リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Analgesic effects of compression at trigger points are associated with reduction of frontal polar activity as well as functional connectivity between the frontal polar area and insula in patients with chronic low back pain」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Analgesic effects of compression at trigger points are associated with reduction of frontal polar activity as well as functional connectivity between the frontal polar area and insula in patients with chronic low back pain

児玉 香菜絵 富山大学

2020.03.24

概要

【目的】
慢性腰痛は、日常生活活動の悪化につながる重大な健康問題である。一方、トリガーポイント (Myofascial Trigger Point : MTrP) は、筋の索状硬結上の過敏点かつ圧迫により関連痛が誘発される部位であり、慢性腰痛を含む筋骨格系疼痛の原因部位である。MTrP への圧迫は、筋骨格系疼痛に対して鎮痛効果を有することが報告されている。

近年の研究により、筋骨格系疼痛は、前頭前野や島皮質など疼痛の情報処理に関連する脳領域に電気的オシレーションを誘発し、同領域の形態やこれらの領域間の機能的結合を変化させることが報告されている。また、様々な疼痛に対する治療も、これら疼痛関連の脳活動を修飾する可能性が示唆されている。しかし、慢性腰痛における MTrP 圧迫の鎮痛効果の中枢性神経メカニズムは不明である。

本研究では、慢性腰痛患者の腰部 MTrP を圧迫し、近赤外分光法(Near Infrared Spectroscopy : NIRS)と脳波の同時計測により、前頭前野領域の脳血行動態および脳波オシレーション、ならびに前頭前野と他の疼痛関連脳領域間の機能的結合に及ぼす MTrP 圧迫の効果を解析した。

【方法】
3 ヶ月以上腰痛を訴える被験者 32 名(24.0±0.9 歳)を用い、MTrP 圧迫群(16 名)および非 MTrP 圧迫群(16 名)の 2 群に分けた。MTrP 群では腰方形筋上の MTrP を、 非 MTrP 圧迫群では、同筋上の MTrP から 2 cm 離れ、筋硬結や圧痛が認められない部位を圧迫した。脳波および脳血行動態は、被験者の頭部に NIRS および脳波測定用ヘッドキャップを設置し、安静座位にて測定した。測定は、休息 60 秒、圧迫 30 秒を 1 サイクルとし、5 サイクル繰り返し、その間の脳血行動態(Oxy-Hb, Deoxy-Hb, Total-Hb 濃度変化)及び脳波を同時計測した。圧迫強度は、測定者の母指に圧力計を装着し、圧痛閾値(Pain Pressure Threshold : PPT)および最大耐痛閾値を測定し、その中間値とした。また計測前後に Visual Analog Scale (VAS)を用いて主観的腰痛スコアおよび圧迫部位の PPT を評価した。脳波解析では、脳波信号を 1-50 Hz の周波数帯域のバンドパスフィルターで処理後、standard low-resolution brain electromagnetic tomography (sLORETA)を用いて、脳波オシレーションの電流源密度(Current Source Density : CSD)および脳領域間の機能的結合を解析した。

【結果】
MTrP 圧迫群は非MTrP 圧迫群と比較して、主観的腰痛スコアの減少、圧痛閾値の増大、前頭極における NIRS 血行動態(Oxy-Hb 濃度)の減少、および前頭極におけるθオシレーションの CSD 増大が認められた。また、前頭極において脳血行動態とθオシレーションの CSD との間に有意な負相関が認められた。

さらに、MTrP 圧迫群では非 MTrP 圧迫群と比較して、左側前頭極と左側島皮質間のθ帯域における機能的結合が有意に減少した。また同領域間の機能的結合強度は、主観的腰痛スコアと有意な正相関を示した。

