リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「The Role of Methane Hydrate on Thermal Evolutions of Icy Moons」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

The Role of Methane Hydrate on Thermal Evolutions of Icy Moons

西谷, 隆介 大阪大学 DOI:10.18910/82038

2021.03.24

概要

太陽系には表面が氷に覆われた氷衛星が数多く存在する。これら氷衛星は同じ氷で覆われていても、衛星間で見た目が大きく異なる。一部の氷衛星には内部に液体層(内部海)を持つものもあり、これら氷衛星の多様性がいかに生まれたかはわかっていない。氷衛星の多様性を明らかにするには、氷衛星がいかに熱を獲得・放出してきたかの歴史、すなわち熱進化を知ることが重要である。本研究ではメタン分子が水分子に包接されたメタンハイドレートに着目した。メタンハイドレートは氷より熱伝導率が4倍程度低く、粘度が1桁程度大きい。こうした特徴は熱進化に大きな影響を与えると考えられる。本研究ではメタンハイドレートの氷衛星熱進化への影響を明らかにするため、メタンハイドレートの形成を考慮した熱進化モデルを新たに開発し、開発したモデルを(1)土星衛星 Enceladus,Mimas(2)土星衛星Titan(3)様々な半径、バルク密度を持ったジェネリックな氷衛星に応用した。
(1) EnceladusとMimasはそれぞれ半径252km、198kmと小さな氷衛星だが、探査データはどちらも内部海を持つ可能性を示唆している。しかし、Mimasが海を持つほど暖かい場合、表面の緩和していないクレーターを説明できない。そこでメタンハイドレートを考慮した熱進化計算を行ったところ、Enceladus、Mimasともに先行研究と整合的な潮汐加熱量で厚い海を維持でき、Mimasの表面熱流量をクレーターが緩和しない程度に抑えることができた。
(2) Titanは窒素とメタンから成る約0.15 MPaの厚い大気を持つ。現在大気に含まれるメタンは光化学反応などにより数千万年ほどで消えてしまうため、なんらかの方法でメタンが大気に供給されたはずである。本研究では大気へのメタン供給源としてメタンハイドレートを考えた。計算の結果、Titan集積から5億年以内にメタンハイドレート層が形成すれば大気中に十分なメタンを大気中に供給できることがわかった。
(3) 氷衛星熱進化における主な熱源は岩石中に含まれる長寿命核種の壊変熱である。よって氷衛星内部で発生する熱量は半径およびバルク密度に依存する。そこで、様々な半径およびバルク密度を持つジェネリックな氷衛星に対し熱進化計算を行った。計算の結果、半径750kmから1500kmの氷衛星ではメタンハイドレート層の有無で現在まで内部海を維持できるかが決まり、初期メタン濃度によってはメタン大気を現在まで維持することがわかった。
以上の結果から、大小様々な氷衛星に対してメタンハイドレートが熱進化に影響を与えていることがわかった。本研究の結果はメタンハイドレートが氷衛星熱進化において重要な化合物の一つであることを示唆している。

この論文で使われている画像

参考文献

[1] F. Nimmo and R. T. Pappalardo, “Ocean worlds in the outer solar system: OCEAN WORLDS,” Journal of Geophysical Research: Planets, vol. 121, no. 8, pp. 1378–1399, Aug. 2016.

[2] J. H. Waite Jr, W. S. Lewis, B. A. Magee, J. I. Lunine, W. B. McKinnon, C. R. Glein, O. Mousis, D. T. Young, T. Brockwell, J. Westlake, M.-J. Nguyen, B. D. Teolis, H. B. Niemann, R. L. McNutt Jr, M. Perry, and W.- H. Ip, “Liquid water on Enceladus from observations of ammonia and 40Ar in the plume,” Nature, vol. 460, no. 7254, pp. 487–490, Jul. 2009.

[3] L. Roth, J. Saur, K. D. Retherford, D. F. Strobel, P. D. Feldman, M. A. McGrath, and F. Nimmo, “Transient Water Vapor at Europa’s South Pole,” Science, vol. 343, no. 6167, pp. 171–174, Jan. 2014.

