R. J. Walker (2010), A simulation study of dynamics in the distant

Jovian

magnetotail,

Journal

of

Geophysical

Research,

115,

A09219,

doi:10.1029/2009JA015228.

Geissler, P., McEwen, A., Phillips, C., Keszthelyi, L., and Spencer, J. (2004). Surface changes

on Io during the Galileo mission. Icarus, 169, 29-64. doi:10.1016/j.icarus.2003.09.024

Grodent, D. A. (2015) Brief Review of Ultraviolet Auroral Emissions on Giant Planets. Space

Sci Rev 187, 23–50. doi:10.1007/s11214-014-0052-8

Hall, D. T., Bednar C. J., Durrance S. T., Feldman P. D., McGrath M. A., Moos H. W., and

Strobel D. F. (1994a). Hopkins Ultraviolet Telescope determination of the Io torus electron

temperature. The Astrophysical Journal, 426, L51–L54. doi:10.1086/187159

Hall, D. T., Gladstone, G. R., Moos, H. W., Bagenal, F., Clarke, J. T., Feldman, P. D., McGrath,

M. A., Schneider, N. M., Shemansky, D. E., Strobel, D. F., and Waite, J. H. (1994b). Extreme

Ultraviolet Explorer satellite observation of Jupiter’s Io plasma torus. The Astrophysical

Journal, 420, L45–L48. doi:10.1086/187337

Herbert, F & Sandel, B. R. (2000). Azimuthal variation in ion density and

electron temperature in the Io plasma torus. Journal of Geophysical Research, 105(A7), 16,03516,052, 10.1029/1998JA000259

Herbert, F., Schneider, N. M., Hendrix, A. R., and Bagenal, F. (2003). Hubble Space Telescope

observations of sulfur ions in the Io plasma torus: New constraints on the plasma distribution.

Journal of Geophysical Research, 108(A5), 1167. doi:10.1029/2002JA009510

Hess, S. L. G., Delamere, P., Bagenal, F., Schneider, N., & Steffl, A. J. (2011). Longitudinal

modulation of hot electrons in the Io plasma torus. Journal of Geophysical Research, 116,

A11215. https://doi.org/10.1029/2011JA016918

S.L.G. Hess, B. Bonfond, V. Chantry, J.-C. Gérard, D. Grodent, S. Jacobsen, A. Radioti. (2013).

Evolution of the Io footprint brightness II: Modeling, Planetary and Space Science, Volume 88,

76-85, doi:10.1016/j.pss.2013.08.005.

134

Hikida, R., Yoshioka, K., Murakami, G., Kimura, T., Tsuchiya, F., Yamazaki, A., Yoshikawa I.,

& Iwagami N (2018). Identification of extreme ultraviolet emission lines of the Io plasma torus

observed by Hisaki/EXCEED. Journal of Geophysical Research: Planets, 123.

https://doi.org/10.1029/2018JE005629

Hill, T. W. (1976). Interchange stability of a rapidly rotating magnetosphere. Planetary and

Space Science, 24, 1,151-1,154. doi:10.1016/0032-0633(76)90152-5

Hill, T. W., Dessler, A. J., and Maher, L. J. (1981). Corotating magnetospheric convection.

Journal of Geophysical Research, 86(A11), 9,020-9,028. doi:10.1029/JA086iA11p09020

Hiraki, Y., Tsuchiya, F., & Katoh, Y. (2012). Io torus plasma transport under interchange

instability and flow shears. Planetary and Space Science, 62(1), 41–47.

https://doi.org/10.1016/j.pss.2011.11.014

Huba, J. D. (2009). NRL Plasma Formulary, tech. Rep. NRL/PU6790-09-523, (p. 71).

Washington, DC: Nav. Res. Lab.