【考察】
本研究における MTrP 圧迫群では、腰痛および痛覚過敏が改善され、前頭極の脳血行動 態が低下した。これは慢性頸部痛患者に対する頸部 MTrP 圧迫と同様の結果であり、MTrP の解剖学的位置に関係なく、MTrP 圧迫が前頭極の神経活動を低下させることが示唆された。また、MTrP 圧迫群では、前頭極におけるθオシレーションのCSD が有意に増加し、同領 域の脳血行動態と負相関を示した。本結果は、θオシレーションの増大が神経系の全般的 な電気的活動の低下と関連していることを示唆し、前頭極におけるθオシレーションの増 大が疼痛の軽減と関連していることが明らかになった。

さらに、MTrP 群では、左前頭極と左島皮質間のθ帯域における機能的結合が減少し、同機能的結合は、腰痛スコアと正相関を示した。これらの結果より、前頭極と島皮質間の同期的活動が慢性腰痛と関連し、さらに MTrP 圧迫がこの同期的活動を低下させることが判明した。前頭極および島皮質は、それぞれ疼痛の情動的評価および疼痛強度の評価に関与していることが示唆されており、MTrP 圧迫は島皮質から前頭極に向かうこれら痛覚情報処理系を抑制することにより、鎮痛効果を呈することが示唆された。

この論文で使われている画像

参考文献

Apkarian, A. V., Thomas, P. S., Krauss, B. R., Szeverenyi, N. M. (2001). Prefrontal cortical hyperactivity in patients with sympathetically mediated chronic pain. Neurosci Lett. 311, 193–197. doi: 10.1016/S0304-3940(01)02122-X.

Babiloni, C., Squitti, R., Del, Percio., C, Cassetta, E., Ventriglia, M. C., Ferreri, F., et al. (2007). Free copper and resting temporal EEG rhythms correlate across healthy, mild cognitive impairment, and Alzheimer's disease subjects. Clin Neurophysiol. 118(6):1244-60. doi: 10.1016/j.clinph.2007.03.016.

Baliki, M. N., Chialvo, D. R., Geha, P. Y., Levy, R. M., Harden, R. N., Parrish, T. B., et al. (2006). Chronic pain and the emotional brain: specific brain activity associated with spontaneous fluctuations of intensity of chronic back pain. J Neurosci. 26(47):12165-73. doi: 10.1523/jneurosci.3576-06.2006.

Baliki, M. N., Geha, P. Y., Jabakhanji, R., Harden, N., Schnitzer, T. J., Apkarian, A. V. (2008). A preliminary fMRI study of analgesic treatment in chronic back pain and knee osteoarthritis. Mol Pain. 4:47. doi: 10.1186/1744-8069-4-47.

Bastuji, H., Frot, M., Mazza, S., Perchet, C., Magnin, M., Garcia-Larrea, L. (2016). Thalamic Responses to Nociceptive-Specific Input in Humans: Functional Dichotomies and Thalamo-Cortical Connectivity. Cereb Cortex. 26(6):2663-76. doi: 10.1093/cercor/bhv106.

Benison, A. M., Chumachenko, S., Harrison, J. A., Maier, S. F., Falci, S. P., Watkins, L. R., et al. (2011). Caudal granular insular cortex is sufficient and necessary for the long-term maintenance of allodynic behavior in the rat attributable to mononeuropathy. J Neurosci. 31(17): 6317–6328.

Bräscher, A. K., Becker, S., Hoeppli, M. E., Schweinhardt, P. (2016). Different Brain Circuitries Mediating Controllable and Uncontrollable Pain. J Neurosci. 36(18):5013-25. doi: 10.1523/JNEUROSCI.1954-15.2016.

Cagnie, B., Dewitte, V., Coppieters, I., Van, Oosterwijck, J., Cools, A., Danneels, L. (2013). Effect of ischemic compression on trigger points in the neck and shoulder muscles in office workers: a cohort study. J Manipulative Physiol Ther. 36(8):482-9. doi: 10.1016/j.jmpt.2013.07.001.

Canuet, L., Ishii, R., Pascual-Marqui, R. D., Iwase, M., Kurimoto, R., Aoki, Y., et al. (2011). Resting-state EEG source localization and functional connectivity in schizophrenia-like psychosis of epilepsy. PLoS One. 6(11):e27863. doi: 10.1371/journal.pone.0027863.