[4] H. Hussmann, F. Sohl, and T. Spohn, “Subsurface oceans and deep interiors of medium-sized outer planet satellites and large trans-neptunian objects,” Icarus, vol. 185, no. 1, pp. 258–273, Nov. 2006.

[5] C. Zimmer, “Subsurface Oceans on Europa and Callisto: Constraints from Galileo Magnetometer Observations,” Icarus, vol. 147, no. 2, pp. 329–347, Oct. 2000.

[6] M. G. Kivelson, “The Permanent and Inductive Magnetic Moments of Ganymede,” p. 16.

[7] T. V. Hoolst, R.-M. Baland, and A. Trinh, “The diurnal libration and interior structure of Enceladus,” Icarus, vol. 277, pp. 311–318, Oct. 2016.

[8] R. Tajeddine, N. Rambaux, V. Lainey, S. Charnoz, A. Richard, A. Rivoldini, and B. Noyelles, “Constraints on Mimas’ interior from Cassini ISS libration measurements,” Science, vol. 346, no. 6207, pp. 322–324, Oct. 2014.

[9] J. Kimura and S. Kamata, “Stability of the subsurface ocean of pluto,” Planetary and Space Science, vol. 181, p. 104828, Feb. 2020.

[10] M. Neveu and A. R. Rhoden, “Evolution of Saturn’s mid-sized moons,” Na- ture Astronomy, Apr. 2019.

[11] U. Malamud and D. Prialnik, “Modeling serpentinization: Applied to the early evolution of Enceladus and Mimas,” Icarus, vol. 225, no. 1, pp. 763– 774, Jul. 2013.

[12] S. Kamata, “One-Dimensional Convective Thermal Evolution Calculation Using a Modified Mixing Length Theory: Application to Saturnian Icy Satel- lites: 1-D THERMAL CONVECTION CALCULATION,” Journal of Geo-physical Research: Planets, vol. 123, no. 1, pp. 93–112, Jan. 2018.

[13] M. Choukroun and O. Grasset, “Thermodynamic data and modeling of the water and ammonia-water phase diagrams up to 2.2 GPa for planetary geo- physics,” The Journal of Chemical Physics, vol. 133, no. 14, p. 144502, Oct. 2010.

[14] M. J. Mumma and S. B. Charnley, “The Chemical Composition of Comets—Emerging Taxonomies and Natal Heritage,” Annual Review of As- tronomy and Astrophysics, vol. 49, no. 1, pp. 471–524, Sep. 2011.

[15] N. P. Hammond, E. Parmenteir, and A. C. Barr, “Compaction and melt transport in ammonia-rich ice shells: Implications for the evolution of tri- ton,” Journal of Geophysical Research: Planets, vol. 123, no. 12, pp. 3105– 3118, 2018.

[16] M. Arakawa and N. Maeno, “Effective viscosity of partially melted ice in the ammonia-water system,” Geophysical Research Letters, vol. 21, no. 14, pp. 1515–1518, Jul. 1994.

[17] S. Kamata, F. Nimmo, Y. Sekine, K. Kuramoto, N. Noguchi, J. Kimura, and A. Tani, “Pluto’s ocean is capped and insulated by gas hydrates,” Nature Geoscience, vol. 12, no. 6, pp. 407–410, Jun. 2019.

[18] A. Bouquet, O. Mousis, J. H. Waite, and S. Picaud, “Possible evidence for a methane source in Enceladus’ ocean,” Geophysical Research Letters, vol. 42, no. 5, pp. 1334–1339, Mar. 2015.

[19] E. D. Sloan Jr and C. A. Koh, Clathrate hydrates of natural gases. CRC press, 2007.

[20] W. F. Waite, J. C. Santamarina, D. D. Cortes, B. Dugan, D. N. Espinoza, J. Germaine, J. Jang, J. W. Jung, T. J. Kneafsey, H. Shin, K. Soga, W. J. Winters, and T.-S. Yun, “Physical properties of hydrate-bearing sediments,” Reviews of Geophysics, vol. 47, no. 4, p. RG4003, Dec. 2009.

