リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「全身イメージング質量分析法を用いたデキサメタゾン投与によるマウス胸腺を主軸とする免疫代謝変動の解明」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

全身イメージング質量分析法を用いたデキサメタゾン投与によるマウス胸腺を主軸とする免疫代謝変動の解明

辻 雄大 同志社大学 DOI:info:doi/10.14988/00028862

2022.03.22

概要

第一章 序論
個々の免疫細胞は、生体内環境から受ける栄養素に時間的に大いに依存しているが、がんや炎症病巣においては微小環境に大きく影響を受ける。免疫細胞を対象としたシングルセルレベルでの代謝解析については、フローサイトメトリーを用いた免疫細胞分離ののちに行う遺伝子発現解析やある種の代謝物測定の報告はあるが、まだまだ実用化されていない. また免疫反応においては、生体内での時間軸も重要な要素であり、組織から直接解析する代謝解析手法が望まれている。このように個体の時間・空間的免疫代謝の理解が進めば新しい疾患治療法のスキームも提案できることが期待される。
我々は、本研究において、新しい免疫代謝解析手法として「全身イメージング質量分析法」を開発し、デキサメタゾン投与マウスの胸腺を中心とする薬剤投与前後のダイナミックな免疫代謝変動を解析した。マウスにおいて、細胞組織学レベルの全身アトラスは整備されていなかったため、フィルムを用いる従来法である川本法に依らず、独自の直接切片作製の技術を確立し、1個体あたり 12 μm ごとに 400 枚以上の胸部横断面マップを作製し、すべて HE 染色を行いデータベースとした。さらに質量顕微鏡を用いてプリン・ピリミジン代謝物を中心とする低分子代謝物の網羅的イメージング質量分析を行い、有効な代謝物として 3000 のイオン種を背景に、デキサメタゾン投与マウスでの薬剤投与前後での免疫代謝イメージングに挑んだ。
その手法として Machine Learning法や Dimensionality Reduction 法が有効であり、薬剤投与の影響ばかりではなく、骨髄・胸腺・リンパ節などの免疫組織の基本的な代謝ネットワークの可視化にも成功した。この手法を用いることにより胸腺におけるデキサメタゾン投与における部位別プリン・ピリミジン代謝の全貌と特異性の高いデキサメタゾン投与における代謝物バイオマーカーの候補分子の発見に成功した。今後の臨床応用や治療法への応用について若干の考察を行った。

参考文献

1. Caputa G, Castoldi A, Pearce EJ. Metabolic adaptations of tissue-resident immune cells. Nat Immunol 2019;20:793-801.

2. Artyomov MN, Van den Bossche J. Immunometabolism in the single-cell era. Cell Metab 2020;32:710-725.

3. Kawamoto T, Kawamoto K. Preparation of thin frozen sections from nonfixed and undecalcified hard tissues using kawamot's film method (2012). Methods Mol Biol 2014;1130:149-164.

4. Ephese Rd. Oeuvres de rufus d’ephese. In: Daremberg CM,Ruelle E. Paris: Impr. nationale; 1879.

5. Vesalius A. De humani corporis fabrica libri septem. In: Basel: Ex officina I. Oporini; 1543.

6. Miller JF. Analysis of the thymus influence in leukaemogenesis. Nature 1961;191:248-9.

7. Miller JF. Immunological function of the thymus. Lancet 1961;2:748-9.

8. Platter F. Pediatrics of the past. In: Ruhrah J. New York: P. B. Hoeber; 1925.

9. Prichard. Scientific intelligence. The Dublin Journal of Medical Science 1836;9:514-530.

10. Paltauf A. Ùber die beziehung der thymus zum plötzlichen tod. Wien Klin Wochenschr 1889;3:877-881.

11. Paltauf A. Über plötzlichen tod. Wien Klin Wochenschr 1890;3:172-175.

12. Rehn L. Compression from the thymus gland and resultant death. Ann Surg 1906;44:760- 768.

13. Rontgen WC. On a new kind of rays. Science 1896;3:227-31.

14. Alfred F. Status lymphaticus and enlargement of the thymus; with report of a case successfully treated by the x-ray. Archives de Pédiatrie 1907;24:490–501.

