リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Geochemical carbon cycle and climate of ocean terrestrial planets in the habitable zone」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Geochemical carbon cycle and climate of ocean terrestrial planets in the habitable zone

中山, 陽史 東京大学 DOI:10.15083/0002004722

2022.06.22

概要

What made the Earth habitable? This is a long-standing issue in planetary science. ♙t present, in addition to the Earth, we have to generalize the comparative theory of planetary habitability for the Solar-system planets toward extra-solar plants because many exoplanets including similar in size to the Earth have been detected. In this doctoral thesis, we explore the climate of terrestrial exoplanets and detectability of by near-future observations in order to gain a deeper understanding of climate and habitability of terrestrial planets.

 Most previous theoretical studies of planetary habitability assume Earth-like terrestrial planets characterized by active plate tectonics and coexistence with oceans and continents. They also assume that a carbonate-silicate geochemical carbon cycle (called carbon cycle hereafter) stabilizes the climate of Earth-like planets, as in the Earth, because removal of the greenhouse gas CO2 from the atmosphere via weathering on continents strongly depends on the surface temperature. However, planet formation theories predict that Earth-like exoplanets are not necessarily abundant and the habitable zones around other stars are populated by planets retaining much more water than the Earthʼs oceans, meaning continental weathering never works. Thus, the carbon cycle in water-rich, continental-free planets is a crucial issue for planetary habitability.

 The purpose of this doctoral thesis is to explore the effects of water amount on the planetary climate of terrestrial exoplanets in the habitable zone. To do so, we develop a new theoretical model for the carbon cycle in water-rich terrestrial planets in the habitable zone (Part 1). Furthermore, we propose a new way to verify our theoretical prediction regarding their climate features with near-future observations (Part 2).

 Previous studies inferred that terrestrial planets covered globally with thick oceans (termed ocean planets) in the habitable zone have extremely hot climates, because H2O high-pressure ice on the seafloor prevents chemical weathering and, thus, removal of atmospheric CO2. Those studies, however, ignored melting of the high-pressure ice and horizontal variation of the heat flux from the oceanic crust. In Part 1, we develop integrated climate models of an Earth-size ocean planet with plate tectonics for different ocean masses, which include the effects of high-pressure ice melting, seafloor weathering, and the carbon cycle. We find that the heat flux near the mid-ocean ridge is high enough to melt the high-pressure ice, enabling seafloor weathering. In contrast to the previous theoretical prediction, we show that the climates of terrestrial planets with massive oceans lapse into extremely cold ones (or snowball states) with CO2-poor atmospheres. Such extremely cold climates are achieved mainly because the high-pressure ice melting results in fixing the seafloor temperature at the melting temperature, thereby keeping a high weathering flux regardless of surface temperature. However, seafloor weathering would be limited the supply of cation from the oceanic crust. Including the supply-limit for seafloor weathering, we also find the climate of the ocean planet with a massive ocean lapses into an extremely hot one with a CO2-rich atmosphere because seafloor weathering is ineffective in compensating massive degassing. Consequently, the ocean planets with several tens of the Earthʼs ocean mass no longer maintain temperate climates.

 In Part 2, we explore the distinguishing between extremely hot and cold climates of ocean planets predicted in Part 1. The CO2 abundance strongly affects the temperature of the upper atmosphere. The upper atmosphere with a low mixing ratio of CO2 is significantly expanded. On the other hand, the Russian space telescope World Space Observatory̶Ultra-violet (WSO-UV) to be launched in 2025 plans to observe exoplanets transiting in front of relatively low temperature stars (or M-type stars) with the emission lines of oxygen (OI lines), enabling us to detect expanded atmospheres. Thus, we investigate the effects of the CO2 abundance on the absorption depth of OI lines. To do so, we develop the upper atmosphere model and transmission model, which estimates the absorption of OI lines in expanded planetary atmosphere during transit, for an ocean planet around an M-type star. We find that the atmosphere with small or moderate CO2 abundance produces significant absorption of OI lines. Instead, the CO2 dominant atmosphere that achieves the extremely hot climate absorbs only a small portion of stellar light. Those results suggest that the difference in planetary climate of ocean planets with massive oceans coming from the difference in planetary degassing rate is distinguishable from observations. This is a milestone for understanding what makes a habitable planet and what made the Earth habitable.

