リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「疾患生物学に関連する生体内微量試料中の糖鎖修飾意義の探求と情報の可視化」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

疾患生物学に関連する生体内微量試料中の糖鎖修飾意義の探求と情報の可視化

我妻, 孝則 筑波大学 DOI:10.15068/0002000685

2021.07.26

概要

ウイルス感染症や癌などの疾患生物学的事象において、糖鎖修飾は密接に関連していることが示唆される。しかし、感染症領域において、ウイルスタンパク質と相互作用する組織中の糖鎖構造解析やウイルス受容体としての部分糖鎖構造は多数報告されているが、ウイルス表面に存在する N-, O-結合型糖鎖構造を網羅的に研究している事例は少ない。また、腫瘍生物学領域において、ホルマリン固定した組織試料を用いた糖鎖研究事例は報告されているが、よりネイティブな条件に近い凍結組織試料を用いた解析事例はほとんど報告されていない。これらの疾患領域での N-, O-結合型糖鎖情報は医工学応用の視点から、将来的な糖鎖関連モダリティに重要な知見を与えるものであると考えられる。そこで、各種臨床試料から解析対象となる糖タンパク質分子群を精製し、微量試料での糖鎖プロファイリングに資する手技の確立を行う。

本研究の目的として、以下の 2 項目を設定した。
1. 微量血清試料を用いたウイルス粒子上糖鎖情報の可視化、糖鎖応用可能性の探求
2. 凍結組織切片を用いた糖鎖情報の可視化、癌部と近傍非癌部間での糖鎖修飾差異の探求

第三章では、目的 1. の課題解決のため、解析対象として B 型肝炎ウイルス上の糖鎖プロファイリング系確立と糖鎖情報を用いた解析応用を行った。続く、第四章では、目的 2. の課題解決のため、膵臓がんの病理組織試料を用いた糖鎖情報取得を行った。

この論文で使われている画像

参考文献

1 Varki, A. Biological roles of glycans. Glycobiology 27, 3-49, doi:10.1093/glycob/cww086 (2017).

2 Reily, C., Stewart, T. J., Renfrow, M. B. & Novak, J. Glycosylation in health and disease. Nat Rev Nephrol 15, 346-366, doi:10.1038/s41581-019-0129-4 (2019).

3 Xu, C. & Ng, D. T. Glycosylation-directed quality control of protein folding. Nat Rev Mol Cell Biol 16, 742-752, doi:10.1038/nrm4073 (2015).

4 Gu, J. & Taniguchi, N. Regulation of integrin functions by N-glycans. Glycoconj J 21, 9-15, doi:10.1023/b:Glyc.0000043741.47559.30 (2004).

5 Takahashi, M., Tsuda, T., Ikeda, Y., Honke, K. & Taniguchi, N. Role of N-glycans in growth factor signaling. Glycoconj J 20, 207-212, doi:10.1023/B:GLYC.0000024252.63695.5c (2004).

6 Seales, E. C. et al. Hypersialylation of beta1 integrins, observed in colon adenocarcinoma, may contribute to cancer progression by up-regulating cell motility. Cancer Res 65, 4645-4652, doi:10.1158/0008-5472.Can-04-3117 (2005).

7 Kaszuba, K. et al. N-Glycosylation as determinant of epidermal growth factor receptor conformation in membranes. Proc Natl Acad Sci U S A 112, 4334-4339, doi:10.1073/pnas.1503262112 (2015).

8 Fukushima, K. & Yamashita, K. Interleukin-2 carbohydrate recognition modulates CTLL-2 cell proliferation. J Biol Chem 276, 7351-7356, doi:10.1074/jbc.M008781200 (2001).

9 Fukushima, K., Hara-Kuge, S., Ideo, H. & Yamashita, K. Carbohydrate recognition site of interleukin-2 in relation to cell proliferation. J Biol Chem 276, 31202-31208, doi:10.1074/jbc.M102789200 (2001).