Ip, W. H. & Goertz, C. K. (1983). An interpretation of the dawn-dusk asymmetry of UV

emission from the Io plasma torus, Nature, 302, 232-233. doi:10.1038/302232a0

Jackman, C.M., Arridge, C.S., André, N. et al. Large-Scale Structure and Dynamics of the

Magnetotails of Mercury, Earth, Jupiter and Saturn. Space Sci Rev 182, 85–154 (2014)

doi:10.1007/s11214-014-0060-8

Judge, D. L., and Carlson, R. W. (1974). Pioneer 10 Observations of the Ultraviolet Glow in

the Vicinity of Jupiter. Science, 183 (4122), 317–318. doi:10.1126/science.183.4122.317

Kasahara, S., Kronberg, E. A., Kimura, T., Tao, C., Badman, S. V., Masters, A., Retinò, A.,

Krupp, N., and Fujimoto, M. (2013), Asymmetric distribution of reconnection jet fronts in the

Jovian nightside magnetosphere, J. Geophys. Res. Space Physics, 118, 375– 384,

doi:10.1029/2012JA018130.

Kelly, R. L. (1987). Atomic and Ionic Spectrum Lines below 2000 Angstroms: Hydrogen

through Krypton Part I (H–Cr). Journal of Physical and Chemical Reference Data, 16.

Kennel, C. F. (1969), Consequences of a magnetospheric plasma, Rev. Geophys., 7 (1, 2), 379–

419, doi:10.1029/RG007i001p00379.

135

Khurana K. K., M. G. Kivelson, V. M. Vasyliunas, N. Krupp, J. Woch, A. Lagg, B. H. Mauk,

W. S. Kurth (2005). The Configuration of Jupiter’s Magnetosphere, in Jupiter: The Planet,

Satellites, and Magnetosphere, edited by F. Bagenal, T. E. Dowling, and W. B. McKinnon, pp.

593–616, Cambridge Univ. Press, New York.

Kimura, T., Kimura, T., Hiraki, Y., Tao, C., Tsuchiya, F., Delamere, P. A., et al. (2018).

Response of Jupiter’s aurora to plasma mass loading rate monitored by the Hisaki satellite

during volcanic eruptions at Io. Journal of Geophysical Research, 123.

https://doi.org/10.1002/2017JA025029

Kimura, T., et al. (2015), Transient internally driven aurora at Jupiter discovered by Hisaki and

the Hubble Space Telescope, Geophys. Res. Lett., 42, 1662–1668, doi:10.1002/2015GL063272.

Kimura, T., Yamazaki, A., Yoshioka, K., Murakami, G., Tsuchiya, F. et al. (2019). Development

of ground pipeline system for high-level scientific data products of the Hisaki satellite mission

and its application to planetary space weather. J. Space Weather Space Clim. 9, A8.

Koga R, Tsuchiya, F., Kagitani, M., Sakanoi, T., Yoneda, M., Yoshioka, K., Kimura, T.,

Murakami, G., Yamazaki, A., Yoshikawa, I., and Smith, T. (2018a). The temporal variation in

atomic oxygen emission around Io during a volcanic event observed with Hisaki/EXCEED.

Icarus, 299, 300-307. doi:10.1016/j.icarus.2017.07.024

Kramida, A., Ralchenko, Y., Reader, J. and NIST ASD Team (20l8). NIST Atomic Spectra

Database (version 5.5.2), [Online]. Available: https://physics.nist.gov/asd [Sun Feb 18 2018].

National Institute of Standards and Technology, Gaithersburg, MD.

Krüger, H., Geissler, P., Horányi, M., Graps, A. L., Kempf, S., Srama, R., Moragas ‐

Klostermeyer, G., Moissl, R., Johnson, T. V., and Grün, E. (2003), Jovian dust streams: A

monitor of Io’s volcanic plume activity, Geophys. Res. Lett., 30, 2101,

doi:10.1029/2003GL017827, 21.

Krupp N., V. M. Vasyliunas, J. Woch, A. Lagg, K. K. Khurana, M. G. Kivelson, B. H. Mauk,

E. C. Roelof, D. J. Williams, S. M. Krimigis, W. S. Kurth, L. A. Frank, and W. R. Paterson

(2005). Dynamics of the J avian Magnetosphere, in Jupiter: The Planet, Satellites, and

Magnetosphere, edited by F. Bagenal, T. E. Dowling, and W. B. McKinnon, pp. 617–638,

Cambridge Univ. Press, New York.