Cardoso-Cruz, H., Sousa, M., Vieira, J. B., Lima, D., Galhardo, V. (2013). Prefrontal cortex and mediodorsal thalamus reduced connectivity is associated with spatial working memory impairment in rats with inflammatory pain. Pain. 154(11):2397-406. doi: 10.1016/j.pain.2013.07.020.

Cauda, F., Sacco, K., Duca, S., Cocito, D., D'Agata, F., Geminiani, G.C., Canavero, S. (2009). Altered resting state in diabetic neuropathic pain. PLoS One. 4(2):e4542. doi: 10.1371/journal.pone.0004542.

Cauda, F., D'Agata, F., Sacco, K., Duca, S., Geminiani, G., Vercelli, A. (2011). Functional connectivity of the insula in the resting brain. NeuroImage 55(1):8–23. doi:10.1016/j.neuroimage.2010.11.049.

Chang, L. J., Yarkoni, T., Khaw, M. W., Sanfey, A. G. (2013). Decoding the role of the insula in human cognition: functional parcellation and large-scale reverse inference. Cereb Cortex. 23(3):739– 749. doi: 10.1093/cercor/bhs065.

Chen, S., Wang, S., Rong, P., Liu, J., Zhang, H., Zhang, J. (2014). Acupuncture for refractory epilepsy: role of thalamus. Evid Based Complement Alternat Med. 2014:950631. doi: 10.1155/2014/950631.

Coppieters, I., Meeus, M., Kregel, J., Caeyenberghs, K., De, Pauw, R., Goubert, D., et al. (2016). Relations Between Brain Alterations and Clinical Pain Measures in Chronic Musculoskeletal Pain: A Systematic Review. J Pain. 17(9):949-62. doi: 10.1016/j.jpain.2016.04.005.

Cui, D., Liu, J., Bian, Z., Li, Q., Wang, L., Li, X. (2014). Cortical source multivariate EEG synchronization analysis on amnestic mild cognitive impairment in type 2 diabetes. Scientific World Journal. 2014:52316. doi: 10.1155/2014/523216.

Delorme, A., Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods. 134(1):9-21. doi: 10.1016/j.jneumeth.2003.10.009.

Deen, B., Pitskel, N. B., Pelphrey, K. A. (2011) Three systems of insular functional connectivity identified with cluster analysis. Cereb Cortex. 21(7):1498–1506.

Fukui, Y., Ajichi, Y., Okada, E. (2003). Monte Carlo prediction of near-infrared light propagation in realistic adult and neonatal head models. 42(16):2881–7. doi: 10.1364/AO.42.002881.

Gerwin, R. D., Shannon, S., Hong, C. Z., Hubbard, D., and Gevirtz, R. (1997). Interrater reliability in myofascial trigger point examination. Pain. 69(1-2): 65–73. doi: 10.1016/S0304-3959(96)03248-4.

Gerwin, R. D. (2008). The Taut Band and Other Mysteries of the Trigger Point: An Examination of the Mechanisms Relevant to the Development and Maintenance of the Trigger Point. Journal of Musculoskeletal Pain. 16(1-2): 115-121. doi: 10.1080/10582450801960081.

Hains, G., Descarreaux, M., Hains, F. (2010). Chronic shoulder pain of myofascial origin: a randomized clinical trial using ischemic compression therapy. J Manipulative Physiol Ther. 33(5):362-9. doi: 10.1016/j.jmpt.2010.05.003.

Harris, R. E., Napadow, V., Huggins, J. P., Pauer, L., Kim, J., Hampson, J., et al. (2013). Pregabalin rectifies aberrant brain chemistry, connectivity, and functional response in chronic pain patients. Anesthesiology. 119(6):1453-64. doi: 10.1097/ALN.0000000000000017.

