リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Sub-GeV領域における水-ニュートリノ荷電カレント反応の精密測定」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Sub-GeV領域における水-ニュートリノ荷電カレント反応の精密測定

鈴木, 陽介 名古屋大学

2023.06.26

概要

学位報告4

別紙4
報告番号





















論 文 題 目 Sub-GeV 領域における
水-ニュートリノ荷電カレント反応の精密測定


名 鈴木 陽介

論 文 内 容 の 要 旨
ニュートリノは、電荷をもたずまた弱い相互作用しか起こさないため、最近になってようやくその
性質の解明が進んできた素粒子である。ニュートリノが起こす標準理論を越えた物理現象の一つにニ
ュートリノ振動現象がある。その精密測定は、物質優勢宇宙の起源を明らかにする手掛かりである CP
対称性の破れや、未知の対称性の探索に直結するものである。
ニュートリノ振動の精密測定には、統計誤差ならびに系統誤差の削減が不可欠である。統計誤差の
削減のために大質量の検出器を用いた実験(T2HK,DUNE,ESS𝜈SB)が計画されている。一方、系統誤
差削減のためには、ニュートリノ反応そのものの正確な把握が必要であり、反応から放出される低運
動量のハドロンや大角度に放出される陽子の測定など、反応の詳細研究が必要である。
申請者は、ニュートリノ反応の詳細研究のために、反応点近傍をサブミクロンの精度で解析するこ
とが可能な原子核乾板を用いたニュートリノ―水反応検出器を作成し、93m2 の原子核乾板と、重量
74kg の水標的からなる検出器を作成し実験を行った。
照射に用いた検出器は、500𝜇𝑚の鉄板を 2 枚の原子核乾板で挟み真空パックした飛跡検出層と
2.3𝑚𝑚の水の層を交互に積層した構造をもっており、反応点から放出される陽子に対して200MeV/c、
荷電パイオンで50MeV/cという低い運動量閾値を持つ。原子核乾板は原理的に4𝜋の角度アクセプタン
スを持つが、飛跡読取の仕方によって再構成される飛跡の角度アクセプタンスが制限されていた。申
請者は、新たな飛跡読取アルゴリズムならびにシステムの開発を行い、先行実験の|tanθ|<1.5(立体角
45%)に対して、|tanθ|<5.0(立体角にして 80%)の飛跡読取を可能とした。また読み取り処理速度も約
250 日で全原子核乾板の飛跡読取処理を完了できるものとした、
読み取られた飛跡の角度精度は従来の方法に比べ|tanθ|<2.0 の領域で約 4 倍向上したものとするこ
とができており、飛跡接続の処理時間の短縮および S/N 比の向上も達成した。また個々の飛跡検出層
で検出された飛跡情報を接続して飛跡を再構成するアルゴリズムの改良を行い、従来の手法では重複
組み合わせにより発散していた電磁シャワーなどの解析を、最も可能性の高い組み合わせに解きほぐ
す手法の開発を行った。また反応点から出ている低エネルギーの陽子飛跡を検出し、背景事象から選
別するための手法開発を行った。

学位関係

これら開発した手法を、実際の詳細解析に応用し、全体の 9 分の1に相当する標的中に、82
事象のニュートリノ-水反応を検出し、大角度に放出されたニュートリノ反応由来の二次粒子を
検出できることを確認するとともに、今後全統計での解析を行う際に必要な課題を明確にした。
これらの申請者の開発研究により、陽子で200𝑀𝑒𝑉/𝑐という低運動量閾値および|tanθ|<4.0 と
いう角度アクセプタンスでのニュートリノ反応精密測定が可能となった。本実験において期待さ
れるニュートリノ―水反応の検出数は約 1000 事象であり、ニュートリノ―水反応の精密な反応
モデル構築のための基礎データを得ることができるめどがついた。このことにより、今後行われ
る水標的を用いた全ての長基線ニュートリノ振動実験において、ニュートリノ反応由来の系統誤
差の削減に貢献することが期待される。

この論文で使われている画像

参考文献

[1] W. Pauli. Dear radioactive ladies and gentlemen. Phys. Today, 31N9:27, 1978.

[2] F. Reines and C. L. Cowan. Detection of the free neutrino. Phys. Rev., 92:830–831, 1953.