参考文献

Abbot, D. S., Cowan, N. B., & Ciesla, F. J. 2012, ApJ, 756, 178 Alibert, Y. 2014, Astronomy and Astrophysics, 561, A41

Alibert, Y. & Benz, W. 2017, Astronomy and Astrophysics, 598, L5

Alt, J. C. & Teagle, D. A. H. 1999, Geochimica et Cosmochimica Acta, 63, 1527 Arney, G. N., Meadows, V. S., Domagal-Goldman, S. D., et al. 2017, ApJ, 836, 49

Ayres, T. R. 2010, ApJs, 187, 149

Banks, P. M. & Kockarts, G. 1973, Aeronomy.

Batalha, N. M., Rowe, J. F., Bryson, S. T., et al. 2013, ApJs, 204, 24 Bates, D. R. 1951, Proceedings of the Physical Society B, 64, 805

Bauer, S. J. & Lammer, H. 2004, Planetary aeronomy : atmosphere environments in planetary systems

Bezacier, L., Journaux, B., Perrillat, J.-P., et al. 2014, Journal of Chemical Physics, 141, 104505

Birch, F. 1978, Journal of Geophysical Research, 83, 1257

Blake, R. E., Chang, S. J., & Lepland, A. 2010, Nature, 464, 1029

Bollengier, O., Choukroun, M., Grasset, O., et al. 2013, Geochimica et Cos- mochimica Acta, 119, 322

Bolmont, E., Selsis, F., Owen, J. E., et al. 2017, Monthly Notices of the Royal Astronomical Society, 464, 3728

Bougher, S. W. & Dickinson, R. E. 1988, Journal of Geophysical Research, 93, 7325

Boyajian, T. S., von Braun, K., van Belle, G., et al. 2012, ApJ, 757, 112

Brady, P. V. & G´ıslason, S. R. 1997, Geochimica et Cosmochimica Acta, 61, 965

Brantley, S. & Olsen, A. 2013, Reaction Kinetics of Primary Rock-Forming Min- erals under Ambient Conditions, Vol. 7 (United States: Elsevier Inc.), 69–113

Brown, T. M. 2001, ApJ, 553, 1006

Caldeira, K. 1995, American Journal of Science, 295, 1077

Castle, K. J., Black, L. A., Simione, M. W., & Dodd, J. A. 2012, Journal of Geophysical Research (Space Physics), 117, A04310

Castle, K. J., Kleissas, K. M., Rhinehart, J. M., Hwang, E. S., & Dodd, J. A. 2006, Journal of Geophysical Research (Space Physics), 111, A09303 Cernicharo, J. & Crovisier, J. 2005, Space Science Reviews, 119, 29

Chamberlain, J. W. 1963, Planetary and Space Science, 11, 901

Chapman, S. & Cowling, T. G. 1991, The Mathematical Theory of Non-uniform Gases

Charbonneau, D., Berta, Z. K., Irwin, J., et al. 2009, Nature, 462, 891

Charnay, B., Le Hir, G., Fluteau, F., Forget, F., & Catling, D. C. 2017, Earth and Planetary Science Letters, 474, 97

Checlair, J., Menou, K., & Abbot, D. S. 2017, ApJ, 845, 132

Chen, B., Hsieh, W.-P., Cahill, D. G., Trinkle, D. R., & Li, J. 2011, Physical Review B: Solid State, 83, 132301

Chen, H., Wolf, E. T., Kopparapu, R., Domagal-Goldman, S., & Horton, D. E. 2018, ApJL, 868, L6

Choblet, G., Tobie, G., Sotin, C., Kalousova´, K., & Grasset, O. 2017, Icarus, 285, 252

Claire, M. W., Sheets, J., Cohen, M., et al. 2012, ApJ, 757, 95

Coogan, L. A. & Dosso, S. E. 2015, Earth and Planetary Science Letters, 415, 38

Coogan, L. A. & Gillis, K. M. 2018, Annual Review of Earth and Planetary Sciences, 46, 21