10 Hanson, R. L. & Hollingsworth, M. A. Functional Consequences of Differential O-glycosylation of MUC1, MUC4, and MUC16 (Downstream Effects on Signaling). Biomolecules 6, doi:10.3390/biom6030034 (2016).

11 Burchell, J. M., Beatson, R., Graham, R., Taylor-Papadimitriou, J. & Tajadura-Ortega, V. O-linked mucin-type glycosylation in breast cancer. Biochem Soc Trans 46, 779-788, doi:10.1042/BST20170483 (2018).

12 Hussain, M. R., Hoessli, D. C. & Fang, M. N-acetylgalactosaminyltransferases in cancer. Oncotarget 7, 54067-54081, doi:10.18632/oncotarget.10042 (2016).

13 Zhang, Y. et al. Cloning and characterization of a new human UDP-N-acetyl-alpha-D-galactosamine:polypeptide -acetylgalactosaminyltransferase, designated pp-GalNAc-T13, that is specifically expressed in neurons and synthesizes GalNAc alpha-serine/threonine antigen. J Biol Chem 278, 573-584, doi:10.1074/jbc.M203094200 (2003).

14 Guo, J. M. et al. Molecular cloning and characterization of a novel member of the UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase family,pp-GalNAc-T12. FEBS Lett 524, 211-218, doi:10.1016/s0014-5793(02)03007-7(2002).

15 Narimatsu, Y. et al. Effect of glycosylation on cis/trans isomerization of prolines in IgA1-hinge peptide. J Am Chem Soc 132, 5548-5549, doi:10.1021/ja9106429 (2010).

16 Bagdonaite, I. & Wandall, H. H. Global aspects of viral glycosylation. Glycobiology 28, 443-467, doi:10.1093/glycob/cwy021 (2018).

17 Dube, D. H. & Bertozzi, C. R. Glycans in cancer and inflammation--potential for therapeutics and diagnostics. Nat Rev Drug Discov 4, 477-488, doi:10.1038/nrd1751 (2005).

18 Peixoto, A., Relvas-Santos, M., Azevedo, R., Santos, L. L. & Ferreira, J. A. Protein Glycosylation and Tumor Microenvironment Alterations Driving Cancer Hallmarks. Front Oncol 9, 380, doi:10.3389/fonc.2019.00380 (2019).

19 Raman, R., Tharakaraman, K., Sasisekharan, V. & Sasisekharan, R. Glycan-protein interactions in viral pathogenesis. Curr Opin Struct Biol 40, 153-162, doi:10.1016/j.sbi.2016.10.003 (2016).

20 Fujioka, Y. et al. A Sialylated Voltage-Dependent Ca(2+) Channel Binds Hemagglutinin and Mediates Influenza A Virus Entry into Mammalian Cells. Cell Host Microbe 23, 809-818 e805, doi:10.1016/j.chom.2018.04.015 (2018).

21 Shirato, H. Norovirus and histo-blood group antigens. Japanese journal of infectious diseases 64, 95-103 (2011).

22 Shirato, H. Norovirus recognition sites on histo-blood group antigens. Front Microbiol 3, 177, doi:10.3389/fmicb.2012.00177 (2012).

23 Tuccillo, F. M. et al. Aberrant glycosylation as biomarker for cancer: focus on CD43.Biomed Res Int 2014, 742831, doi:10.1155/2014/742831 (2014).

24 Nguyen, A. T. et al. Organelle Specific O-Glycosylation Drives MMP14 Activation, Tumor Growth, and Metastasis. Cancer Cell 32, 639-653 e636, doi:10.1016/j.ccell.2017.10.001 (2017).

25 Vajaria, B. N. & Patel, P. S. Glycosylation: a hallmark of cancer? Glycoconj J 34, 147-156, doi:10.1007/s10719-016-9755-2 (2017).