Kupo, I., Mekler, Y., and Eviatar, A. (1976). Detection of ionized sulfur in the Jovian

magnetosphere, The Astrophysical Journal, 205, L51–L53.

136

Kuwabara, M., Yoshioka, K., Murakami, G., Tsuchiya, F., Kimura, T., Yamazaki, A., and

Yoshikawa, I. (2017). The geocoronal responses to the geomagnetic disturbances. Journal of

Geophysical Research, 122, 1269–1276. doi:10.1002/2016JA023247

Lichtenberg, G., and Thomas, N., and Fouchet, T. (2001). Detection of S (IV) 10.51 um

emission from the Io plasma torus, Journal of Geophysical Research, 106, A12, 29899–29910.

Louarn, P., C. P. Paranicas, and W. S. Kurth (2014), Global magnetodisk disturbances and

energetic particle injections at Jupiter, J. Geophys. Res. Space Physics, 119, 4495–4511,

doi:10.1002/2014JA019846.

Ma, X., Delamere, P. A., Thomsen, M. F., Otto, A., Neupane, B., Burkholder, B. L., & Nykyri,

K. (2019). Flux tube entropy and specific entropy in Saturn’s magnetosphere. Journal of

Geophysical

Research:

Space

Physics,

124,

1593–1611.

https://doi.org/10.1029/2018JA026150

Marchis, F., Prangé, R, Christou, J., (2000). Adaptive optics mapping of Io’s volcanism in the

thermal IR (3.8 μm). Icarus 148, 384–396.

Mason, H.E., Monsignori Fossi, B.C. Spectroscopic diagnostics in the VUV for solar and stellar

plasmas. The Astron Astrophys Rev 6, 123–179 (1994) doi:10.1007/BF01208253

Mauk, B. H. et al. Storm-like dynamics of Jupiter’s inner magnetosphere. J. Geophys. Res. 104,

22759–22778 (1999). doi:10.1029/1999JA900097

Mauk, B., Clarke, J., Grodent, D. et al. Transient aurora on Jupiter from injections of

magnetospheric electrons. Nature 415, 1003–1005 (2002) doi:10.1038/4151003a

Mauk, B. H., Mitchell, D. G., McEntire, R. W., Paranicas, C. P., Roelof, E. C., Williams, D. J.,

Krimigis, S. M., and Lagg, A. (2004), Energetic ion characteristics and neutral gas interactions

in Jupiter’s magnetosphere, J. Geophys. Res., 109, A09S12, doi:10.1029/2003JA010270.

May J., T.D. Carr, M.D. Desch. (1979). Decametric radio measurement of Jupiter’s rotation

period, Icarus, Volume 40, Issue 1, Pages 87-93, doi:10.1016/0019-1035(79)90055-1.

McCandliss, R. S., McPhate, J. B., and Feldman, P. D. (1998). Narcissistic ghosts in Rowlandmounted concave gratings with: β= 0 ° a cautionary note. Applied Optics. 37, 5070–5074.

doi:10.1364/AO.37.005070

137

Meier, R. R. (1991). Ultraviolet spectroscopy and remote sensing of the upper atmosphere.

Space Science Reviews. 58, 1–185. doi:10.1007/BF01206000

Mendillo, M., Wilson, J., Spencer, J., and Stansberry, J. (2004). Io’s volcanic control of

Jupiter’s extended neutral clouds, Icarus, 170, 430–442. doi:10.1016/j.icarus.2004.03.009

Mendoza, C., Eissner, W., Dourneuf, M. Le., and Zeippen, C. J. (1995). Atomic data for opacity

calculations. XXIII. The aluminium isoelectronic sequence, Journal of Physics B: Atomic,

Molecular and Optical Physics. 28, 3485.