15. Janower ML, Miettinen OS. Neoplasms after childhood irradiation of the thymus gland. JAMA 1971;215:753-6.

16. Hildreth NG, Shore RE, Hempelmann LH, Rosenstein M. Risk of extrathyroid tumors following radiation treatment in infancy for thymic enlargement. Radiat Res 1985;102:378-91.

17. Hildreth NG, Shore RE, Dvoretsky PM. The risk of breast cancer after irradiation of the thymus in infancy. N Engl J Med 1989;321:1281-4.

18. Editorial:The end of status lymphaticus. THE LANCET 1931;217:593-594.

19. Griscom NT. History of pediatric radiology in the united states and canada: Images and trends. Radiographics 1995;15:1399-422.

20. Young M, Turnbull HM. An analysis of the data collected by the status lymphaticus investigation committee. The Journal of Pathology and Bacteriology 1931;34:213-258.

21. Boyd E. Weight of the thymus and its component parts and number of hassall corpuscles in health and in disease. American Journal of Diseases of Children 1936;51:313-335.

22. Kendall MD, Johnson HR, Singh J. The weight of the human thymus gland at necropsy. J Anat 1980;131:483-97.

23. Yamasaki M. Comparative anatomical studies of thyroid and thymic arteries: I. Rat (rattus norvegicus albinus). American Journal of Anatomy 1990;188:249-259.

24. Crişan C. Die entwicklung des thyreo-parathyreo-thymischen systems der weißen maus. Zeitschrift für Anatomie und Entwicklungsgeschichte 1935;104:327-358.

25. Pantelouris EM, Hair J. Thymus dysgenesis in nude (nu nu) mice. J Embryol Exp Morphol 1970;24:615-23.

26. Gordon J, Manley NR. Mechanisms of thymus organogenesis and morphogenesis. Development 2011;138:3865-3878.

27. Suniara RK, Jenkinson EJ, Owen JJT. An essential role for thymic mesenchyme in early t cell development. Journal of Experimental Medicine 2000;191:1051-1056.

28. Klug DB, Carter C, Gimenez-Conti IB, Richie ER. Cutting edge: Thymocyte-independent and thymocyte-dependent phases of epithelial patterning in the fetal thymus. J Immunol 2002;169:2842-2845.

29. Hollander GA, Wang B, Nichogiannopoulou A et al. Developmental control point in induction of thymic cortex regulated by a subpopulation of prothymocytes. Nature 1995;373:350-3.

30. van Ewijk W, Shores EW, Singer A. Crosstalk in the mouse thymus. Immunol Today 1994;15:214-7.

31. Philpott KL, Viney JL, Kay G et al. Lymphoid development in mice congenitally lacking t cell receptor alpha beta-expressing cells. Science 1992;256:1448-52.

32. Isaacson PG, Norton AJ, Addis BJ. The human thymus contains a novel population of b lymphocytes. Lancet 1987;2:1488-91.

33. Yamano T, Nedjic J, Hinterberger M et al. Thymic b cells are licensed to present self antigens for central t cell tolerance induction. Immunity 2015;42:1048-61.

34. Danzl NM, Jeong S, Choi Y, Alexandropoulos K. Identification of novel thymic epithelial cell subsets whose differentiation is regulated by rankl and traf6. PLoS One 2014;9:e86129.

35. Park JE, Botting RA, Dominguez Conde C et al. A cell atlas of human thymic development defines t cell repertoire formation. Science 2020;367.

36. Mitchell GF, Miller JF. Cell to cell interaction in the immune response. Ii. The source of hemolysin-forming cells in irradiated mice given bone marrow and thymus or thoracic duct lymphocytes. J Exp Med 1968;128:821-37.

37. Rossi FM, Corbel SY, Merzaban JS et al. Recruitment of adult thymic progenitors is regulated by p-selectin and its ligand psgl-1. Nat Immunol 2005;6:626-34.