26 Matsuda, A. et al. Development of an all-in-one technology for glycan profiling targeting formalin-embedded tissue sections. Biochem Biophys Res Commun 370, 259-263, doi:10.1016/j.bbrc.2008.03.090 (2008).

27 Matsuda, A. et al. Assessment of tumor characteristics based on glycoform analysis of membrane-tethered MUC1. Lab Invest 97, 1103-1113, doi:10.1038/labinvest.2017.53 (2017).

28 Krishna, K. & Bekaii-Saab, T. in Biomarkers in Cancer (eds Victor R. Preedy & Vinood B. Patel) 179-201 (Springer Netherlands, 2015).

29 Miyoshi, E., Moriwaki, K. & Nakagawa, T. Biological function of fucosylation in cancer biology. J Biochem 143, 725-729, doi:10.1093/jb/mvn011 (2008).

30 Kuno, A. et al. A serum "sweet-doughnut" protein facilitates fibrosis evaluation and therapy assessment in patients with viral hepatitis. Sci Rep 3, 1065, doi:10.1038/srep01065 (2013).

31 Dias Rde, O., Machado Ldos, S., Migliolo, L. & Franco, O. L. Insights into animal and plant lectins with antimicrobial activities. Molecules 20, 519-541, doi:10.3390/molecules20010519 (2015).

32 Mu, J., Hirayama, M., Sato, Y., Morimoto, K. & Hori, K. A Novel High-Mannose Specific Lectin from the Green Alga Halimeda renschii Exhibits a Potent Anti-Influenza Virus Activity through High-Affinity Binding to the Viral Hemagglutinin. Mar Drugs 15, doi:10.3390/md15080255 (2017).

33 Van Holle, S. & Van Damme, E. J. M. Messages From the Past: New Insights in Plant Lectin Evolution. Front Plant Sci 10, 36, doi:10.3389/fpls.2019.00036 (2019).

34 Hirabayashi, J., Tateno, H., Shikanai, T., Aoki-Kinoshita, K. F. & Narimatsu, H. The Lectin Frontier Database (LfDB), and data generation based on frontal affinity chromatography. Molecules 20, 951-973, doi:10.3390/molecules20010951 (2015).

35 Kuno, A. et al. Evanescent-field fluorescence-assisted lectin microarray: a new strategy for glycan profiling. Nature methods 2, 851-856, doi:10.1038/nmeth803 (2005).

36 Hirabayashi, J., Yamada, M., Kuno, A. & Tateno, H. Lectin microarrays: concept, principle and applications. Chem Soc Rev 42, 4443-4458, doi:10.1039/c3cs35419a (2013).

37 Tateno, H. et al. Glycome diagnosis of human induced pluripotent stem cells using lectin microarray. J Biol Chem 286, 20345-20353, doi:10.1074/jbc.M111.231274 (2011).

38 Matsuda, A. et al. Comparative Glycomic Analysis of Exosome Subpopulations Derived from Pancreatic Cancer Cell Lines. J Proteome Res, doi:10.1021/acs.jproteome.0c00200 (2020).

39 Matsuda, A. et al. Lectin Microarray-Based Sero-Biomarker Verification Targeting Aberrant O-Linked Glycosylation on Mucin 1. Anal Chem 87, 7274-7281, doi:10.1021/acs.analchem.5b01329 (2015).

40 Zou, X. et al. A standardized method for lectin microarray-based tissue glycome mapping. Sci Rep 7, 43560, doi:10.1038/srep43560 (2017).

41 Nagai-Okatani, C., Nagai, M., Sato, T. & Kuno, A. An Improved Method for Cell Type-Selective Glycomic Analysis of Tissue Sections Assisted by Fluorescence Laser Microdissection. Int J Mol Sci 20, doi:10.3390/ijms20030700 (2019).

42 Kuno, A. et al. Focused differential glycan analysis with the platform antibody-assisted lectin profiling for glycan-related biomarker verification. Molecular & cellular proteomics : MCP 8, 99-108, doi:10.1074/mcp.M800308-MCP200 (2009).