Curtis, A. R. & Goody, R. M. 1956, Proceedings of the Royal Society of London Series A, 236, 193

Dickinson, R. E. 1973, Journal of Geophysical Research, 78, 4451 Dickinson, R. E. 1976, Journal of Atmospheric Sciences, 33, 290

Dickinson, R. E., Ridley, E. C., & Roble, R. G. 1984, Journal of Atmospheric Sciences, 41, 205

Dressing, C. D. & Charbonneau, D. 2015, ApJ, 807, 45

Driese, S. G., Jirsa, M. A., Ren, M., et al. 2011, Precambrian Research, 189, 1 Duan, Z. & Sun, R. 2003, Chemical Geology, 193, 257

Duan, Z. & Zhang, Z. 2006, Geochimica et Cosmochimica Acta, 70, 2311

Dumoulin, C., Doin, M.-P., & Fleitout, L. 1999, Journal of Geophysical Research, 104, 12,759

Dunaeva, A. N., Antsyshkin, D. V., & Kuskov, O. L. 2010, Solar System Re- search, 44, 202

Durham, W. B., Kirby, S. H., & Stern, L. A. 1997, Journal of Geophysical Research, 102, 16293

Edson, A. R., Kasting, J. F., Pollard, D., Lee, S., & Bannon, P. R. 2012, Astro- biology, 12, 562

Ehrenreich, D., Bourrier, V., Wheatley, P. J., et al. 2015, Nature, 522, 459

Eymet, V., Coustet, C., & Piaud, B. 2016, in Journal of Physics Conference Series, Vol. 676, 012005

Fei, Y., Mao, H.-K., & Hemley, R. J. 1993, Journal of Chemical Physics, 99, 5369

Foley, B. J. 2015, ApJ, 812, 812

Forget, F. & Leconte, J. 2014, The Philosophical Transactions of the Royal Society, 372, 20130084

Fox, J. L. 2015, Icarus, 252, 366

France, K., Fleming, B., West, G., et al. 2017, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 10397, Proceedings of the SPIE, 1039713

France, K., Loyd, R. O. P., Youngblood, A., et al. 2016, ApJ, 820, 89 Fu, Q. & Liou, K. N. 1992, Journal of Atmospheric Sciences, 49, 2139 Fu, R., O’Connell, R. J., & Sasselov, D. D. 2010, ApJ, 708, 708

Funke, B., L´opez-Puertas, M., Garc´ıa-Comas, M., et al. 2012, Journal of Quan- titative Spectroscopy and Radiative Transfer, 113, 1771

Garc´ıa Mun˜oz, A. 2007, Planetary and Space Science, 55, 1426

Gillis, K. M. & Coogan, L. A. 2011, Earth and Planetary Science Letters, 302, 385

Gillon, M., Triaud, A. H. M. J., Demory, B.-O., et al. 2017, Nature, 542, 456 Golden, K. M., Ackley, S. F., & Lytle, V. I. 1998, Science, 282, 2238

Gomes, R., Levison, H. F., Tsiganis, K., & Morbidelli, A. 2005, Nature, 435, 466

Grassi, T., Bovino, S., Schleicher, D. R. G., et al. 2014, Monthly Notices of the Royal Astronomical Society, 439, 2386

Gross, S. H. 1972, Journal of Atmospheric Sciences, 29, 214

Gudbrandsson, S., Wolff-Boenisch, D., Gislason, S. R., & Oelkers, E. H. 2011, Geochimica et Cosmochimica Acta, 75, 5496

Guillot, B. & Sator, N. 2011, Geochimica et Cosmochimica Acta, 75, 1829

Haqq-Misra, J., Wolf, E. T., Joshi, M., Zhang, X., & Kopparapu, R. K. 2018, ApJ, 852, 67

Hart, M. H. 1978, Icarus, 33, 23

Hedin, A. E., Niemann, H. B., Kasprzak, W. T., & Seiff, A. 1983, Journal of Geophysical Research, 88, 73

Hindmarsh, A. C. 1983, Scientific computing

Hirschmann, M. M., Tenner, T., Aubaud, C., & Withers, A. C. 2009, Physics of the Earth and Planetary Interiors, 176, 54