38. Liu C, Saito F, Liu Z et al. Coordination between ccr7- and ccr9-mediated chemokine signals in prevascular fetal thymus colonization. Blood 2006;108:2531-9.

39. Zlotoff DA, Sambandam A, Logan TD, Bell JJ, Schwarz BA, Bhandoola A. Ccr7 and ccr9 together recruit hematopoietic progenitors to the adult thymus. Blood 2010;115:1897-905.

40. Krueger A, Willenzon S, Lyszkiewicz M, Kremmer E, Forster R. Cc chemokine receptor 7 and 9 double-deficient hematopoietic progenitors are severely impaired in seeding the adult thymus. Blood 2010;115:1906-12.

41. Lind EF, Prockop SE, Porritt HE, Petrie HT. Mapping precursor movement through the postnatal thymus reveals specific microenvironments supporting defined stages of early lymphoid development. J Exp Med 2001;194:127-34.

42. Hozumi K, Mailhos C, Negishi N et al. Delta-like 4 is indispensable in thymic environment specific for t cell development. J Exp Med 2008;205:2507-13.

43. Koch U, Fiorini E, Benedito R et al. Delta-like 4 is the essential, nonredundant ligand for notch1 during thymic t cell lineage commitment. J Exp Med 2008;205:2515-23.

44. Peschon JJ, Morrissey PJ, Grabstein KH et al. Early lymphocyte expansion is severely impaired in interleukin 7 receptor-deficient mice. J Exp Med 1994;180:1955-60.

45. Laufer TM, DeKoning J, Markowitz JS, Lo D, Glimcher LH. Unopposed positive selection and autoreactivity in mice expressing class ii mhc only on thymic cortex. Nature 1996;383:81-5.

46. Daniels MA, Teixeiro E, Gill J et al. Thymic selection threshold defined by compartmentalization of ras/mapk signalling. Nature 2006;444:724-729.

47. Kurobe H, Liu C, Ueno T et al. Ccr7-dependent cortex-to-medulla migration of positively selected thymocytes is essential for establishing central tolerance. Immunity 2006;24:165-77.

48. Ueno T, Saito F, Gray DH et al. Ccr7 signals are essential for cortex-medulla migration of developing thymocytes. J Exp Med 2004;200:493-505.

49. Hogquist KA, Baldwin TA, Jameson SC. Central tolerance: Learning self-control in the thymus. Nat Rev Immunol 2005;5:772-82.

50. Cowan JE, Parnell SM, Nakamura K et al. The thymic medulla is required for foxp3+ regulatory but not conventional cd4+ thymocyte development. J Exp Med 2013;210:675-81.

51. Matloubian M, Lo CG, Cinamon G et al. Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on s1p receptor 1. Nature 2004;427:355-60.

52. West JB. Torricelli and the ocean of air: The first measurement of barometric pressure. Physiology (Bethesda) 2013;28:66-73.

53. Middleton WEK. The place of torricelli in the history of the barometer. Isis 1963;54:11- 28.

54. Picard J. Experience faire a`l’observatoiresur la barometre simple touchant un nouveau phenomenequ’on ya de´couvert. Le Journal des Sc¸avans 1676;4:112-113.

55. Schott K. De arte mechanica-hydraulico. Wurzburg. 1657.

56. Pumfrey S. Hauksbee, francis (bap. 1660, d. 1713), natural philosopher and scientific instrument maker. In: Oxford University Press; 2009.

57. Faraday M. Viii. Experimental researches in electricity.—thirteenth series. Philosophical Transactions of the Royal Society of London 1838;128:125-168.

58. Plücker M. Xiv. On the action of the magnet upon the electrical discharge in rarefied gases. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 1858;16:119-135.

59. Hittorf W. Ueber die elektricitätsleitung der gase. Annalen der physik 1869;212:1-31.

60. Hittorf W. Ueber die elektricitätsleitung der gase. Annalen der physik 1869;212:197-234.

61. Goldstein E. Xxvii. On the electric discharge in rarefied gases. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 1880;10:173-190.