43 Kaji, H. et al. Glycoproteomic discovery of serological biomarker candidates for HCV/HBV infection-associated liver fibrosis and hepatocellular carcinoma. J Proteome Res 12, 2630-2640, doi:10.1021/pr301217b (2013).

44 Sogabe, M. et al. Novel glycobiomarker for ovarian cancer that detects clear cell carcinoma. J Proteome Res 13, 1624-1635, doi:10.1021/pr401109n (2014).

45 Hirao, Y. et al. Glycoproteomics approach for identifying Glycobiomarker candidate molecules for tissue type classification of non-small cell lung carcinoma. J Proteome Res 13, 4705-4716, doi:10.1021/pr5006668 (2014).

46 Trepo, C., Chan, H. L. & Lok, A. Hepatitis B virus infection. Lancet (London, England) 384, 2053-2063, doi:10.1016/s0140-6736(14)60220-8 (2014).

47 Yu, M. W. et al. Prospective study of hepatocellular carcinoma and liver cirrhosis in asymptomatic chronic hepatitis B virus carriers. American journal of epidemiology 145, 1039-1047, doi:10.1093/oxfordjournals.aje.a009060 (1997).

48 Nguyen, M. H., Wong, G., Gane, E., Kao, J. H. & Dusheiko, G. Hepatitis B Virus: Advances in Prevention, Diagnosis, and Therapy. Clinical microbiology reviews 33, doi:10.1128/cmr.00046-19 (2020).

49 Seto, W. K. et al. Reduction of hepatitis B surface antigen levels and hepatitis B surface antigen seroclearance in chronic hepatitis B patients receiving 10 years of nucleoside analogue therapy. Hepatology 58, 923-931, doi:10.1002/hep.26376 (2013).

50 Furusyo, N. et al. Long-term lamivudine treatment for chronic hepatitis B in Japanese patients: a project of Kyushu University Liver Disease Study. World J Gastroenterol 12, 561-567, doi:10.3748/wjg.v12.i4.561 (2006).

51 Dervite, I., Hober, D. & Morel, P. Acute hepatitis B in a patient with antibodies to hepatitis B surface antigen who was receiving rituximab. N Engl J Med 344, 68-69, doi:10.1056/nejm200101043440120 (2001).

52 Yeo, W. et al. Hepatitis B virus reactivation in lymphoma patients with prior resolved hepatitis B undergoing anticancer therapy with or without rituximab. J Clin Oncol 27, 605-611, doi:10.1200/JCO.2008.18.0182 (2009).

53 Hwang, J. P. & Lok, A. S. Management of patients with hepatitis B who require immunosuppressive therapy. Nature reviews. Gastroenterology & hepatology 11, 209-219, doi:10.1038/nrgastro.2013.216 (2014).

54 Dryden, K. A. et al. Native hepatitis B virions and capsids visualized by electron cryomicroscopy. Mol Cell 22, 843-850, doi:10.1016/j.molcel.2006.04.025 (2006).

55 Bruss, V. Hepatitis B virus morphogenesis. World J Gastroenterol 13, 65-73 (2007).

56 Heermann, K. H. et al. Large surface proteins of hepatitis B virus containing the pre-s sequence. J Virol 52, 396-402 (1984).

57 Gilbert, R. J. et al. Hepatitis B small surface antigen particles are octahedral. Proc Natl Acad Sci U S A 102, 14783-14788, doi:10.1073/pnas.0505062102 (2005).

58 Schmitt, S. et al. Analysis of the pre-S2 N- and O-linked glycans of the M surface protein from human hepatitis B virus. J Biol Chem 274, 11945-11957, doi:10.1074/jbc.274.17.11945 (1999).