[21] W. B. Durham, S. H. Kirby, L. A. Stern, and W. Zhang, “The strength and rheology of methane clathrate hydrate: THE RHEOLOGY OF METHANE CLATHRATE HYDRATE,” Journal of Geophysical Research: Solid Earth, vol. 108, no. B4, Apr. 2003.

[22] K. Kalousová and C. Sotin, “Dynamics of Titan’s high-pressure ice layer,” Earth and Planetary Science Letters, vol. 545, p. 116416, Sep. 2020.

[23] G. Tobie, J. I. Lunine, and C. Sotin, “Episodic outgassing as the origin of atmospheric methane on Titan,” Nature, vol. 440, no. 7080, pp. 61–64, Mar. 2006.

[24] K. Lodders, “Solar system abundances and condensation temperatures of the elements,” The Astrophysical Journal, vol. 591, no. 2, p. 1220, 2003.

[25] T. Spohn and G. Schubert, “Oceans in the icy Galilean satellites of Jupiter?” Icarus, vol. 161, no. 2, pp. 456–467, Feb. 2003.

[26] S. Sasaki and K. Nakazawa, “Metal-silicate fractionation in the growing Earth: Energy source for the terrestrial magma ocean,” Journal of Geo- physical Research, vol. 91, no. B9, p. 9231, 1986.

[27] J. Kimura, T. Nakagawa, and K. Kurita, “Size and compositional constraints of Ganymede’s metallic core for driving an active dynamo,” Icarus, vol. 202, no. 1, pp. 216–224, Jul. 2009.

[28] J. Leliwa-Kopystyński, M. Maruyama, and T. Nakajima, “The Wa- ter–Ammonia Phase Diagram up to 300 MPa: Application to Icy Satellites,” Icarus, vol. 159, no. 2, pp. 518–528, Oct. 2002.

[29] D. L. Goldsby and D. L. Kohlstedt, “Superplastic deformation of ice: Ex- perimental observations,” Journal of Geophysical Research: Solid Earth, vol. 106, no. B6, pp. 11 017–11 030, Jun. 2001.

[30] A. C. Barr and W. B. McKinnon, “Convection in ice i shells and mantles with self-consistent grain size,” Journal of Geophysical Research: Planets, vol. 112, no. E2, 2007.

[31] W. B. Durham, O. Prieto-Ballesteros, D. Goldsby, and J. Kargel, “Rheologi- cal and thermal properties of icy materials,” Space science reviews, vol. 153, no. 1, pp. 273–298, 2010.

[32] M. Běhounková, G. Tobie, G. Choblet, and O. Čadek, “Impact of tidal heating on the onset of convection in Enceladus’s ice shell,” Icarus, vol. 226, no. 1, pp. 898–904, Sep. 2013.

[33] N. Hilairet, B. Reynard, Y. Wang, I. Daniel, S. Merkel, N. Nishiyama, and S. Petitgirard, “High-Pressure Creep of Serpentine, Interseismic Deforma- tion, and Initiation of Subduction,” Science, vol. 318, no. 5858, pp. 1910– 1913, Dec. 2007.

[34] L. Bezacier, B. Journaux, J.-P. Perrillat, H. Cardon, M. Hanfland, and I. Daniel, “Equations of state of ice vi and ice vii at high pressure and high temperature,” The Journal of chemical physics, vol. 141, no. 10, p. 104505, 2014.

[35] R. J. Macke, G. J. Consolmagno, and D. T. Britt, “Density, porosity, and magnetic susceptibility of carbonaceous chondrites,” Meteoritics & Planetary Science, vol. 46, no. 12, pp. 1842–1862, 2011.

[36] V. Tchijov, “Heat capacity of high-pressure ice polymorphs,” Journal of Physics and Chemistry of Solids, vol. 65, no. 5, pp. 851–854, 2004.

[37] P. V. Hobbs, Ice physics. Oxford university press, 2010.

[38] R. Ross, P. Andersson, and G. Bäckström, “Effects of h and d order on the thermal conductivity of ice phases,” The Journal of Chemical Physics, vol. 68, no. 9, pp. 3967–3972, 1978.