62. Goldstein E. Ueber eine noch nicht untersuchte strahlungsform an der kathode inducirter entladungen. Berlin Akademie Monatsbereit 1886;2:691.

63. Wien W. Untersuchungen über die electrische entladung in verdünnten gasen. Annalen der Physik 1898;301:440-452.

64. Thomson JJ. Xlvii. On rays of positive electricity. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 1907;13:561-575.

65. Aston FW. Lxxiv. A positive ray spectrograph. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 1919;38:707-714.

66. Paul W, Steinwedel H. Notizen: Ein neues massenspektrometer ohne magnetfeld. Zeitschrift für Naturforschung A 1953;8.

67. Stephens WE. A pulsed mass spectrometer with time disaersion. Phys Rev 1946;69:691.

68. Comisarow MB, Marshall AG. Fourier transform ion cyclotron resonance spectroscopy. Chemical Physics Letters 1974;25:282-283.

69. Makarov A. Electrostatic axially harmonic orbital trapping: A high-performance technique of mass analysis. Analytical Chemistry 2000;72:1156-1162.

70. Dempster AJ. A new method of positive ray analysis. Physical Review 1918;11:316-325.

71. Munson MSB, Field FH. Chemical ionization mass spectrometry. I. General introduction. Journal of the American Chemical Society 1966;88:2621-2630.

72. Barber M, Bordoli RS, Sedgwick RD, Tyler AN. Fast atom bombardment of solids as an ion source in mass spectrometry. Nature 1981;293:270-275.

73. Karas M, Hillenkamp F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Analytical Chemistry 1988;60:2299-2301.

74. Tanaka K, Waki H, Ido Y et al. Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry 1988;2:151-153.

75. Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM. Electrospray ionization– principles and practice. Mass Spectrometry Reviews 1990;9:37-70.

76. Reed TB. Induction‐coupled plasma torch. Journal of Applied Physics 1961;32:821-824.

77. Norris JL, Caprioli RM. Analysis of tissue specimens by matrix-assisted laser desorption/ionization imaging mass spectrometry in biological and clinical research. Chem Rev 2013;113:2309-42.

78. Travis WD, Brambilla E, Nicholson AG et al. The 2015 world health organization classification of lung tumors. Journal of Thoracic Oncology 2015;10:1243-1260.

79. Lennon VA, Lambert EH, Leiby KR, Okarma TB, Talib S. Recombinant human acetylcholine receptor alpha-subunit induces chronic experimental autoimmune myasthenia gravis. J Immunol 1991;146:2245-8.

80. Gilhus NE. Myasthenia gravis. New England Journal of Medicine 2016;375:2570-2581.

81. Padda SK, Yao X, Antonicelli A et al. Paraneoplastic syndromes and thymic malignancies: An examination of the international thymic malignancy interest group retrospective database. Journal of Thoracic Oncology 2018;13:436-446.

82. Nakajima J, Okumura M, Yano M et al. Myasthenia gravis with thymic epithelial tumour: A retrospective analysis of a japanese database. Eur J Cardiothorac Surg 2016;49:1510-5.

83. Kondo K, Monden Y. Therapy for thymic epithelial tumors: A clinical study of 1,320 patients from japan. Ann Thorac Surg 2003;76:878-84; discussion 884-5.

84. Krantz SB. Pure red-cell aplasia. New England Journal of Medicine 1974;291:345-350.

85. Rosenow EC, III, Hurley BT. Disorders of the thymus: A review. Archives of Internal Medicine 1984;144:763-770.

86. Oppenheim H. Weiterer beitrag zur lehre von der acuten, nicht-eitrigen encephalitis und der poliencephalomyelitis. Deutsche Zeitschrift für Nervenheilkunde 1899;15:1-27.

87. Schumacher & Roth. Thymektomie bei einem fall von morbus basedowi mit myasthenie.: Mitteilungen aus den Grenzgebieten der Medizin und Chirurgie, G. Fischer. 1913.