[3] G. Danby, J. M. Gaillard, K. A. Goulianos, L. M. Lederman, N. B. Mistry, M. Schwartz, and J.

Steinberger. Observation of High-Energy Neutrino Reactions and the Existence of Two Kinds

of Neutrinos. Phys. Rev. Lett., 9:36–44, 1962.

[4] D. DeCamp et al. (ALEPH Collaboration). Determination of the Number of Light Neutrino

Species. Phys. Lett. B, 231:519–529, 1989.

[5] S. Schael et al. (ALEPH, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, SLD

Electroweak Group, SLD Heavy Flavour Group). Precision electroweak measurements on the

Z resonance. Phys. Rept., 427:257–454, 2006.

[6] K. Kodama et al. (DONUT Collaboration). Observation of tau neutrino interactions. Phys.

Lett. B, 504:218–224, 2001.

[7] B. Pontecorvo. Mesonium and anti-mesonium. Sov. Phys. JETP, 6:429, 1957.

[8] B. Pontecorvo. Inverse beta processes and nonconservation of lepton charge. Zh. Eksp. Teor.

Fiz., 34:247, 1957.

[9] Ziro Maki, Masami Nakagawa, and Shoichi Sakata. Remarks on the unified model of elementary

particles. Prog. Theor. Phys., 28:870–880, 1962.

[10] Y. Fukuda et al. Evidence for oscillation of atmospheric neutrinos. Phys. Rev. Lett., 81:1562–

1567, 1998.

[11] N, Agafonova et al. (OPERA Collaboration). Observation of a first ντ candidate in the OPERA

experiment in the CNGS beam. Phys. Lett. B, 691:138–145, 2010.

[12] N, Agafonova et al. (OPERA Collaboration). Discovery of τ Neutrino Appearance in the

CNGS Neutrino Beam with the OPERA Experiment. Phys. Rev. Lett., 115(12):121802, 2015.

[13] N, Agafonova et al. (OPERA Collaboration). Final Results of the OPERA Experiment on ντ

Appearance in the CNGS Neutrino Beam. Phys. Rev. Lett., 120(21):211801, 2018. [Erratum:

217

Phys.Rev.Lett. 121, 139901 (2018)].

[14] Ivan Esteban, M. C. Gonzalez-Garcia, Michele Maltoni, Thomas Schwetz, and Albert Zhou.

The fate of hints: updated global analysis of three-flavor neutrino oscillations. JHEP, 09:178,

2020.

[15] NuFIT 5.1, 2021. www.nu-fit.org.

[16] K. Abe et al. (Hyper Kamiokande Proto-Collaboration). Hyper-Kamiokande Design Report.

5 2018.

[17] R. Acciarri et al. (DUNE Collaboration). Long-Baseline Neutrino Facility (LBNF) and Deep

Underground Neutrino Experiment (DUNE): Conceptual Design Report, Volume 2: The

Physics Program for DUNE at LBNF. 12 2015.

[18] A. Alekou et al. Updated physics performance of the ESSnuSB experiment: ESSnuSB collaboration. Eur. Phys. J. C, 81(12):1130, 2021.

[19] Christophe Bronner. Accelerator neutrino i recent results from t2k, June 2022.

[20] A. Aguilar-Arevalo et al. (LSND Collaboration). Evidence for neutrino oscillations from the

observation of ν¯e appearance in a ν¯µ beam. Phys. Rev. D, 64:112007, 2001.

[21] A. A. Aguilar-Arevalo et al. Updated MiniBooNE neutrino oscillation results with increased

data and new background studies. Phys. Rev. D, 103(5):052002, 2021.

[22] P. Abratenko et al. (MicroBooNE collaboration). Search for an Excess of Electron Neutrino

Interactions in MicroBooNE Using Multiple Final State Topologies. 10 2021.

[23] N. Agafonova et al. (OPERA collaboration). Final results of the search for νµ → νe oscillations

with the OPERA detector in the CNGS beam. JHEP, 06:151, 2018.

[24] S. Ajimura et al. Technical Design Report (TDR): Searching for a Sterile Neutrino at J-PARC

MLF (E56, JSNS2). 5 2017.

[25] K. Abe et al. (T2K Collaboration). Constraint on the matter–antimatter symmetry-violating

phase in neutrino oscillations. Nature, 580(7803):339–344, 2020. [Erratum: Nature 583, E16

(2020)].