[39] W. Durham and L. Stern, “Rheological properties of water ice—applications to satellites of the outer planets,” Annual Review of Earth and Planetary Sciences, vol. 29, no. 1, pp. 295–330, 2001.

[40] K. Hester, Z. Huo, A. Ballard, C. Koh, K. Miller, and E. Sloan, “Ther- mal expansivity for si and sii clathrate hydrates,” The Journal of Physical Chemistry B, vol. 111, no. 30, pp. 8830–8835, 2007.

[41] G. K. Anderson, “Enthalpy of dissociation and hydration number of methane hydrate from the clapeyron equation,” The Journal of Chemical Thermody- namics, vol. 36, no. 12, pp. 1119–1127, 2004.

[42] Z. Duan and S. Mao, “A thermodynamic model for calculating methane solubility, density and gas phase composition of methane-bearing aqueous fluids from 273 to 523K and from 1 to 2000bar,” Geochimica et Cosmochimica Acta, vol. 70, no. 13, pp. 3369–3386, Jul. 2006.

[43] M. Choukroun, O. Grasset, G. Tobie, and C. Sotin, “Stability of methane clathrate hydrates under pressure: Influence on outgassing processes of methane on Titan,” Icarus, vol. 205, no. 2, pp. 581–593, Feb. 2010.

[44] T. Uchida, T. Hirano, T. Ebinuma, H. Narita, K. Gohara, S. Mae, and R. Matsumoto, “Raman spectroscopic determination of hydration number of methane hydrates,” AIChE Journal, vol. 45, no. 12, pp. 2641–2645, Dec. 1999.

[45] A. N. Dunaeva, D. V. Antsyshkin, and O. L. Kuskov, “Phase diagram of H2O: Thermodynamic functions of the phase transitions of high-pressure ices,” Solar System Research, vol. 44, no. 3, pp. 202–222, Jun. 2010.

[46] K. Kalousová and C. Sotin, “Melting in High-Pressure Ice Layers of Large Ocean Worlds—Implications for Volatiles Transport,” Geophysical Research Letters, vol. 45, no. 16, pp. 8096–8103, 2018.

[47] M. Neveu and A. Rhoden, “The origin and evolution of a differentiated Mimas,” Icarus, vol. 296, pp. 183–196, Nov. 2017.

[48] J. H. Waite, C. R. Glein, R. S. Perryman, B. D. Teolis, B. A. Magee, G. Miller, J. Grimes, M. E. Perry, K. E. Miller, A. Bouquet, J. I. Lunine, T. Brockwell, and S. J. Bolton, “Cassini finds molecular hydrogen in the Enceladus plume: Evidence for hydrothermal processes,” Science, vol. 356, no. 6334, pp. 155–159, Apr. 2017.

[49] H.-W. Hsu, F. Postberg, Y. Sekine, T. Shibuya, S. Kempf, M. Horányi, A. Juhász, N. Altobelli, K. Suzuki, Y. Masaki, T. Kuwatani, S. Tachibana, S.-i. Sirono, G. Moragas-Klostermeyer, and R. Srama, “Ongoing hydrother- mal activities within Enceladus,” Nature, vol. 519, no. 7542, pp. 207–210, Mar. 2015.

[50] C. J. A. Howett, J. R. Spencer, J. Pearl, and M. Segura, “High heat flow from Enceladus’ south polar region measured using 10–600 cm -1 Cassini/CIRS data,” Journal of Geophysical Research, vol. 116, no. E3, p. E03003, Mar. 2011.

[51] M. R. Kirchoff and P. Schenk, “Crater modification and geologic activity in Enceladus’ heavily cratered plains: Evidence from the impact crater distri- bution,” Icarus, vol. 202, no. 2, pp. 656–668, Aug. 2009.