Mewe, R. X-ray spectroscopy of stellar coronae. The Astron Astrophys Rev 3, 127–168 (1991)

doi:10.1007/BF00873539

Meyer-Vernet, N., M. Moncuquet, and S. Hoang (1995), Temperature inversion in the Io

plasma torus, Icarus, 116, 202–213. doi:10.1006/icar.1995.1121.

Moncuquet, M., F. Bagenal, and N. Meyer-Vernet, Latitudinal structure of outer Io plasma torus,

Journal of Geophysical Research, 107(A9), 1260, doi:10.1029/2001JA900124, 2002

Moos, H. W. and Clarke, J. T. (1981). Ultraviolet observations of the Io torus from earth orbit

using the IUE Observatory. The Astrophysical Journal, 247, 354–361.

Moos, H. W., Feldman, P. D., Durrance, S. T., Blair, W. P., Bowers, C. W., Davidsen, A. F.,

Dixon, W. V., Ferguson, H. C., Henry, R. C., Kimble, R. A., Kriss, G. A., Kruk, J. W., Long, K.

S., and Vancura O. (1991). Determination of ionic abundances in the Io torus using the Hopkins

Ultraviolet Telescope. The Astrophysical Journal, 382, L105–L108.

Morgenthaler J. P., J. A. Rathbun, C. A. Schmidt, J. Baumgardner, and N. M. Schneider (2019)

Large Volcanic Event on Io Inferred from Jovian Sodium Nebula Brightening. The

Astrophysical Journal, 871, L23. doi: 10.3847/2041-8213/aafdb7

Murakami, G., Yoshioka, K., Yamazaki, A., Tsuchiya, F., Kimura, T., Tao, C., Kita, H., Kagitani,

M., Sakanoi, T., Uemizu, K., Kasaba, Y., Yoshikawa, I., & Fujimoto, M. (2016). Response of

Jupiter’s inner magnetosphere to the solar wind derived from extreme ultraviolet monitoring

of the Io plasma tours. Geophysical Research Letters, 43, 12308-12316.

doi:10.1002/2016GL071675

Nerney, E. G., Bagenal, F., & Steffl, A. J. (2017). Io plasma torus ion composition: Voyager,

138

Galileo, and Cassini. Journal

https://doi.org/10.1002/2016JA023306

of

Geophysical

Research,

122,

727–744.

Nichols, J. & Cowley, S. (2004). Magnetosphere-ionosphere coupling currents in Jupiter’s

middle magnetosphere: Effect of precipitation-induced enhancement of the ionospheric

Pedersen conductivity. Annales Geophysicae. 22. 10.5194/angeo-22-1799-2004.

Nozawa, H., Misawa, H., Takahashi, S., Morioka, A., Okano, S., and Sood, R. (2004). Longterm variability of [SII] emissions from the Io plasma torus between 1997 and 2000, Journal

of Geophysical Research, 109, A07209. doi:10.1029/2003JA010241

Oza A. V., R. E. Johnson et al. (2019). Sodium and Potassium Signatures of Volcanic Satellites

Orbiting Close-in Gas Giant Exoplanets. The Astrophysical Journal, 885, Number 2.

doi:10.3847/1538-4357/ab40cc

Peale, S., Cassen, P., Reynolds, R., (1979). Melting of Io by tidal dissipation. Science 203,

892–894. (Rathbun 2006 Loki).

Russell, C. & Wang, YL & Blanco-Cano, X. & Strangeway, R. (2001). The Io mass-loading

disk: Constraints provided by ion cyclotron wave observations. Journal of Geophysical

Research. 106. 26233-26242. 10.1029/2001JA900029.

Russell, C. T., Kivelson, M. G. and Khurana K. K. (2005). Statistics of depleted flux tubes in

the Jovian magnetosphere, Planetary and Space Science, 53, 937–943,

doi:10.1016/j.pss.2005.04.007.

