リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「A Novel Amino Acid Substitution, Fibrinogen Bβp.Pro234Leu, Associated with Hypofibrinogenemia Causing Impairment of Fibrinogen Assembly and Secretion」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

A Novel Amino Acid Substitution, Fibrinogen Bβp.Pro234Leu, Associated with Hypofibrinogenemia Causing Impairment of Fibrinogen Assembly and Secretion

Kaido, Takahiro Yoda, Masahiro Kamijo, Tomu Arai, Shinpei Taira, Chiaki Higuchi, Yumiko Okumura, Nobuo 信州大学 DOI:33322044

2022.01.04

概要

We identified a novel heterozygous variant, Bβp.Pro234Leu (fibrinogen Tokorozawa), which was suspected to be associated with hypofibrinogenemia. Therefore, we analyzed the assembly and secretion of this fibrinogen using Chinese hamster ovary (CHO) cells. To determine the impact on the synthesis and secretion of fibrinogen of the Bβp.P234L and γp.G242E substitutions, we established recombinant variant fibrinogen-producing CHO cell lines. Synthesis and secretion analyses were performed using an enzyme-linked immunosorbent assay (ELISA) and immunoblotting analysis with the established cell lines. In addition, we performed fibrin polymerization using purified plasma fibrinogen and in-silico analysis. Both Bβp.P234L and γp.G242E impaired the secretion and synthesis of fibrinogen. Moreover, immunoblotting analysis elucidated the mobility migration of the Bβγ complex in Bβp.P234L. On the other hand, the fibrin polymerization of fibrinogen Tokorozawa was similar to that of normal fibrinogen. In-silico analysis revealed that the Bβp.P234 residue is located in the contact region between the Bβ and γ chains and contacts γp.G242 residue. The present study demonstrated that the Bβp.P234L substitution resulted in hypofibrinogenemia by decreasing the assembly and secretion of fibrinogen. Therefore, there is a possibility that substitutions in the contact region between the Bβ and γ chains impact the assembly and secretion of fibrinogen.

参考文献

1. Weisel, J.W.; Litvinov, R.I. Fibrin Formation, Structure and Properties. Subcell. Biochem. 2017, 82, 405–456. [CrossRef] [PubMed]

2. Farrell, D.H.; Huang, S.; Davie, E.W. Processing of the carboxyl 15-amino acid extension in the alpha-chain of fibrinogen. J. Biol. Chem. 1993, 268, 10351–10355. [PubMed]

3. Weisel, J.W. Fibrinogen and fibrin. Adv. Protein Chem. 2005, 70, 247–299. [CrossRef] [PubMed]

4. Human Fibrinogen Database. Groupe D’etude sur L’hemostase et la Thrombose Human Fibrinogen Database Release 50; Human Fibrinogen Database: Paris, France, 2020.

5. Casini, A.; Undas, A.; Palla, R.; Thachil, J.; de Moerloose, P. Diagnosis and classification of congenital fibrinogen disorders: Communication from the SSC of the ISTH. J. Thromb. Haemost. 2018, 16, 1887–1890. [CrossRef]

6. Neerman-Arbez, M.; Casini, A. Clinical Consequences and Molecular Bases of Low Fibrinogen Levels. Int. J. Mol. Sci. 2018, 19, 192. [CrossRef]

7. Simurda, T.; Brunclikova, M.; Asselta, R.; Caccia, S.; Zolkova, J.; Kolkova, Z.; Loderer, D.; Skornova, I.; Hudecek, J.; Lasabova, Z.; et al. Genetic Variants in the FGB and FGG Genes Mapping in the Beta and Gamma Nodules of the Fibrinogen Molecule in Congenital Quantitative Fibrinogen Disorders Associated with a Thrombotic Phenotype. Int. J. Mol. Sci. 2020, 21, 4616. [CrossRef]

8. Smith, N.; Bornikova, L.; Noetzli, L.; Guglielmone, H.; Minoldo, S.; Backos, D.S.; Jacobson, L.; Thornburg, C.D.; Escobar, M.; White-Adams, T.C.; et al. Identification and characterization of novel mutations implicated in congenital fibrinogen disorders. Res. Pract. Thromb. Haemost. 2018, 2, 800–811. [CrossRef]

9. Holm, B.; Godal, H.C. Quantitation of the three normally-occurring plasma fibrinogens in health and during so-called “acute phase” by SDS electrophoresis of fibrin obtained from EDTA-plasma. Thromb. Res. 1984, 35, 279–290. [CrossRef]

10. Holm, B.; Nilsen, D.W.; Kierulf, P.; Godal, H.C. Purification and characterization of 3 fibrinogens with different molecular weights obtained from normal human plasma. Thromb. Res. 1985, 37, 165–176. [CrossRef]

11. Sievers, F.; Wilm, A.; Dineen, D.; Gibson, T.J.; Karplus, K.; Li, W.; Lopez, R.; McWilliam, H.; Remmert, M.; Söding, J.; et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 2011, 7, 539. [CrossRef]