[52] L. Iess, D. J. Stevenson, M. Parisi, D. Hemingway, R. A. Jacobson, J. I. Lu- nine, F. Nimmo, J. W. Armstrong, S. W. Asmar, M. Ducci, and P. Tortora, “The Gravity Field and Interior Structure of Enceladus,” Science, vol. 344, no. 6179, pp. 78–80, Apr. 2014

[53] P. Thomas, R. Tajeddine, M. Tiscareno, J. Burns, J. Joseph, T. Loredo, P. Helfenstein, and C. Porco, “Enceladus’s measured physical libration re- quires a global subsurface ocean,” Icarus, vol. 264, pp. 37–47, Jan. 2016.

[54] O. Čadek, G. Tobie, T. Van Hoolst, M. Massé, G. Choblet, A. Lefèvre, G. Mitri, R.-M. Baland, M. Běhounková, O. Bourgeois, and A. Trinh, “Ence- ladus’s internal ocean and ice shell constrained from Cassini gravity, shape, and libration data: ENCELADUS’S INTERIOR FROM CASSINI DATA,” Geophysical Research Letters, vol. 43, no. 11, pp. 5653–5660, Jun. 2016.

[55] M. Beuthe, “Enceladus’s crust as a non-uniform thin shell: I tidal deforma- tions,” Icarus, vol. 302, pp. 145–174, Mar. 2018.

[56] A. R. Rhoden, W. Henning, T. A. Hurford, D. A. Patthoff, and R. Tajeddine, “The implications of tides on the Mimas ocean hypothesis: DOES MIMAS HAVE AN INTERNAL OCEAN?” Journal of Geophysical Research: Plan- ets, vol. 122, no. 2, pp. 400–410, Feb. 2017.

[57] B. Noyelles, “Interpreting the librations of a synchronous satellite – How their phase assesses Mimas’ global ocean,” Icarus, vol. 282, pp. 276–289, Jan. 2017.

[58] M. Segatz, T. Spohn, M. Ross, and G. Schubert, “Tidal dissipation, surface heat flow, and figure of viscoelastic models of Io,” Icarus, vol. 75, no. 2, pp. 187–206, Aug. 1988.

[59] J. Meyer and J. Wisdom, “Tidal heating in Enceladus,” Icarus, vol. 188, no. 2, pp. 535–539, Jun. 2007.

[60] F. Nimmo, A. C. Barr, M. Behounkova, and W. B. McKinnon, “The ther- mal and orbital evolution of Enceladus: Observational constraints and mod- els,” p. 19.

[61] Z. Tian and F. Nimmo, “Implications of Second Order Resonance for the Thermal and Orbital Evolution of Mimas,” Monthly Notices of the Royal Astronomical Society, p. stz3427, Dec. 2019.

[62] K. Kalousová and C. Sotin, “The Insulating Effect of Methane Clathrate Crust on Titan’s Thermal Evolution,” Geophysical Research Letters, vol. 47, no. 13, Jul. 2020.

[63] G. Schubert, J. D. Anderson, B. J. Travis, and J. Palguta, “Enceladus: Present internal structure and differentiation by early and long-term radio- genic heating,” Icarus, vol. 188, no. 2, pp. 345–355, Jun. 2007.

[64] S. Kamata, I. Matsuyama, and F. Nimmo, “Tidal resonance in icy satel- lites with subsurface oceans: TIDAL RESONANCE IN ICY SATELLITES,” Journal of Geophysical Research: Planets, vol. 120, no. 9, pp. 1528–1542, Sep. 2015.

[65] J. H. Roberts and F. Nimmo, “Tidal heating and the long-term stability of a subsurface ocean on Enceladus,” Icarus, vol. 194, no. 2, pp. 675–689, Apr. 2008.

[66] G. Choblet, G. Tobie, C. Sotin, M. Běhounková, O. Čadek, F. Postberg, and O. Souček, “Powering prolonged hydrothermal activity inside Enceladus,” Nature Astronomy, vol. 1, no. 12, pp. 841–847, Dec. 2017.

[67] O. Souček, M. Běhounková, O. Čadek, J. Hron, G. Tobie, and G. Choblet, “Tidal dissipation in Enceladus’ uneven, fractured ice shell,” Icarus, vol. 328, pp. 218–231, Aug. 2019.

[68] G. Tobie, “Tidally heated convection: Constraints on Europa’s ice shell thickness,” Journal of Geophysical Research, vol. 108, no. E11, p. 5124, 2003.