[26] M. A. Acero et al. (NOνA Collaboration). First Measurement of Neutrino Oscillation Parameters using Neutrinos and Antineutrinos by NOvA. Phys. Rev. Lett., 123(15):151803, 2019.

[27] P. A. Zyla et al. (Particle Data Group). Review of Particle Physics. PTEP, 2020(8):083C01,

2020.

[28] C. H. Slwellyn Smith. Neutrino Reactions at Accelerator Energies. Phys. Rept., 3:261–379,

1972.

[29] R. G. Sachs. High-Energy Behavior of Nucleon Electromagnetic Form Factors. Phys. Rev.,

218

126:2256–2260, 1962.

[30] M. Gourdin. Weak and Electromagnetic Form-Factors of Hadrons. Phys. Rept., 11:29, 1974.

[31] J. Liu et al. Determination of the Axial-Vector Weak Coupling Constant with Ultracold

Neutrons. Phys. Rev. Lett., 105:181803, 2010.

[32] D. Mund, B. Maerkisch, M. Deissenroth, J. Krempel, M. Schumann, H. Abele, A. Petoukhov,

and T. Soldner. Determination of the Weak Axial Vector Coupling from a Measurement of the

Beta-Asymmetry Parameter A in Neutron Beta Decay. Phys. Rev. Lett., 110:172502, 2013.

[33] Veronique Bernard, Latifa Elouadrhiri, and Ulf-G. Meissner. Axial structure of the nucleon:

Topical Review. J. Phys. G, 28:R1–R35, 2002.

[34] Stephen L. Adler. Tests of the Conserved Vector Current and Partially Conserved Axial-Vector

Current Hypotheses in High-Energy Neutrino Reactions. Phys. Rev., 135:B963–B966, 1964.

[35] P. Adamson et al. (MINOS+ Collaboration). Precision Constraints for Three-Flavor Neutrino

Oscillations from the Full MINOS+ and MINOS Dataset. Phys. Rev. Lett., 125(13):131802,

2020.

[36] M. A. Acero et al. (NOνA Collaboration). An Improved Measurement of Neutrino Oscillation

Parameters by the NOvA Experiment. 8 2021.

[37] A. A. Aguilar-Arevalo et al. (MiniBooNE collaboration). First Measurement of the Muon Neutrino Charged Current Quasielastic Double Differential Cross Section. Phys. Rev. D, 81:092005,

2010.

[38] K. S. Egiyan et al. Observation of nuclear scaling in the A(e, e-prime) reaction at x(B) greater

than 1. Phys. Rev. C, 68:014313, 2003.

[39] K. S. Egiyan et al. Measurement of 2- and 3-nucleon short range correlation probabilities in

nuclei. Phys. Rev. Lett., 96:082501, 2006.

[40] R. Shneor et al. Investigation of proton-proton short-range correlations via the C-12(e, e-prime

pp) reaction. Phys. Rev. Lett., 99:072501, 2007.

[41] A. Bodek, H. S. Budd, and M. E. Christy. Neutrino Quasielastic Scattering on Nuclear Targets:

Parametrizing Transverse Enhancement (Meson Exchange Currents). Eur. Phys. J. C, 71:1726,

2011.

[42] J. Nieves, I. R. Simo, and M. J. V. Vacas. Inclusive Charged–Current Neutrino–Nucleus

Reactions. Phys. Rev. C, 83:045501, 2011.

[43] M. Martini, M. Eficson, G. Chanfray, and J. Marteau. A Unified approach for nucleon knockout, coherent and incoherent pion production in neutrino interactions with nuclei. Phys. Rev.

C, 80:065501, 2009.

219

[44] G. D. Megias, J. E. Amaro, M. B. Barbaro, J. A. Caballero, T. W. Donnelly, and I. Ruiz Simo.

Charged-current neutrino-nucleus reactions within the superscaling meson-exchange current

approach. Phys. Rev. D, 94(9):093004, 2016.

[45] J. Nieves, I. Ruiz Simo, and M. J. Vicente Vacas. The nucleon axial mass and the MiniBooNE

Quasielastic Neutrino-Nucleus Scattering problem. Phys. Lett. B, 707:72–75, 2012.

[46] R. Acciarri et al. Detection of Back-to-Back Proton Pairs in Charged-Current Neutrino Interactions with the ArgoNeuT Detector in the NuMI Low Energy Beam Line. Phys. Rev. D,

90(1):012008, 2014.