88. Blalock A, Mason MF, Morgan HJ, Riven SS. Myasthenia gravis and tumors of the thymic region: Report of a case in which the tumor was removed. Annals of surgery 1939;110:544- 561.

89. Wolfe GI, Kaminski HJ, Aban IB et al. Randomized trial of thymectomy in myasthenia gravis. The New England journal of medicine 2016;375:511-522.

90. Okumura M, Inoue M, Kadota Y et al. Biological implications of thymectomy for myasthenia gravis. Surg Today 2010;40:102-7.

91. Ströbel P, Rosenwald A, Beyersdorf N et al. Selective loss of regulatory t cells in thymomas. Ann Neurol 2004;56:901-4.

92. Schluep M, Willcox N, Vincent A, Dhoot GK, Newsom-Davis J. Acetylcholine receptors in human thymic myoid cells in situ: An immunohistological study. Ann Neurol 1987;22:212-22.

93. Scarpino S, Di Napoli A, Stoppacciaro A et al. Expression of autoimmune regulator gene (aire) and t regulatory cells in human thymomas. Clin Exp Immunol 2007;149:504-12.

94. Scadding GK, Vincent A, Newsom-Davis J, Henry K. Acetylcholine receptor antibody synthesis by thymic lymphocytes: Correlation with thymic histology. Neurology 1981;31:935-43.

95. Mygland A, Vincent A, Newsom-Davis J et al. Autoantibodies in thymoma-associated myasthenia gravis with myositis or neuromyotonia. Arch Neurol 2000;57:527-31.

96. Leite MI, Jones M, Ströbel P et al. Myasthenia gravis thymus: Complement vulnerability of epithelial and myoid cells, complement attack on them, and correlations with autoantibody status. Am J Pathol 2007;171:893-905.

97. Kadota Y, Okumura M, Miyoshi S et al. Altered t cell development in human thymoma is related to impairment of mhc class ii transactivator expression induced by interferongamma (ifn-gamma). Clinical and experimental immunology 2000;121:59-68.

98. Skeie GO, Apostolski S, Evoli A et al. Guidelines for treatment of autoimmune neuromuscular transmission disorders. Eur J Neurol 2010;17:893-902.

99. Díaz-Manera J, Rojas-García R, Illa I. Treatment strategies for myasthenia gravis. Expert Opin Pharmacother 2009;10:1329-42.

100. Pascuzzi RM, Coslett HB, Johns TR. Long-term corticosteriod treatment of myasthenia gravis: Report of 116 patients. Annals of Neurology 1984;15:291-298.

101. Gronseth GS, Barohn RJ. Practice parameter: Thymectomy for autoimmune myasthenia gravis (an evidence-based review): Report of the quality standards subcommittee of the american academy of neurology. Neurology 2000;55:7-15.

102. Masaoka A, Yamakawa Y, Niwa H et al. Extended thymectomy for myasthenia gravis patients: A 20-year review. Ann Thorac Surg 1996;62:853-9.

103. Gilhus NE. Autoimmune myasthenia gravis. Expert Rev Neurother 2009;9:351-8.

104. Grob D, Brunner N, Namba T, Pagala M. Lifetime course of myasthenia gravis. Muscle Nerve 2008;37:141-9.

105. Nagane Y, Suzuki S, Suzuki N, Utsugisawa K. Early aggressive treatment strategy against myasthenia gravis. Eur Neurol 2011;65:16-22.

106. Masuda M, Utsugisawa K, Suzuki S et al. The mg-qol15 japanese version: Validation and associations with clinical factors. Muscle Nerve 2012;46:166-73.

107. Sanders DB, Evoli A. Immunosuppressive therapies in myasthenia gravis. Autoimmunity 2010;43:428-35.

108. Kawaguchi N, Kuwabara S, Nemoto Y et al. Treatment and outcome of myasthenia gravis: Retrospective multi-center analysis of 470 japanese patients, 1999-2000. J Neurol Sci 2004;224:43-7.