[69] T. H. Vu, E. Gloesener, M. Choukroun, A. Ibourichene, and R. Hodyss, “Experimental Study on the Effect of Ammonia on the Phase Behavior of Tetrahydrofuran Clathrates,” The Journal of Physical Chemistry B, vol. 118, no. 47, pp. 13 371–13 377, Nov. 2014.

[70] T. M. McCollom, “Abiotic methane formation during experimental serpen- tinization of olivine,” Proceedings of the National Academy of Sciences, vol. 113, no. 49, pp. 13 965–13 970, Dec. 2016.

[71] R.-S. Taubner, P. Pappenreiter, J. Zwicker, D. Smrzka, C. Pruckner, P. Ko- lar, S. Bernacchi, A. H. Seifert, A. Krajete, W. Bach, J. Peckmann, C. Paulik, M. G. Firneis, C. Schleper, and S. K.-M. R. Rittmann, “Biolog- ical methane production under putative nceladus-like conditions,” Nature Communications, vol. 9, no. 1, p. 748, Dec. 2018.

[72] V. Lainey, Ö. Karatekin, J. Desmars, S. Charnoz, J.-E. Arlot, N. Emelyanov, C. Le Poncin-Lafitte, S. Mathis, F. Remus, G. Tobie, and J.-P. Zahn, “STRONG TIDAL DISSIPATION IN SATURN AND CONSTRAINTS ON ENCELADUS’ THERMAL STATE FROM ASTROMETRY,” The Astro-

physical Journal, vol. 752, no. 1, p. 14, Jun. 2012.

[73] S. Charnoz, A. Crida, J. C. Castillo-Rogez, V. Lainey, L. Dones, Karatekin, G. Tobie, S. Mathis, C. Le Poncin-Lafitte, and J. Salmon, “Accretion of Saturn’s mid-sized moons during the viscous spreading of young massive rings: Solving the paradox of silicate-poor rings versus silicate-rich moons,” Icarus, vol. 216, no. 2, pp. 535–550, Dec. 2011.

[74] J. Fuller, J. Luan, and E. Quataert, “Resonance locking as the source of rapid tidal migration in the Jupiter and Saturn moon systems,” Monthly Notices of the Royal Astronomical Society, vol. 458, no. 4, pp. 3867–3879, Jun. 2016.

[75] D. J. Hemingway and T. Mittal, “Enceladus’s ice shell structure as a window on internal heat production,” Icarus, vol. 332, pp. 111–131, Nov. 2019.

[76] E. M. Schulson, “The fracture of water ice Ih: A short overview,” Meteoritics & Planetary Science, vol. 41, no. 10, pp. 1497–1508, Oct. 2006.

[77] M. T. Bland, K. N. Singer, W. B. McKinnon, and P. M. Schenk, “Enceladus’ extreme heat flux as revealed by its relaxed craters: CRATER RELAX- ATION ON ENCELADUS,” Geophysical Research Letters, vol. 39, no. 17, pp. n/a–n/a, Sep. 2012.

[78] T. M. McCollom and J. S. Seewald, “Abiotic Synthesis of Organic Com- pounds in Deep-Sea Hydrothermal Environments,” Chemical Reviews, vol. 107, no. 2, pp. 382–401, Feb. 2007.

[79] L. Iess, N. J. Rappaport, R. A. Jacobson, P. Racioppa, D. J. Stevenson, P. Tortora, J. W. Armstrong, and S. W. Asmar, “Gravity Field, Shape, and Moment of Inertia of Titan,” Science, vol. 327, no. 5971, pp. 1367–1369, Mar. 2010.

[80] C. Béghin, C. Sotin, and M. Hamelin, “Titan’s native ocean revealed be- neath some 45km of ice by a Schumann-like resonance,” Comptes Rendus Geoscience, vol. 342, no. 6, pp. 425–433, Jun. 2010.