[47] X. G. Lu et al. (MINERvA Collaboration). Measurement of final-state correlations in neutrino

muon-proton mesonless production on hydrocarbon at ⟨Eν ⟩ = 3 GeV. Phys. Rev. Lett.,

121(2):022504, 2018.

[48] K. Abe et al. Measurement of neutrino and antineutrino oscillations by the T2K experiment including a new additional sample of νe interactions at the far detector. Phys. Rev. D,

96(9):092006, 2017. [Erratum: Phys.Rev.D 98, 019902 (2018)].

[49] R. A. Smith and E. J. Moniz. NEUTRINO REACTIONS ON NUCLEAR TARGETS. Nucl.

Phys. B, 43:605, 1972. [Erratum: Nucl.Phys.B 101, 547 (1975)].

[50] J. Nieves, E. Oset, and C. Garcia-Recio. A Theoretical approach to pionic atoms and the

problem of anomalies. Nucl. Phys. A, 554:509–553, 1993.

[51] B. Bourguille, J. Nieves, and F. S´anchez. Inclusive and exclusive neutrino-nucleus cross sections

and the reconstruction of the interaction kinematics. JHEP, 04:004, 2021.

[52] M. Valverde, Jose Enrique Amaro, and J. Nieves. Theoretical uncertainties on quasielastic

charged-current neutrino-nucleus cross sections. Phys. Lett. B, 638:325–332, 2006.

[53] O. Benhar, A. Fabrocini, S. Fantoni, and I. Sick. Spectral function of finite nuclei and scattering

of GeV electrons. Nucl. Phys. A, 579:493–517, 1994.

[54] Omar Benhar and Adelchi Fabrocini. Two nucleon spectral function in infinite nuclear matter.

Phys. Rev. C, 62:034304, 2000.

[55] Roger D. Woods and David S. Saxon. Diffuse Surface Optical Model for Nucleon-Nuclei Scattering. Phys. Rev., 95:577–578, 1954.

[56] Yoshinari Hayato and Luke Pickering. The NEUT neutrino interaction simulation program

library. Eur. Phys. J. ST, 230(24):4469–4481, 2021.

[57] L. Alvarez-Ruso et al. NuSTEC White Paper: Status and challenges of neutrino–nucleus

scattering. Prog. Part. Nucl. Phys., 100:1–68, 2018.

[58] L. L. Salcedo, E. Oset, M. J. Vincente-Vacas, and C. Garcia-Recio. Computer Simulation of

220

Inclusive Pion Nuclear Reactions. Nucl. Phys. A, 484:557–592, 1988.

[59] H. W. Bertini. Nonelastic interactions of nucleons and pi mesons with complex nuclei at

energies below 3 gev. Phys. Rev. C, 6:631–659, 1972.

[60] V Lyubushkin et al. A Study of quasi-elastic muon neutrino and antineutrino scattering in the

NOMAD experiment. Eur. Phys. J. C, 63:355–381, 2009.

[61] K. Abe et al. (T2K collaboration). T2K ND280 Upgrade - Technical Design Report. 1 2019.

[62] C. M. G. Lattes, H. Muirhead, G. P. S. Occhialini, and C. F. Powell. PROCESSES INVOLVING CHARGED MESONS. Nature, 159:694–697, 1947.

[63] K. Niu, E. Mikumo, and Y. Maeda. A Possible decay in flight of a new type particle. Prog.

Theor. Phys., 46:1644–1646, 1971.

[64] K. Abe et al. (T2K Collaboration). T2K neutrino flux prediction. Phys. Rev. D, 87(1):012001,

2013. [Addendum: Phys.Rev.D 87, 019902 (2013)].

[65] T. Fukuda et al. First neutrino event detection with nuclear emulsion at J-PARC neutrino

beamline. PTEP, 2017(6):063C02, 2017.

[66] A. Hiramoto et al. (NINJA Collaboration). First measurement of ν µ and νµ charged-current

inclusive interactions on water using a nuclear emulsion detector. Phys. Rev. D, 102(7):072006,

2020.

[67] H. Oshima et al. (NINJA Collaboration). First measurement using a nuclear emulsion detector of the νµ charged-current cross section on iron around the 1 GeV energy region. PTEP,

2021(3):033C01, 2021.