Sandel, B. R., and Broadfoot, A. L. (1982a). Discovery of an Io-correlated energy source for

Io’s hot plasma torus, Journal of Geophysical Research, 87(A4), 2231–2240.

doi:10.1029/JA087iA04p02231

Schneider, N. and Trauger, J. (1995). The Structure of the Io Torus. The Astrophysical Journal.

450. 450. doi:10.1086/176155.

Scudder, J. D., Sittler, E. C., and Bridge, H. S. (1981), A survey of the plasma electron

environment of Jupiter: A view from Voyager, J. Geophys. Res., 86(A10), 8157– 8179,

doi:10.1029/JA086iA10p08157.

Shemansky, D. E. (1980). Radiative cooling efficiencies and predicted spectra of species of the

Io plasma torus. The Astrophysical Journal, 236, 1043–1054. https://doi.org/10.1086/157832

139

Shemansky, D. E., and Smith, G. R. (1981). The Voyager 1 EUV spectrum of the Io plasma

torus, Journal of Geophysical Research, 86, 9179–9192.

Shemansky, D. E. (1987). Ratio of oxygen to sulfur in the Io plasma torus. Journal of

Geophysical Research, 92, 6141–6146. https://doi.org/10.1029/JA092iA06p06141

Shemansky, D. E. (1988), Energy branching in the Io plasma torus: The failure of Neutral cloud

theory, Journal of Geophysical Research, 93(A3), 1773–1784, doi:10.1029/JA093iA03p01773.

Sirk, M. M., Vallerga, J. V., Finley, D. S., Jelinsky, P., and Malina, R. F. (1997). Performance

of the extreme ultraviolet explorer imaging telescopes. The Astrophysical Journal,

110:347E356.

Siscoe, G. L. (1978), Jovian plasmaspheres, Journal of Geophysical Research, 83(A5), 2118–

2126, doi:10.1029/JA083iA05p02118.

Siscoe, G. L. and Summers D. (1981). Centrifugally driven diffusion of iogenic plasma. Journal

of Geophysical Research, 86(A10), 8,471-8,479. doi:10.1029/JA086iA10p08471

Sittler, E. C., Jr., and Strobel, D. F. (1987). Io plasma torus electrons: Voyager 1, Journal of

Geophysical Research, 92(A6), 5741–5762. doi:10.1029/JA092iA06p05741

Steffl, A. J., Ian, A., Stewart, F. and Bagenal F. (2004a). Cassini UVIS observations of the Io

plasma torus: I. Initial results, Icarus, 172(1), 78–90. doi:10.1016/j.icarus.2003.12.027.

Steffl, A. J., Bagenal F., Ian A., and Stewart F. (2004b). Cassini UVIS observations of the Io

plasma torus: II. Radial variations, Icarus, 172(1), 91–103. doi:10.1016/j.icarus.2004.04.016

Steffl et al., (2008). Cassini UVIS observations of the Io plasma torus IV. Modeling temporal

and azimuthal variability. Icarus, 194, 153-165, doi:10.1016/j.icarus.2007.09.019

Strobel D. F. and J. Davis (1980) Properties of the Io plasma torus inferred from Voyager EUV

data. The Astrophysical Journal, 238, L49. doi:10.1086/183256

Suzuki, F., Yoshioka, K., Hikida, R., Murakami, G., Tsuchiya, F., Kimura, T., & Yoshikawa, I.

(2018). Corotation of bright features in the Io plasma torus. Journal of Geophysical Research:

Space Physics, 123, 9420–9429. https://doi.org/ 10.1029/2018JA025363

140

Tao C, Kataoka R, Fukunishi H, Takahashi Y, Yokoyama T (2005) Magnetic field variations in

the Jovian magnetotail induced by solar wind dynamic pressure enhancements. J Geophys Res

110:A11208. doi:10.1029/2004JA010959

Tao, C., Kimura, T., Tsuchiya, F., Muirakami, G., Yoshioka, K., Yamazaki, A., Fujimoto, M. et

al. (2018). Variation in Jupiter’s aurora observed by Hisaki/EXCEED: 3. Volcanic control of

Jupiter’s aurora. Geophysical Research Letters, 45. https://doi.org/10.1002/2017GL075814

Thomas, N. (1995). Ion temperatures in the Io plasma torus, Journal of Geophysical Research,

100, 7925– 7935.