Hashmi, J.A., Baria, A.T., Baliki, M.N., Huang, L., Schnitzer, T.J., Apkarian, A.V. (2012). Brain networks predicting placebo analgesia in a clinical trial for chronic back pain. Pain. 153(12):2393-402. doi: 10.1016/j.pain.2012.08.008.

Hocking, M. J. (2013). Exploring the central modulation hypothesis: do ancient memory mechanisms underlie the pathophysiology of trigger points? Curr Pain Headache Rep. 17(7):347. doi: 10.1007/s11916-013-0347-6.

Hoshi, Y., Kobayashi, N., Tamura, M. (2001). Interpretation of near-infrared spectroscopy signals: a study with a newly developed perfused rat brain model. J Appl Physiol. 90(5): 1657-1622. doi: 10.1152/jappl.2001.90.5.1657.

Hou, C. R., Tsai, L. C., Cheng, K.F., Chung, K. C., Hong, C. Z. (2002). Immediate effects of various physical therapeutic modalities on cervical myofascial pain and trigger-point sensitivity. Arch Phys Med Rehabil. 83(10):1406-14.

Hu, L, Iannetti, G. D. (2019). Neural indicators of perceptual variability of pain across species. Proc Natl Acad Sci U S A. 116(5):1782-1791. doi: 10.1073/pnas.1812499116.

Huber, L., Goense, J., Kennerley, A. J., Ivanov, D., Krieger, S. N., Lepsien, J., et al. (2014). Investigation of the neurovascular coupling in positive and negative BOLD responses in human brain at 7 T. Neuroimage. 97:349-362. doi: 10.1016/j.neuroimage.2014.04.022.

Iglesias-González, J. J., Muñoz-García, M. T., Rodrigues-de-Souza, D. P., Alburquerque-Sendín, F., Fernández-de-Las-Peñas, C. (2013). Myofascial trigger points, pain, disability, and sleep quality in patients with chronic nonspecific low back pain. Pain Med. 14(12):1964-70. doi: 10.1111/pme.12224.

Ishikuro, K., Urakawa, S., Takamoto, K., Ishikawa, A., Ono, T., Nishijo, H. (2014). Cerebral functional imaging using near-infrared spectroscopy during repeated performances of motor rehabilitation tasks tested on healthy subjects. Front Hum Neurosci. 8:292. doi: 10.3389/fnhum.2014.00292. eCollection 2014.

Jacobs, J., Hwang, G., Curran, T., Kahana, M. J. (2006). EEG oscillations and recognition memory: theta correlates of memory retrieval and decision making. Neuroimage. 32(2):978-87. doi: 10.1016/j.neuroimage.2006.02.018.

Jurcak, V., Tsuzuki, D., Dan, I. (2007). 10/20, 10/10, and 10/5 systems revisited: their validity as relative head-surface-based positioning systems. Neuroimage. 34(4):1600-11. https://doi.org/10.1016/j.neuroimage.2006.09.024

Jung, T. P., Makeig, S., Humphries, C., Lee, T. W., McKeown, M. J., Iragui V., et al. (2000). Removing electroencephalographic artifacts by blind source separation. Psychophysiology. 37:163-178.

Kilner, J. M., Mattout, J., Henson, R., Friston, K. J. (2005). Hemodynamic correlates of EEG: a heuristic. Neuroimage. 28:280-286. doi: 10.1016/j.neuroimage.2005.06.008.

Kobuch, S., Fazalbhoy, A., Brown, R., Macefield, V. G., Henderson, L. A. (2018). Muscle sympathetic nerve activity-coupled changes in brain activity during sustained muscle pain. Brain Behav. 8: e00888. doi: 10.1002/brb3.888.

Kregel, J., Coppieters, I., DePauw, R., Malfliet, A., Danneels, L., Nijs, J., et al. (2017). Does Conservative Treatment Change the Brain in Patients with Chronic Musculoskeletal Pain? A Systematic Review. Pain Physician. 20(3):139-154.