[68] H. Oshima et al. Measurements of protons and charged pions emitted from νµ charged-current

interactions on iron at a mean neutrino energy of 1.49 GeV using a nuclear emulsion detector.

Phys. Rev. D, 106(3):032016, 2022.

[69] C. Giganti (for the T2K Collaboration). T2K (E-11) status and plans for T2K-II (E-65) and

Near Detector Upgrade. 30th J-PARC PAC meeting, 2020.

[70] A. Hiramoto. PhD thesis, Kyoto University, 2021.

[71] A. Konaka. The Hyper-Kamiokande project. J-PARC Symposium 2019, 2019.

[72] T. Odagawa et al. Momentum reconstruction of charged particles using multiple Coulomb

scatterings in a nuclear emulsion detector. Prog. Theor. Exp. Phys., 2022(11):113H01, 2022.

[73] V. L. Highland. Some Practical Remarks on Multiple Scattering. Nucl. Instrum. Meth.,

129:497, 1975.

[74] G. R. Lynch, and O. I. Dahl. Approximations to multiple Coulomb scattering. Nucl. Instrum.

Meth. B, 58:6–10, 1991.

221

[75] K. Kodama et al. Momentum measurement of secondary particle by multiple Coulomb scattering with emulsion cloud chamber in DONuT experiment. Nucl. Instrum. Meth. A, 574:192–198,

2007.

[76] N. Agafonova et al. (OPERA Collaboration).

Momentum measurement by the Multiple

Coulomb Scattering method in the OPERA lead emulsion target. New J. Phys., 14:013026,

2012.

[77] K. Kodama et al. A Micro Segment Chamber for the cosmic-ray balloon experiment. Adv.

Space Res., 37:2120–2124, 2006.

[78] S. Takahashi et al. Time stamp technique using a nuclear emulsion multi-stage shifter for

gamma-ray telescope. Nucl. Instrum. Meth. A, 620:192–195, 2010.

[79] S. Takahashi et al. GRAINE 2015, a balloon-borne emulsion γ-ray telescope experiment in

Australia. PTEP, 2016(7):073F01, 2016.

[80] S. Takahashi, S. Aoki et al. (GRAINE Collaboration). GRAINE project, prospects for scientific

balloon-borne experiments. Adv. Space Res., 62:2945–2953, 2018.

[81] H. Rokujo et al. Multi-stage shifter for subsecond time resolution of emulsion gamma-ray

telescopes. Nucl. Instrum. Meth. A, 701:127–132, 2013.

[82] H. Rokujo et al. First demonstration of gamma-ray imaging using a balloon-borne emulsion

telescope. PTEP, 2018(6):063H01, 2018.

[83] K. Yamada et al. First demonstration of an emulsion multi-stage shifter for accelerator neutrino

experiments in J-PARC T60. PTEP, 2017(6):063H02, 2017.

[84] Takahiro Odagawa, Tsutomu Fukuda, Ayami Hiramoto, Hiroaki Kawahara, Tatsuya Kikawa,

Akihiro Minamino, Tsuyoshi Nakaya, Osamu Sato, Yosuke Suzuki, and Kenji Yasutome. Design

and performance of a scintillation tracker for track matching in nuclear-emulsion-based neutrino

interaction measurement. Nucl. Instrum. Meth. A, 1034:166775, 2022.

[85] A. Ajmi et al. Baby MIND detector first physics run. In Prospects in Neutrino Physics, 4

2020.

[86] K. Abe et al. T2K neutrino flux prediction. Phys. Rev. D, 87(1):012001, 2013. [Addendum:

Phys.Rev.D 87, 019902 (2013)].

[87] S. Agostinelli et al. GEANT4–a simulation toolkit. Nucl. Instrum. Meth. A, 506:250–303,

2003.

[88] John Allison et al. Geant4 developments and applications. IEEE Trans. Nucl. Sci., 53:270,

2006.

[89] J. Allison et al. Recent developments in Geant4. Nucl. Instrum. Meth. A, 835:186–225, 2016.

222

[90] T. T. B¨ohlen, F. Cerutti, M. P. W. Chin, A. Fass`o, A. Ferrari, P. G. Ortega, A. Mairani, P. R.

Sala, G. Smirnov, and V. Vlachoudis. The FLUKA Code: Developments and Challenges for

High Energy and Medical Applications. Nucl. Data Sheets, 120:211–214, 2014.