Thomas, N., F. Bagenal, T. W. Hill, and J. K. Wilson (2004). The Io neutral clouds and plasma

torus, in Jupiter: The Planet, Satellites, and Magnetosphere, edited by F. Bagenal, T. E. Dowling,

and W. B. McKinnon, pp. 561–591, Cambridge Univ. Press, New York.

Thorne, R. M., Armstrong, T. P., Stone, S., Williams, D. J., McEntire, R. W., Bolton, S. J., et

al. (1997). Galileo evidence for rapid interchange transport in the Io torus. Geophysical

Research Letters, 24(17), 2131–2134. https://doi.org/10.1029/97GL01788

Treumann, R. A. and Baumjohann, W. (1997). Advanced space plasma physics. Imperial

College Press, London. doi: 10.1142/p020

Tsuchiya, F., Kagitani, M., Yoshioka, K., Kimura, T., Murakami, G., Yamazaki, A., Nozawa,

H., Kasaba, Y., Sakanoi, T., Uemizu, K., and Yoshikawa, I. (2015). Local electron heating in

the Io plasma torus associated with Io from HISAKI satellite observation. Journal of

Geophysical Research, 120, 10317–10333. doi:10.1002/2015JE004849

Tsuchiya, F., Yoshioka, K., Kimura, T., Koga, R., Murakami, G., Yamazaki, A., et al. (2018).

Enhancement of the Jovian magnetospheric plasma circulation caused by the change in plasma

supply from the satellite Io. Journal of Geophysical Research: Space Physics, 123,

6514–6532. https://doi.org/10.1029/2018JA025316

Tsuchiya, F., R. Arakawa, H. Misawa, M. Kagitani, R. Koga, F. Suzuki, R. Hikida,K. Yoshioka,

A. Steffl, F. Bagenal, P. Delamere, T. Kimura, Y. Kasaba, G. Murakami, I. Yoshikawa, A.

Yamazaki, and M. Yoneda (2019). Azimuthal variation in the Io plasma torus observed by the

Hisaki satellite from 2013 to 2016. Journal of Geophysical Research, 120, 10317–10333.

doi:10.1029/2018JA026038

Vasyliunas, V. M. (1983). In A. J. Dessler (Ed.), Plasma distribution and flow, in physics of the

141

Jovian magnetosphere, (pp. 395–453). Cambridge, U. K.: Cambridge Univ. Press.

https://doi.org/10.1029/CBO9780511564574.005

Watanabe, T., T. Kato, I. Murakami, and M. Yamamoto. (2007) Solar and LHD Plasma

Diagnostics. AIP Conference Proceedings 901, 215. doi:10.1063/1.2727371

Woch, J., Krupp, N., and Lagg, A. (2002) Particle bursts in the Jovian magnetosphere: Evidence

for a near‐Jupiter neutral line, Geophys. Res. Lett., 29 (7), doi:10.1029/2001GL014080.

Yamazaki, A., Tsuchiya, F., Sakanoi, T., Uemizu, K., Yoshioka, K., Murakami, G., Kagitani,

M., Kasaba, Y., Yoshikawa, I., Terada, N., Kimura, T., Sakai, S., Nakaya, K., Fukuda, S., and

Sawai, S. (2014). Field-Of-View guiding camera on the HISAKI (SPRINT-A) satellite. Space

Science Reviews, 184, 259–274. doi:10.1007/s11214-014-0106-y

Yoneda, M., Nozawa, H., Misawa, H., Kagitani, M., and Okano, S. (2010). Jupiter’s

magnetospheric change by Io’s volcanoes, Geophysical Research Letters, 37, L11202.

doi:10.1029/2010GL043656

Yoneda, M., Kagitani M., Tsuchiya, F., Sakanoi, T., and Okano, S. (2015). Brightening event

seen in observations of Jupiter’s extended sodium nebula, Icarus, 261, 31–33.

doi:10.1016/j.icarus.2015.07.037

Yoshikawa, I., Yoshioka, K., Murakami, G., Yamazaki, A., Tsuchiya, F., Kagitani, M., Sakanoi,

T., Terada, N., Kimura, T., Kuwabara, M., Fujiwara, K., Hamaguchi, T., and Tadokoro, H.