12. Waterhouse, A.M.; Procter, J.B.; Martin, D.M.A.; Clamp, M.; Barton, G.J. Jalview Version 2—A multiple sequence alignment editor and analysis workbench. Bioinformatics 2009, 25, 1189–1191. [CrossRef] [PubMed]

13. UniProt Consortium. UniProt: A worldwide hub of protein knowledge. Nucleic Acids Res. 2019, 47, D506–D515. [CrossRef] [PubMed]

14. Thompson, J.D.; Gibson, T.J.; Higgins, D.G. Multiple sequence alignment using ClustalW and ClustalX. Curr. Protoc. Bioinform. 2002. [CrossRef] [PubMed]

15. Marchi, R.; Brennan, S.; Mijares, M. A novel mutation in the fibrinogen γ-chain 216 Gly>Glu causes hypofibrinogenemia. Thromb. Res. 2016, 147, 61–62. [CrossRef] [PubMed]

16. Bauduer, F.; Mimoun, A.; Ménard, F.; de Mazancourt, P. The fibrinogen FGG p.Gly242Glu: A rare mutation associated with hypofibrinogenemia. Blood Coagul. Fibrinolysis 2018, 29, 415–416. [CrossRef] [PubMed]

17. Zhang, J.Z.; Redman, C.M. Role of interchain disulfide bonds on the assembly and secretion of human fibrinogen. J. Biol. Chem. 1994, 269, 652–658. [PubMed]

18. Neerman-Arbez, M.; de Moerloose, P.; Casini, A. Laboratory and Genetic Investigation of Mutations Accounting for Congenital Fibrinogen Disorders. Semin. Thromb. Hemost. 2016, 42, 356–365. [CrossRef]

19. Kaido, T.; Yoda, M.; Kamijo, T.; Taira, C.; Higuchi, Y.; Okumura, N. Comparison of molecular structure and fibrin polymerization between two Bβ-chain N-terminal region fibrinogen variants, Bβp.G45C and Bβp.R74C. Int. J. Hematol. 2020, 112, 331–340. [CrossRef]

20. Terasawa, F.; Okumura, N.; Kitano, K.; Hayashida, N.; Shimosaka, M.; Okazaki, M.; Lord, S.T. Hypofibrinogenemia Associated With a Heterozygous Missense Mutation γ153Cys to Arg (Matsumoto IV): In Vitro Expression Demonstrates Defective Secretion of the Variant Fibrinogen. Blood 1999, 94, 4122–4131. [CrossRef]

21. Yoda, M.; Kaido, T.; Taira, C.; Higuchi, Y.; Arai, S.; Okumura, N. Congenital fibrinogen disorder with a compound heterozygote possessing two novel FGB mutations, one qualitative and the other quantitative. Thromb. Res. 2020, 196, 152–158. [CrossRef]

22. Betts, L.; Merenbloom, B.K.; Lord, S.T. The structure of fibrinogen fragment D with the “A” knob peptide GPRVVE. J. Thromb. Haemost. 2006, 4, 1139–1141. [CrossRef] [PubMed]

23. Kostelansky, M.S.; Betts, L.; Gorkun, O.V.; Lord, S.T. 2.8 Å Crystal Structures of Recombinant Fibrinogen Fragment D with and without Two Peptide Ligands: GHRP Binding to the “b” Site Disrupts Its Nearby Calcium-binding Site. Biochemistry 2002, 41, 12124–12132. [CrossRef] [PubMed]

24. Spraggon, G.; Everse, S.J.; Doolittle, R.F. Crystal structures of fragment D from human fibrinogen and its crosslinked counterpart from fibrin. Nature 1997, 389, 455–462. [CrossRef] [PubMed]

25. Kollman, J.M.; Pandi, L.; Sawaya, M.R.; Riley, M.; Doolittle, R.F. Crystal structure of human fibrinogen. Biochemistry 2009, 48, 3877–3886. [CrossRef]

26. Yang, Z.; Kollman, J.M.; Pandi, L.; Doolittle, R.F. Crystal structure of native chicken fibrinogen at 2.7 A resolution. Biochemistry 2001, 40, 12515–12523. [CrossRef]

27. Yang, Z.; Spraggon, G.; Pandi, L.; Everse, S.J.; Riley, M.; Doolittle, R.F. Crystal structure of fragment D from lamprey fibrinogen complexed with the peptide Gly-His-Arg-Pro-amide. Biochemistry 2002, 41, 10218–10224. [CrossRef]

28. Schrodinger, LLC. The PyMOL Molecular Graphics System, Version 2.0; Schrodinger, LLC.: New York, NY, USA, 2015.

29. Sali, A.; Blundell, T.L. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 1993, 234, 779–815. [CrossRef]

30. Kanda, Y. Investigation of the freely available easy-to-use software “EZR” for medical statistics. Bone Marrow Transplant. 2013, 48, 452–458. [CrossRef]

31. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る