109. van den Brandt J, Wang D, Reichardt HM. Resistance of single-positive thymocytes to glucocorticoid-induced apoptosis is mediated by cd28 signaling. Mol Endocrinol 2004;18:687-95.

110. Verbeeck N, Caprioli RM, Van de Plas R. Unsupervised machine learning for exploratory data analysis in imaging mass spectrometry. Mass Spectrom Rev 2020;39:245-291.

111. Moon KR, Stanley JS, Burkhardt D, van Dijk D, Wolf G, Krishnaswamy S. Manifold learning-based methods for analyzing single-cell rna-sequencing data. Current Opinion in Systems Biology 2018;7:36-46.

112. Smets T, Verbeeck N, Claesen M et al. Evaluation of distance metrics and spatial autocorrelation in uniform manifold approximation and projection applied to mass spectrometry imaging data. Analytical Chemistry 2019;91:5706-5714.

113. Fonville JM, Carter CL, Pizarro L et al. Hyperspectral visualization of mass spectrometry imaging data. Analytical Chemistry 2013;85:1415-1423.

114. McInnes L, Healy J, Saul N, Großberger L. Umap: Uniform manifold approximation and projection. Journal of Open Source Software 2018;3:861.

115. Ito T, Hoshino T. Influences of the gonad on the thymus in the mouse. Zeitschrift fur Anatomie und Entwicklungsgeschichte 1963;123:490-497.

116. Kamath AB, Xu H, Nagarkatti PS, Nagarkatti M. Evidence for the induction of apoptosis in thymocytes by 2,3,7,8-tetrachlorodibenzo-p-dioxinin vivo. Toxicology and Applied Pharmacology 1997;142:367-377.

117. Takahama Y. Journey through the thymus: Stromal guides for t-cell development and selection. Nat Rev Immunol 2006;6:127-35.

118. Medina CB, Mehrotra P, Arandjelovic S et al. Metabolites released from apoptotic cells act as tissue messengers. Nature 2020;580:130-135.

119. Elliott MR, Chekeni FB, Trampont PC et al. Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature 2009;461:282-6.

120. Malkawi AK, Alzoubi KH, Jacob M et al. Metabolomics based profiling of dexamethasone side effects in rats. Front Pharmacol 2018;9:46.

121. Dahabiyeh LA, Malkawi AK, Wang X et al. Dexamethasone-induced perturbations in tissue metabolomics revealed by chemical isotope labeling lc-ms analysis. Metabolites 2020;10:42.

122. Malkawi AK, Masood A, Shinwari Z et al. Proteomic analysis of morphologically changed tissues after prolonged dexamethasone treatment. International journal of molecular sciences 2019;20:3122.

123. Aghaallaei N, Bajoghli B. Making thymus visible: Understanding t-cell development from a new perspective. Front Immunol 2018;9:375.

124. Vermillion-Salsbury RL, Hercules DM. 9-aminoacridine as a matrix for negative mode matrix-assisted laser desorption/ionization. Rapid Communications in Mass Spectrometry 2002;16:1575-1581.

125. Edwards JL, Kennedy RT. Metabolomic analysis of eukaryotic tissue and prokaryotes using negative mode maldi time-of-flight mass spectrometry. Anal Chem 2005;77:2201-9.

126. Vaidyanathan S, Goodacre R. Quantitative detection of metabolites using matrix-assisted laser desorption/ionization mass spectrometry with 9-aminoacridine as the matrix. Rapid Commun Mass Spectrom 2007;21:2072-8.

127. Amantonico A, Oh JY, Sobek J, Heinemann M, Zenobi R. Mass spectrometric method for analyzing metabolites in yeast with single cell sensitivity. Angew Chem Int Ed Engl 2008;47:5382-5.

128. Urban PL, Amantonico A, Fagerer SR, Gehrig P, Zenobi R. Mass spectrometric method incorporating enzymatic amplification for attomole-level analysis of target metabolites in biological samples. Chem. Commun 2010;46:2212.