Hollenbach, D. & McKee, C. F. 1979, ApJs, 41, 555

H¨oning, D., Tosi, N., & Spohn, T. 2019, Astronomy and Astrophysics, 627, A48

Houghton, J. 2002, The physics of atmospheres (Cambridge University Press)

Hu, Y. & Yang, J. 2014, Proceedings of the National Academy of Science, 111, 629Huang, S.-S. 1959, American scientist, 47, 47

Huebner, W. F. & Mukherjee, J. 2015, Planetary and Space Science, 106, 11 Hunten, D. M. 1974, Journal of Geophysical Research, 79, 2533

Ida, S. & Lin, D. N. C. 2004, ApJ, 604, 388

Ikeda-Fukazawa, T., Kawamura, K., & Hondoh, T. 2004, Molecular Simulation, 30, 30

Ikoma, M., Elkins-Tanton, L., Hamano, K., & Suckale, J. 2018, Space Science Reviews, 214, 76

Ikoma, M. & Genda, H. 2006, ApJ, 648, 696

Ingersoll, A. P. 1969, Journal of Atmospheric Sciences, 26, 1191

Inoue, G. & Tsuchiya, S. 1975, Journal of the Physical Society of Japan, 39, 479 Jacchia, L. G. 1977, SAO Special Report, 375

Jackman, C. H., Garvey, R. H., & Green, A. E. S. 1977, Journal of Geophysical Research, 82, 5081

Jarosewich, E. 1990, Meteoritics, 25, 323

Jendrzejewski, N., Trull, T. W., Pineau, F., & Javoy, M. 1997, Chemical Geol- ogy, 138, 81

Johnson, R. E., Liu, M., & Tully, C. 2002, Planetary and Space Science, 50, 123

Johnstone, C. P., Gu¨del, M., Lammer, H., & Kislyakova, K. G. 2018, Astronomy and Astrophysics, 617, A107

Kadoya, S. & Tajika, E. 2014, ApJ, 790, 107

Kalousov´a, K., Sotin, C., Choblet, G., Tobie, G., & Grasset, O. 2018, Icarus, 299, 133

Kaltenegger, L. 2017, Annual Review of Astronomy and Astrophysics, 55, 433 Kaltenegger, L., Sasselov, D., & Rugheimer, S. 2013, ApJ, 775, L47

Kameda, S., Ikezawa, S., Sato, M., et al. 2017, Geophysical Research Letters, 44, 11,706

Kasting, J. F. 1987, Precambrian Research, 34, 205

Kasting, J. F. 1991, Icarus, 94, 1

Kasting, J. F., Chen, H., & Kopparapu, R. K. 2015, ApJL, 813, L3 Kasting, J. F. & Pollack, J. B. 1983, Icarus, 53, 479

Kasting, J. F., Pollack, J. B., & Ackerman, T. P. 1984, Icarus, 57, 335

Kasting, J. F., Whitmire, D. P., & Reynolds, R. T. 1993, Icarus, 101, 108 Kite, E. S. & Ford, E. B. 2018, ApJ, 864, 75

Kite, E. S., Manga, M., & Gaidos, E. 2009, ApJ, 700, 1732

Kitzmann, D., Alibert, Y., Godolt, M., et al. 2015, Monthly Notices of the Royal Astronomical Society, 452, 3752

Knauth, L. P. & Lowe, D. R. 2003, Geological Society of America Bulletin, 115, 566

Kodama, T., Nitta, A., Genda, H., et al. 2018, Journal of Geophysical Research Planets, 123, 559

Komacek, T. D. & Abbot, D. S. 2019, ApJ, 871, 245

Kopparapu, R. K., Ramirez, R., Kasting, J. F., et al. 2013, ApJ, 765, 131 Kopparapu, R. k., Wolf, E. T., Haqq-Misra, J., et al. 2016, ApJ, 819, 84 Kreidberg, L., Bean, J. L., D´esert, J.-M., et al. 2014, Nature, 505, 69

Krissansen-Totton, J., Arney, G. N., & Catling, D. C. 2018a, Proceedings of the National Academy of Science, 115, 4105