59 Schmitt, S. et al. Structure of pre-S2 N- and O-linked glycans in surface proteins from different genotypes of hepatitis B virus. J Gen Virol 85, 2045-2053, doi:10.1099/vir.0.79932-0 (2004).

60 Yu, D. M. et al. N-glycosylation mutations within hepatitis B virus surface major hydrophilic region contribute mostly to immune escape. J Hepatol 60, 515-522, doi:10.1016/j.jhep.2013.11.004 (2014).

61 Salpini, R. et al. Hepatitis B surface antigen genetic elements critical for immune escape correlate with hepatitis B virus reactivation upon immunosuppression. Hepatology 61, 823-833, doi:10.1002/hep.27604 (2015).

62 Ito, K. et al. Impairment of hepatitis B virus virion secretion by single-amino-acid substitutions in the small envelope protein and rescue by a novel glycosylation site. J Virol 84, 12850-12861, doi:10.1128/JVI.01499-10 (2010).

63 Block, T. M. et al. Secretion of human hepatitis B virus is inhibited by the imino sugar N-butyldeoxynojirimycin. Proc Natl Acad Sci U S A 91, 2235-2239 (1994).

64 Block, T. M. et al. Treatment of chronic hepadnavirus infection in a woodchuck animal model with an inhibitor of protein folding and trafficking. Nat Med 4, 610-614 (1998).

65 Werr, M. & Prange, R. Role for calnexin and N-linked glycosylation in the assembly and secretion of hepatitis B virus middle envelope protein particles. J Virol 72,778-782 (1998).

66 Takahashi, T., Nakagawa, S., Hashimoto, T., Takahashi, K. & Imai, M. Large-scale isolation of Dane particles from plasma containing hepatitis B antigen and deomnstration of circular double-stranded DNA molecule extruding directly from their cores. Journal of immunology (Baltimore, Md. : 1950) 117, 1392-1397 (1976).

67 Tajiri, K. et al. Analysis of the epitope and neutralizing capacity of human monoclonal antibodies induced by hepatitis B vaccine. Antiviral Res 87, 40-49, doi:10.1016/j.antiviral.2010.04.006 (2010).

68 Hamada-Tsutsumi, S. et al. Validation of cross-genotype neutralization by hepatitis B virus-specific monoclonal antibodies by in vitro and in vivo infection. PLoS One 10, e0118062, doi:10.1371/journal.pone.0118062 (2015).

69 Sunbul, M. Hepatitis B virus genotypes: global distribution and clinical importance.World J Gastroenterol 20, 5427-5434, doi:10.3748/wjg.v20.i18.5427 (2014).

70 Inaba, S. et al. Individual nucleic amplification technology does not prevent all hepatitis B virus transmission by blood transfusion. Transfusion 46, 2028-2029, doi:10.1111/j.1537-2995.2006.01011.x (2006).

71 Candotti, D. & Laperche, S. Hepatitis B Virus Blood Screening: Need for Reappraisal of Blood Safety Measures? Front Med (Lausanne) 5, 29, doi:10.3389/fmed.2018.00029 (2018).

72 Vaughn, D. W. et al. Evaluation of a rapid immunochromatographic test for diagnosis of dengue virus infection. Journal of clinical microbiology 36, 234-238 (1998).

73 Akkapinyo, C., Khownarumit, P., Waraho-Zhmayev, D. & Poo-Arporn, R. P. Development of a multiplex immunochromatographic strip test and ultrasensitive electrochemical immunosensor for hepatitis B virus screening. Anal Chim Acta 1095, 162-171, doi:10.1016/j.aca.2019.10.016 (2020).

74 Loeffelholz, M. J. & Tang, Y. W. Laboratory diagnosis of emerging human coronavirus infections - the state of the art. Emerg Microbes Infect 9, 747-756, doi:10.1080/22221751.2020.1745095 (2020).

75 Pan, Y. et al. Serological immunochromatographic approach in diagnosis with SARS-CoV-2 infected COVID-19 patients. J Infect 81, e28-e32, doi:10.1016/j.jinf.2020.03.051 (2020).