[91] N Abgrall et al. Measurements of Cross Sections and Charged Pion Spectra in Proton-Carbon

Interactions at 31 GeV/c. Phys. Rev. C, 84:034604, 2011.

[92] N. Abgrall et al. Measurement of Production Properties of Positively Charged Kaons in ProtonCarbon Interactions at 31 GeV/c. Phys. Rev. C, 85:035210, 2012.

[93] N. Abgrall et al. Measurements of π ± , K ± , KS0 , Λ and proton production in proton–carbon

interactions at 31 GeV/c with the NA61/SHINE spectrometer at the CERN SPS. Eur. Phys.

J. C, 76(2):84, 2016.

[94] N. Abgrall et al. Measurements of π ± differential yields from the surface of the T2K replica

target for incoming 31 GeV/c protons with the NA61/SHINE spectrometer at the CERN SPS.

Eur. Phys. J. C, 76(11):617, 2016.

[95] D. Rein and L. M. Sehgal. Neutrino Excitation of Baryon Resonances and Single Pion Production. Annals Phys., 133:79–153, 1981.

[96] C. Berger and L. M. Sehgal. Lepton mass effects in single pion production by neutrinos. Phys.

Rev. D, 76:113004, 2007.

[97] K. M. Graczyk, J. Zmuda,

and J. T. Sobczyk. Electroweak form factors of the ∆(1232)

resonance. Phys. Rev. D, 90(9):093001, 2014.

[98] C. Berger and L. M. Sehgal. PCAC and coherent pion production by low energy neutrinos.

Phys. Rev. D, 79:053003, 2009.

[99] M. Gl¨

uck, E. Reya, and A. Vogt. Dynamical parton distributions revisited. Eur. Phys. J. C,

5:461–470, 1998.

[100] A. Bodek, and U. K. Yang. Modeling neutrino and electron scattering cross-sections in the

few GeV region with effective LO PDFs. AIP Conf. Proc., 670(1):110–117, 2003.

[101] K. Niwa et al.

Auto scanning and measuring system for the emulsion chamber.

In

Proc. Int. Cosmic Ray Symp. High Energy Phenomena, page 149, 1974.

[102] S. Aoki, K. Hoshino, M. Nakamura, K. Niu, K. Niwa, and N. Torii. The Fully Automated

Emulsion Analysis System. Nucl. Instrum. Meth. B, 51:466–472, 1990.

[103] 中野敏行. 原子核乾板の自動解析. PhD thesis, 名古屋大学, 1997.

[104] K. Morishima and T. Nakano. Development of a new automatic nuclear emulsion scanning

system, S-UTS, with continuous 3D tomographic image read-out. J. Instrum., 5:P04011, 2010.

[105] M. Yoshimoto, T. Nakano, R. Komatani, and H. Kawahara. Hyper-track selector nuclear

223

emulsion readout system aimed at scanning an area of one thousand square meters. Prog.

Theor. Exp. Phys., 2017(10):103H01, 2017.

[106] T. Fukuda, S. Fukunaga, H. Ishida, K. Kodama, T. Matsuo, S. Mikado, S. Ogawa, H. Shibuya,

and J. Sudo. Automatic scanning of nuclear emulsions with wide-angle acceptance for nuclear

fragment detection. JINST, 8:P01023, 2013.

[107] T. Fukuda et al. Automatic track recognition for large-angle minimum ionizing particles in

nuclear emulsions. J. Instrum., 9(12):P12017, 2014.

[108] T. Matsuo, H. Shibuya, S. Ogawa, T. Fukuda, and S. Mikado. Large angle tracking and high

discriminating tracking in nuclear emulsion. Radiat. Meas., 83:41, 2015.

[109] H. Ishida et al. Study of hadron interactions in a lead–emulsion target. PTEP, 2014(9):093C01,

2014.

[110] T. Toshito et al. Charge identification of highly ionizing particles in desensitized nuclear

emulsion using high speed read-out system. Nucl. Instrum. Meth. A, 556:482–489, 2006.

[111] Y. Suzuki, T. Fukuda, H. Kawahara, R. Komatani, M. Naiki, T. Nakano, T. Odagawa, and

M. Yoshimoto. Wide angle acceptance and high-speed track recognition in nuclear emulsion.

PTEP, 2022(6):063H01, 2022.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る