[81] B. Bills and F. Nimmo, “Forced obliquity and moments of inertia of Titan,” Icarus, vol. 196, no. 1, pp. 293–297, Jul. 2008

[82] D. Hemingway, F. Nimmo, H. Zebker, and L. Iess, “A rigid and weathered ice shell on Titan,” Nature, vol. 500, no. 7464, pp. 550–552, Aug. 2013.

[83] H. B. Niemann, S. K. Atreya, S. J. Bauer, G. R. Carignan, J. E. Demick, R. L. Frost, D. Gautier, J. A. Haberman, D. N. Harpold, D. M. Hunten, G. Israel, J. I. Lunine, W. T. Kasprzak, T. C. Owen, M. Paulkovich, F. Raulin, E. Raaen, and S. H. Way, “The abundances of constituents of Titan’s atmosphere from the GCMS instrument on the Huygens probe,” vol. 438, p. 6, 2005.

[84] Y. L. Yung, M. Allen, and J. P. Pinto, “Photochemistry of the atmosphere of Titan - Comparison between model and observations,” The Astrophysical Journal Supplement Series, vol. 55, p. 465, Jul. 1984.

[85] F. Nimmo, “Stresses generated in cooling viscoelastic ice shells: Application to Europa,” Journal of Geophysical Research, vol. 109, no. E12, p. E12001, 2004.

[86] M. Neveu and S. J. Desch, “Geochemistry, thermal evolution, and cryovol- canism on Ceres with a muddy ice mantle: EVOLUTION OF CERES,” Geophysical Research Letters, vol. 42, no. 23, pp. 10,197–10,206, Dec. 2015.

[87] E. H. Wilson and S. K. Atreya, “Titan’s Carbon Budget and the Case of the Missing Ethane †,” The Journal of Physical Chemistry A, vol. 113, no. 42, pp. 11 221–11 226, Oct. 2009.

[88] G. Tobie, J. Lunine, J. Monteux, O. Mousis, and F. Nimmo, “The origin and evolution of Titan,” in Titan: Interior, Surface, Atmosphere, and Space Environment, Feb. 2014, pp. 29–62.

[89] M. Takahashi, T. Kawamura, Y. Yamamoto, H. Ohnari, S. Himuro, and H. Shakutsui, “Effect of shrinking microbubble on gas hydrate formation,” The Journal of Physical Chemistry B, vol. 107, no. 10, pp. 2171–2173, 2003.

[90] M. Manga and C.-Y. Wang, “Pressurized oceans and the eruption of liquid water on europa and enceladus,” Geophysical Research Letters, vol. 34, no. 7, 2007.

[91] G. D. Crawford and D. J. Stevenson, “Gas-driven water volcanism and the resurfacing of europa,” Icarus, vol. 73, no. 1, pp. 66–79, 1988.

[92] W. Xu and L. N. Germanovich, “Excess pore pressure resulting from methane hydrate dissociation in marine sediments: A theoretical approach,” Journal of Geophysical Research: Solid Earth, vol. 111, no. B1, 2006.

[93] N. A. O. of Japan, Rika Nenpyo (Chronological Scientific Tables 2013). Maruzen Publishing Co., Ltd., 2012.

[94] E. Llewellin, H. Mader, and S. Wilson, “The rheology of a bubbly liquid,” Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, vol. 458, no. 2020, pp. 987–1016, 2002.

[95] C. R. Glein, “Noble gases, nitrogen, and methane from the deep interior to the atmosphere of Titan,” Icarus, vol. 250, pp. 570–586, Apr. 2015.

[96] R. D. Lorenz, E. P. Turtle, J. W. Barnes, M. G. Trainer, D. S. Adams, K. E. Hibbard, C. Z. Sheldon, K. Zacny, P. N. Peplowski, D. J. Lawrence et al., “Dragonfly: A rotorcraft lander concept for scientific exploration at titan,” Johns Hopkins APL Technical Digest, vol. 34, no. 3, p. 14, 2018.

[97] T. Sasaki, G. R. Stewart, and S. Ida, “ORIGIN OF THE DIFFERENT ARCHITECTURES OF THE JOVIAN AND SATURNIAN SATELLITE SYSTEMS,” The Astrophysical Journal, vol. 714, no. 2, pp. 1052–1064, May 2010.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る