(2014).

Extreme

Ultraviolet

Radiation

measurement

for

planetary

atmospheres/magnetospheres from the Earth-orbiting spacecraft (Extreme Ultraviolet

Spectroscope for Exospheric Dynamics: EXCEED). Space Science Reviews, 184, 237–258.

doi:10.1007/s11214-014-0077-z

Yoshikawa, I., Yoshioka, K., Murakami, G., Suzuki, F., Hikida, R., Yamazaki, A., et al. (2016).

Properties of hot electrons in the Jovian inner magnetosphere deduced from extended

observations of the Io plasma torus. Geophysical Research Letters, 43, 11,552–11,557.

https://doi.org/10.1002/2016GL070706

Yoshikawa, I., Suzuki, F., Hikida, R., Yoshioka, K., Murakami, G., Tsuchiya, F., Tao, C.,

Yamazaki, A., Kimura, T., Kita, H, Nozawa, H., & Fujimoto, M. (2017). Volcanic activity on

Io and its influence on the dynamics of the Jovian magnetosphere observed by EXCEED/Hisaki

in 2015. Earth, Planets and Space, 69:110. doi:10.1186/s40623-017-0700-9m

142

Yoshioka, K., I. Yoshikawa, F. Tsuchiya, M. Kagitani, and G. Murakami (2011), Hot electron

component in the Io plasma torus confirmed through EUV spectral analysis, Journal of

Geophysical Research, 116, A09204, doi:10.1029/2011JA016583.

Yoshioka, K., Murakami, G., Yamazaki, A., Tsuchiya, F., Kagitani, M., Sakanoi, T., Kimura, T.,

Uemizu, K., Uji, K., and Yoshikawa, I. (2013). The extreme ultraviolet spectroscope for

planetary science, EXCEED. Planetary and Space Science, 85, 250–260.

doi:10.1016/j.pss.2013.06.021

Yoshioka, K., Murakami, G., Yamazaki, A., Tsuchiya, F., Kimura, T., Kagitani, M., Sakanoi, T.,

Uemizu, K., Kasaba, Y., Yoshikawa, I., & Fujimoto, M. (2014), Evidence for global electron

transportation into the Jovian inner magnetosphere. Science, 345(6204), 1581–1584.

doi:10.1126/science.1256259

Yoshioka, K., Tsuchiya, F., Kimura, T., Kagitani, M., Murakami, G., Yamazaki, A., Kuwabara,

M., Suzuki, F., Hikida, R., Yoshikawa, I., Bagenal, F., and Fujimoto, M. (2017). Radial

variation in sulfur and oxygen ions in the Io plasma torus as deduced from remote observations

by Hisaki. Journal of Geophysical Research, 122, 2999–3012. doi:10.1002/2016JA023691

Yoshioka, K., Tsuchiya, F., Kagitani, M., Kimura, T., Murakami, G., Fukuyama, D.,

et al. (2018). The influence of Io’s 2015 volcanic activity on Jupiter’s magnetospheric

dynamics.

Geophysical

Research

Letters,

45,

10,193–10,199.

https://doi.org/10.1029/2018GL079264

Zhou, Q., F. Xiao, C. Yang, Y. He, and L. Tang (2013), Observation and modeling of

magnetospheric cold electron heating by electromagnetic ion cyclotron waves, Journal of

Geophysical Research, 118, 6907–6914, doi:10.1002/2013JA019263

大林辰蔵(1970),「宇宙空間物理学(物理科学選書 (5))」, 978-4-7853-2405-6

143

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る