129. Miura D, Fujimura Y, Yamato M et al. Ultrahighly sensitive in situ metabolomic imaging for visualizing spatiotemporal metabolic behaviors. Anal Chem 2010;82:9789-96.

130. Fagerer SR, Nielsen S, Ibáñez A, Zenobi R. Matrix-assisted laser desorption/ionization matrices for negative mode metabolomics. Eur J Mass Spectrom (Chichester) 2013;19:39-47.

131. Kubo A, Ohmura M, Wakui M et al. Semi-quantitative analyses of metabolic systems of human colon cancer metastatic xenografts in livers of superimmunodeficient nog mice. Analytical and Bioanalytical Chemistry 2011;400:1895-1904.

132. Shimada T, Nakanishi T, Toyama A et al. Potential implications for monitoring serum bile acid profiles in circulation with serum proteome for carbon tetrachloride-induced liver injury/regeneration model in mice. J Proteome Res 2010;9:4490-500.

133. Wishart DS, Knox C, Guo AC et al. Hmdb: A knowledgebase for the human metabolome. Nucleic Acids Res 2009;37:D603-10.

134. Xue J, Guijas C, Benton HP, Warth B, Siuzdak G. Metlin ms. Nat Methods 2020;17:953- 954.

135. Tautenhahn R, Cho K, Uritboonthai W, Zhu Z, Patti GJ, Siuzdak G. An accelerated workflow for untargeted metabolomics using the metlin database. Nat Biotechnol 2012;30:826-8.

136. Atkinson DE. The energy charge of the adenylate pool as a regulatory parameter. Interaction with feedback modifiers. Biochemistry 1968;7:4030-4.

137. Swamy M, Pathak S, Grzes KM et al. Glucose and glutamine fuel protein o-glcnacylation to control t cell self-renewal and malignancy. Nat Immunol 2016;17:712-20.

138. Sugiura Y, Katsumata Y, Sano M et al. Visualization of in vivo metabolic flows reveals accelerated utilization of glucose and lactate in penumbra of ischemic heart. Scientific Reports 2016;6:32361.

139. Pouw EM, Schols AM, van der Vusse GJ, Wouters EF. Elevated inosine monophosphate levels in resting muscle of patients with stable chronic obstructive pulmonary disease. Am J Respir Crit Care Med 1998;157:453-7.

140. Allison AC, Eugui EM. Mycophenolate mofetil and its mechanisms of action. Immunopharmacology 2000;47:85-118.

141. Gordon DE, Jang GM, Bouhaddou M et al. A sars-cov-2-human protein-protein interaction map reveals drug targets and potential drug-repurposing. bioRxiv : the preprint server for biology 2020:2020.03.22.002386.

142. Horby P, Lim WS, Emberson JR et al. Dexamethasone in hospitalized patients with covid19. N Engl J Med 2021;384:693-704.

143. Dixit VD. Thymic fatness and approaches to enhance thymopoietic fitness in aging. Curr Opin Immunol 2010;22:521-8.

144. Jeong YJ, Lee KS, Kim J, Shim YM, Han J, Kwon OJ. Does ct of thymic epithelial tumors enable us to differentiate histologic subtypes and predict prognosis? American Journal of Roentgenology 2004;183:283-289.

145. Okumura M, Ohta M, Tateyama H et al. The world health organization histologic classification system reflects the oncologic behavior of thymoma: A clinical study of 273 patients. Cancer 2002;94:624-32.

146. Masaoka A, Monden Y, Nakahara K, Tanioka T. Follow-up study of thymomas with special reference to their clinical stages. Cancer 1981;48:2485-92.

147. Rosai J, Sobin LH. World Health Organization International Histological Classification of Tumours. 2nd edition. Histological typing of tumours of the thymus. Springer. 1999.

148. Rieker RJ, Hoegel J, Morresi-Hauf A et al. Histologic classification of thymic epithelial tumors: Comparison of established classification schemes. Int J Cancer 2002;98:900-6.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る