Krissansen-Totton, J. & Catling, D. C. 2017, Nature Communications, 8, 15423

Krissansen-Totton, J., Garland, R., Irwin, P., & Catling, D. C. 2018b, The Astronomical Journal, 156, 114

Kuchner, M. J. 2003, ApJ, 596, L105

Kulikov, Y. N., Lammer, H., Lichtenegger, H. I. M., et al. 2007, Space Science Reviews, 129, 207

Kumer, J. B. & James, T. C. 1974, Journal of Geophysical Research, 79, 638

Lammer, H., Bredeh¨oft, J. H., Coustenis, A., et al. 2009, The Astronomy and Astrophysics Review, 17, 181

L´eger, A., Selsis, F., Sotin, C., et al. 2004, Icarus, 169, 499 Levi, A., Sasselov, D., & Podolak, M. 2014, ApJ, 792, 125 Linsky, J. L., Fontenla, J., & France, K. 2014, ApJ, 780, 61 Luger, R. & Barnes, R. 2015, Astrobiology, 15, 119

Lustig-Yaeger, J., Meadows, V. S., & Lincowski, A. P. 2019, The Astronomical Journal, 158, 27

Lyons, T. W., Reinhard, C. T., & Planavsky, N. J. 2014, Nature, 506, 307 Machida, R. & Abe, Y. 2010, ApJ, 716, 1252

Manabe, S. & Wetherald, R. T. 1967, Journal of Atmospheric Sciences, 24, 241

Marty, B., Avice, G., Sano, Y., et al. 2016, Earth and Planetary Science Letters, 441, 91

Maruyama, S., Ikoma, M., Genda, H., et al. 2013, Geoscience Frontiers, 4, 4 Mayor, M. & Queloz, D. 1995, Nature, 378, 355

McGovern, P. J. & Schubert, G. 1989, Earth and Planetary Science Letters, 96, 27

Millero, F. J. 1995, Geochimica et Cosmochimica Acta, 59, 661

Millero, F. J., Graham, T. B., Huang, F., Bustos-Serrano, H., & Pierrot, D. 2006, Marine chemistry, 100, 100

Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., & Clough, S. A. 1997, Journal of Geophysical Research, 102, 16,663

Morley, C. V., Kreidberg, L., Rustamkulov, Z., Robinson, T., & Fortney, J. J. 2017, ApJ, 850, 121

Murakami, M., Hirose, K., Kawamura, K., Sata, N., & Ohishi, Y. 2004, Science, 304, 855

Muralidharan, K., Deymier, P., Stimpfl, M., de Leeuw, N. H., & Drake, M. J. 2008, Icarus, 198, 400

Nakajima, S., Hayashi, Y.-Y., & Abe, Y. 1992, Journal of Atmospheric Sciences, 49, 2256

Noack, L., H¨oning, D., Rivoldini, A., et al. 2016, Icarus, 277, 215

Oberheide, J., Mlynczak, M. G., Mosso, C. N., et al. 2013, Journal of Geophysical Research (Space Physics), 118, 7283

O’Brien, D. P., Izidoro, A., Jacobson, S. A., Raymond, S. N., & Rubie, D. C. 2018, Space Science Reviews, 214, 47

Ogihara, M. & Ida, S. 2009, ApJ, 699, 824

Oka, A., Nakamoto, T., & Ida, S. 2011, ApJ, 738, 141

O¨ pik, E. J. 1963, Geophysical Journal, 7, 490

Pavlov, A. A. & Kasting, J. F. 2002, Astrobiology, 2, 27

Pavlov, A. A., Kasting, J. F., Brown, L. L., Rages, K. A., & Freedman, R. 2000, Journal of Geophysical Research, 105, 11981

Petigura, E. A., Howard, A. W., & Marcy, G. W. 2013, Proceedings of the National Academy of Science, 110, 19273

Picone, J. M., Hedin, A. E., Drob, D. P., & Aikin, A. C. 2002, Journal of Geophysical Research (Space Physics), 107, 1468

Pierrehumbert, R. T. 2011, ApJ, 726, L8

Quintana, E. V. & Lissauer, J. J. 2014, ApJ, 786, 33

Ramirez, R. M., Kopparapu, R. K., Lindner, V., & Kasting, J. F. 2014, Astro- biology, 14, 714