76 Houg, D. S. & Bijlsma, M. F. The hepatic pre-metastatic niche in pancreatic ductal adenocarcinoma. Mol Cancer 17, 95, doi:10.1186/s12943-018-0842-9 (2018).

77 Orth, M. et al. Pancreatic ductal adenocarcinoma: biological hallmarks, current status, and future perspectives of combined modality treatment approaches. Radiat Oncol 14, 141, doi:10.1186/s13014-019-1345-6 (2019).

78 Adamska, A., Domenichini, A. & Falasca, M. Pancreatic Ductal Adenocarcinoma: Current and Evolving Therapies. Int J Mol Sci 18, doi:10.3390/ijms18071338 (2017).

79 Rahib, L. et al. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res 74, 2913-2921, doi:10.1158/0008-5472.CAN-14-0155 (2014).

80 McGuigan, A. et al. Pancreatic cancer: A review of clinical diagnosis, epidemiology, treatment and outcomes. World J Gastroenterol 24, 4846-4861, doi:10.3748/wjg.v24.i43.4846 (2018).

81 Masugi, Y. et al. Upregulation of integrin beta4 promotes epithelial-mesenchymal transition and is a novel prognostic marker in pancreatic ductal adenocarcinoma. Lab Invest 95, 308-319, doi:10.1038/labinvest.2014.166 (2015).

82 Zhu, Z. et al. Nerve growth factor expression correlates with perineural invasion and pain in human pancreatic cancer. J Clin Oncol 17, 2419-2428, doi:10.1200/jco.1999.17.8.2419 (1999).

83 Koide, N. et al. Establishment of perineural invasion models and analysis of gene expression revealed an invariant chain (CD74) as a possible molecule involved in perineural invasion in pancreatic cancer. Clin Cancer Res 12, 2419-2426, doi:10.1158/1078-0432.CCR-05-1852 (2006).

84 Yamazaki, K. et al. Upregulated SMAD3 promotes epithelial-mesenchymal transition and predicts poor prognosis in pancreatic ductal adenocarcinoma. Lab Invest 94, 683-691, doi:10.1038/labinvest.2014.53 (2014).

85 Shimomura, O. et al. A Novel Therapeutic Strategy for Pancreatic Cancer: Targeting Cell Surface Glycan Using rBC2LC-N Lectin-Drug Conjugate (LDC). Mol Cancer Ther 17, 183-195, doi:10.1158/1535-7163.MCT-17-0232 (2018).

86 Tada, K. et al. Fucosyltransferase 8 plays a crucial role in the invasion and metastasis of pancreatic ductal adenocarcinoma. Surg Today 50, 767-777, doi:10.1007/s00595-019-01953-z (2020).

87 Chang, Y. et al. Comprehensive characterization of cancer-testis genes in testicular germ cell tumor. Cancer Med 8, 3511-3519, doi:10.1002/cam4.2223 (2019).

88 Ravn, V. & Dabelsteen, E. Tissue distribution of histo-blood group antigens. APMIS : acta pathologica, microbiologica, et immunologica Scandinavica 108, 1-28, doi:10.1034/j.1600-0463.2000.d01-1.x (2000).

89 Dotz, V. & Wuhrer, M. Histo-blood group glycans in the context of personalized medicine. Biochim Biophys Acta 1860, 1596-1607, doi:10.1016/j.bbagen.2015.12.026 (2016).

90 de Mattos, L. C. Structural diversity and biological importance of ABO, H, Lewis and secretor histo-blood group carbohydrates. Rev Bras Hematol Hemoter 38, 331-340, doi:10.1016/j.bjhh.2016.07.005 (2016).

91 Ishii, E. et al. The advent of medical artificial intelligence: lessons from the Japanese approach. J Intensive Care 8, 35, doi:10.1186/s40560-020-00452-5 (2020).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る