リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Elastic investigation for the existence of B33 phase in TiNi shape memory alloys using atomistically informed Eshelby’s ellipsoidal inclusion」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Elastic investigation for the existence of B33 phase in TiNi shape memory alloys using atomistically informed Eshelby’s ellipsoidal inclusion

Ishii, Akio 大阪大学

2023.02.05

概要

The existence of the B33 phase in TiNi alloys, which was reported to be a stable phase using density functional theory calculations but not confirmed experimentally, is controversial. Using Eshelby’s ellipsoidal inclusion, which was atomistically informed by density functional theory calculations, we investigated the existence of the B33 phase in the TiNi shape memory alloy. The calculated total strains of the heterogeneously nucleated B33 phase were similar to the eigenstrains of the B19’ phase, which were also calculated using density functional theory calculations. Considering the similarity of the atomic structures of B33 and B19’, this indicates that the B33 phase was elastically suppressed and changed to the B19’ phase by the original B2 matrix. We confirmed that the elastic inhomogeneity between the B2 matrix and B33 phase plays a role in this change.

参考文献

[1] J. Mohd Jani, M. Leary, A. Subic, M.A. Gibson, A review of shape memory alloy research, applications and opportunities, Mater. Des. 56 (2014) 1078–1113.

[2] W.J. Buehler, J.V. Gilfrich, R.C. Wiley, Effect of low-temperature phase changes on the mechanical properties of alloys near composition TiNi, J. Appl. Phys. 34 (1963) 1475–1477.

[3] S.D. Prokoshkin, A.V. Korotitskiy, V. Brailovski, S. Turenne, I.Y. Khmelevskaya, I.B. Trubitsyna, On the lattice parameters of phases in binary Ti-Ni shape memory alloys, Acta Mater. 52 (2004) 4479–4492.

[4] M. Nishida, T. Nishiura, H. Kawano, T. Inamura, Self-accommodation of B19’ martensite in Ti-Ni shape memory alloys-Part I. Morphological and crystallographic studies of the variant selection rule, Phil. Mag. 92 (2012) 2215–2233.

[5] X. Huang, G.J. Ackland, K.M. Rabe, Crystal structures and shape-memory behaviour of NiTi, Nature Mater. 2 (2003) 307–311.

[6] K. Guda Vishnu, A. Strachan, Phase stability and transformations in NiTi from density functional theory calculations, Acta Mater. 58 (2010) 745–752.

[7] D. Holec, M. Friák, A. Dlouhý, J. Neugebauer, Ab initio study of pressure stabilized NiTi allotropes: Pressure-induced transformations and hysteresis loops, Phys. Rev. B 84 (2011) 224119.

[8] J.B. Haskins, A.E. Thompson, J.W. Lawson, Ab initio simulations of phase stability and martensitic transitions in NiTi, Phys. Rev. B 94 (2016) 214110.

[9] W.S. Ko, B. Grabowski, J. Neugebauer, Development and application of a Ni- Ti interatomic potential with high predictive accuracy of the martensitic phase transition, Phys. Rev. B 92 (2015) 134107.

[10] J.B. Haskins, H. Malmir, S.J. Honrao, L.A. Sandoval, J.W. Lawson, Low- temperature mechanical instabilities govern high-temperature thermodynamics in the austenite phase of shape memory alloy constituents: Ab initio simulations of NiTi, NiZr, NiHf, PdTi, and PtTi, Acta Mater. 212 (2021) 116872.

[11] N. Hatcher, O.Y. Kontsevoi, A.J. Freeman, Martensitic transformation path of NiTi, Phys. Rev. B 79 (2009) 020202.

[12] C. Lv, G. Wang, X. Zhang, B. Luo, N. Luo, H. Song, F. Wu, H. Wu, F. Tan, J. Zhao, C. Liu, C. Sun, New explanation for the existence of B19’ phase in NiTi alloy from the perspective of twinning martensite, Scr. Mater. 214 (2022) 114644.

[13] T. Mura, Micromechanics of Defects in Solids, Martinus Nijhoff Publishers, Boston, 1987.

[14] J.D. Eshelby, The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 241 (1957) 376–396.

[15] J.D. Eshelby, Elastic inclusions and inhomogeneities, Prog. Sol. Mech. 2 (1961) 89–140.

[16] N. Kinoshita, T. Mura, Elastic fields of inclusions in anisotropic media, Phys. State Solidi (A) 5 (1971) 759–768.

[17] A. Ishii, 𝐴𝑏 Initio morphology prediction of Zr hydride precipitates using atomistically informed Eshelby’s ellipsoidal inclusion, Comput. Mater. Sci. 211 (2022) 111500.

[18] G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54 (1996) 11169–11186.

[19] G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59 (1999) 1758–1775.

[20] J. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996) 3865–3868.

[21] D. Li, L. Chen, Morphological evolution of coherent multi-variant Ti11Ni14 precipitates in Ti-Ni alloys under an applied stress–a computer simulation study, Acta Mater. 46 (1998) 639–649.

[22] Z.K. Lu, G.J. Weng, Two-level micromechanical theory for a shape-memory alloy reinforced composite, Int. J. Plast. 16 (2000) 1289–1307.

[23] H. Sehitoglu, I. Karaman, R. Anderson, X. Zhang, K. Gall, H. Maier, Y. Chumlyakov, Compressive response of NiTi single crystals, Acta Mater. 48 (2000) 3311–3326.

[24] M. Kato, T. Fujii, S. Onaka, Elastic strain energies of sphere, plate and needle inclusions, Mater. Sci. Eng. A 211 (1996) 95–103.

[25] Y. Le Page, P. Saxe, Symmetry-general least-squares extraction of elastic data for strained materials from ab initio calculations of stress, Phys. Rev. B 65 (2002) 104104.

[26] X. Wu, D. Vanderbilt, D.R. Hamann, Systematic treatment of displacements, strains, and electric fields in density-functional perturbation theory, Phys. Rev. B 72 (2005) 035105.

[27] A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K.A. Persson, Commentary: The materials project: A materials genome approach to accelerating materials innovation, APL Mater. 1 (2013) 011002.

[28] X. Ren, N. Miura, J. Zhang, K. Otsuka, K. Tanaka, M. Koiwa, T. Suzuki, Y.I. Chumlyakov, M. Asai, A comparative study of elastic constants of Ti-Ni based alloys prior to martensitic transformation, Mater. Sci. Eng. A 312 (2001) 196–206.

[29] U. Argaman, G. Makov, First-principles study of the temperature dependence of the elastic constants of hcp titanium, Comput. Mater. Sci. 184 (2020) 109917.

[30] A. Ishii, J. Li, S. Ogata, Shuffling-controlled versus strain-controlled deformation twinning: The case for HCP Mg twin nucleation, Int. J. Plast. 82 (2016) 32–43.

参考文献をもっと見る