Rasool, S. I. & de Bergh, C. 1970, Nature, 226, 1037

Rauer, H., Catala, C., Aerts, C., et al. 2014, Experimental Astronomy, 38, 249 Raymond, S. N., Quinn, T., & Lunine, J. I. 2004, Icarus, 168, 1

Raymond, S. N., Quinn, T., & Lunine, J. I. 2007, Astrobiology, 7, 66

Ribas, I., Bolmont, E., Selsis, F., et al. 2016a, Astronomy and Astrophysics, 596, A111

Ribas, I., Bolmont, E., Selsis, F., et al. 2016b, Astronomy and Astrophysics, 596, A111

Ribas, I., Guinan, E. F., Gu¨del, M., & Audard, M. 2005, ApJ, 622, 680

Roble, R. G. 1995, Washington DC American Geophysical Union Geophysical Monograph Series, 87, 1

Roble, R. G., Ridley, E. C., & Dickinson, R. E. 1987, Journal of Geophysical Research, 92, 8745

Rothman, L. S., Gordon, I. E., Babikov, Y., et al. 2013, Journal of Quantitative Spectroscopy and Radiative Transfer, 130, 4

Rybicki, G. B. & Lightman, A. P. 1986, Radiative Processes in Astrophysics Rye, R., Kuo, P. H., & Holland, H. D. 1995, Nature, 378, 603

Sagan, C. & Mullen, G. 1972, Science, 177, 52

Sato, T., Okuzumi, S., & Ida, S. 2016, Astronomy and Astrophysics, 589, A15 Sawada, T., Sellin, D. L., & Green, A. E. S. 1972a, Journal of Geophysical Research, 77, 4819

Sawada, T., Strickland, D. J., & Green, A. E. S. 1972b, Journal of Geophysical Research, 77, 4812

Scalo, J., Kaltenegger, L., Segura, A. G., et al. 2007, Astrobiology, 7, 85

Schaefer, L., Wordsworth, R. D., Berta-Thompson, Z., & Sasselov, D. 2016, ApJ, 829, 63

Schunk, R. & Nagy, A. 2000, Space Sci. Ser, 59, 59

Segura, A., Kasting, J. F., Meadows, V., et al. 2005, Astrobiology, 5, 706

Shaikhislamov, I. F., Khodachenko, M. L., Lammer, H., et al. 2019, Monthly Notices of the Royal Astronomical Society, 2804

Shi, G., Xu, N., Wang, B., Dai, T., & Zhao, J. 2009, Journal of Quantitative Spectroscopy and Radiative Transfer, 110, 435

Shields, A. L., Meadows, V. S., Bitz, C. M., et al. 2013a, Astrobiology, 13, 715 Shields, A. L., Meadows, V. S., Bitz, C. M., et al. 2013b, Astrobiology, 13, 715 Shinagawa, H. & Cravens, T. E. 1989, Journal of Geophysical Research, 94, 6506

Siddles, R. M., Wilson, G. J., & Simpson, C. J. S. M. 1994, Journal of Chemical Physics, 189, 779

Sing, D. K., Fortney, J. J., Nikolov, N., et al. 2016, Nature, 529, 59

Sleep, N. H. & Zahnle, K. 2001, Journal of Geophysical Research, 106, 1373

Sleep, N. H., Zahnle, K., & Neuhoff, P. S. 2001, Proceedings of the National Academy of Sciences of the United States of America, 98, 3666

Smithtro, C. G. & Sojka, J. J. 2005, Journal of Geophysical Research (Space Physics), 110, A08305

Smithtro, C. G. & Solomon, S. C. 2008, Journal of Geophysical Research (Space Physics), 113, A08307

Solomon, S. C., Hays, P. B., & Abreu, V. J. 1988, Journal of Geophysical Re- search, 93, 9867

Solomon, S. C. & Qian, L. 2005, Journal of Geophysical Research (Space Physics), 110, A10306

Staudigel, H., Hart, S. R., Schmincke, H.-U., & Smith, B. M. 1989, Geochimica et Cosmochimica Acta, 53, 3091

Stimpfl, M., Walker, A. M., Drake, M. J., de Leeuw, N. H., & Deymier, P. 2006, Journal of Crystal Growth, 294, 83

Sugimura, E., Iitaka, T., Hirose, K., et al. 2008, Physical Review B: Solid State, 77, 214103

Tajika, E. & Matsui, T. 1990, The evolution of the terrestrial environment., ed. H. E. Newsom & J. H. Jones, 347–370

Tajika, E. & Matsui, T. 1992, Earth and Planetary Science Letters, 113, 251 Tajika, E. & Matsui, T. 1993, Lithos, 30, 267

Tavrov, A., Kameda, S., Yudaev, A., et al. 2018, arXiv e-prints, arXiv:1810.07644 Taylor, G. I. 1922, Proceedings of the london mathematical society, 2, 2

Tian, F. & Ida, S. 2015, Nature Geoscience, 8, 177

Tian, F., Kasting, J. F., Liu, H.-L., & Roble, R. G. 2008a, Journal of Geophysical Research (Planets), 113, E05008

Tian, F., Solomon, S. C., Qian, L., Lei, J., & Roble, R. G. 2008b, Journal of Geophysical Research (Planets), 113, E07005

Tosi, N., Godolt, M., Stracke, B., et al. 2017, Astronomy and Astrophysics, 605, A71

Tsiaras, A., Waldmann, I. P., Tinetti, G., Tennyson, J., & Yurchenko, S. N. 2019, Nature Astronomy, 451

Tully, C. & Johnson, R. E. 2001, Planetary and Space Science, 49, 533

Turbet, M., Bolmont, E., Leconte, J., et al. 2018, Astronomy and Astrophysics, 612, A86

Turbet, M., Leconte, J., Selsis, F., et al. 2016, Astronomy and Astrophysics, 596, A112

Turcotte, D. L. & Schubert, G. 2002, Geodynamics - 2nd Edition

Valencia, D., Sasselov, D. D., & O’Connell, R. J. 2007a, ApJ, 665, 1413 Valencia, D., Sasselov, D. D., & O’Connell, R. J. 2007b, ApJ, 656, 545 Valencia, D., Tan, V. Y. Y., & Zajac, Z. 2018, ApJ, 857, 106

Vance, S., Harnmeijer, J., Kimura, J., et al. 2007, Astrobiology, 7, 987

Vidal-Madjar, A., D´esert, J. M., Lecavelier des Etangs, A., et al. 2004, ApJL, 604, L69

Vidal-Madjar, A., Lecavelier des Etangs, A., D´esert, J. M., et al. 2003, Nature, 422, 143

Vinet, P., Rose, J. H., Ferrante, J., & Smith, J. R. 1989, Journal of Physics: Condensed Matter, 1, 1941

Waite, W. F., Stern, L. A., Kirby, S. H., Winters, W. J., & Mason, D. H. 2007, Geophysical Journal International, 169, 767

Walker, J. C. G., Hays, P. B., & Kasting, J. F. 1981, Journal of Geophysical Research, 86, 9776

Watson, A. J., Donahue, T. M., & Walker, J. C. G. 1981, Icarus, 48, 150 Weiss, R. 1974, Marine chemistry, 2, 2

Wolf, E. T. & Toon, O. B. 2013, Astrobiology, 13, 656

Wolf, E. T. & Toon, O. B. 2015, Journal of Geophysical Research Atmospheres, 120, 5775

Wordsworth, R. D. & Pierrehumbert, R. T. 2013, ApJ, 778, 154

Yang, J., Abbot, D. S., Koll, D. D. B., Hu, Y., & Showman, A. P. 2019, ApJ, 871, 29

Yang, J., Bou´e, G., Fabrycky, D. C., & Abbot, D. S. 2014, ApJL, 787, L2

Zahnle, K. J., Gacesa, M., & Catling, D. C. 2019, Geochimica et Cosmochimica Acta, 244, 56

Zeebe, R. E. & Wolf-Gladrow, D. 2001, CO2 in seawater: equilibrium, kinetics, isotopes No. 65 (Gulf Professional Publishing)

Zhang, H., Nakajima, T., Shi, G., Suzuki, T., & Imasu, R. 2003, Journal of Geophysical Research (Atmospheres), 108, 4641

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る