Kubota, Y., Sato, W., Toichi, M., Murai, T., Okada, T., Hayashi, A., et al. (2001). Frontal midline theta rhythm is correlated with cardiac autonomic activities during the performance of an attention demanding meditation procedure. Brain Res Cogn Brain Res. 11(2):281-287.

LeBlanc, B. W., Lii, T. R., Silverman, A. E., Alleyne, R. T., Saab, C. Y. (2014). Cortical theta is increased while thalamocortical coherence is decreased in rat models of acute and chronic pain. Pain. 155(4):773-82. doi: 10.1016/j.pain.2014.01.013.

LeBlanc, B. W., Cross, B., Smith, K. A., Roach, C., Xia, J., Chao, Y. C., et al. (2017). Thalamic Bursts Down-regulate Cortical Theta and Nociceptive Behavior. Sci Rep. 7(1):2482. doi: 10.1038/s41598-017-02753-6.

Li, J., Zhang, J.H., Yi, T., Tang, W. J., Wang, S. W., Dong, J. C. (2014). Acupuncture treatment of chronic low back pain reverses an abnormal brain default mode network in correlation with clinical pain relief. Acupunct Med. 32(2):102-8. doi: 10.1136/acupmed-2013-010423.

Li, L., Liu, X., Cai, C., Yang, Y., Li, D., Xiao, L., et al. (2016). Changes of gamma-band oscillatory activity to tonic muscle pain. Neurosci Lett. 627:126-31. doi: 10.1016/j.neulet.2016.05.067.

Lin, H. C., Huang, Y. H., Chao, T. H., Lin, W. Y., Sun, W. Z, Yen, C. T. (2014). Gabapentin reverses central hypersensitivity and suppresses medial prefrontal cortical glucose metabolism in rats with neuropathic pain. Mol Pain.10:63. doi: 10.1186/1744-8069-10-63.

Liu, C.C., Chien, J.H., Kim, J. H., Chuang, Y. F., Cheng, D. T., Anderson, W. S.,et al. (2015). Cross-frequency coupling in deep brain structures upon processing the painful sensory inputs. Neuroscience. 303:412-21. doi: 10.1016/j.neuroscience.2015.07.010.

Loggia, M. L., Kim, J., Gollub, R. L., Vangel, M. G., Kirsch, I., Kong, J., et al. (2013). Default mode network connectivity encodes clinical pain: an arterial spin labeling study. Pain. 154(1):24-33. doi: 10.1016/j.pain.2012.07.029.

Maggioni, E., Molteni, E., Zucca, C., Reni, G., Cerutti, S., Triulzi, F. M., et al. (2015). Investigation of negative BOLD responses in human brain through NIRS technique. A visual stimulation study. Neuroimage.108:410-422. doi: 10.1016/j.neuroimage.2014.12.074.

Makeig, S., Jung, T. P., Bell, A. J., Ghahremani, D., Sejnowski, T. J. (1997). Blind separation of auditory event-related brain responses into independent components. Proc Natl Acad Sci U S A. 94: 10979-84. doi: 10.1073/pnas.94.20.10979.

Makeig, S., Westerfield, M., Jung, T. P., Covington, J., Townsend, J., Sejnowski, T. J., et al. (1999). Functionally independent components of the late positive event-related potential during visual spatial attention. J Neurosci. 19(7):2665-80.

Malver, L. P., Brokjaer, A., Staahl, C., Graversen, C., Andresen, T., Drewes, A. M. (2014). Electroencephalography and analgesics. Br J Clin Pharmacol. 77(1):72-95. doi: 10.1111/bcp.12137.

May, E. S., Nickel, M. M., Ta, Dinh, S., Tiemann, L., Heitmann, H., Voth, I., et al. (2019). Prefrontal gamma oscillations reflect ongoing pain intensity in chronic back pain patients. Hum Brain Mapp. 40(1):293-305. doi: 10.1002/hbm.24373.

McKlveen, J. M., Myers, B., Herman, J. P. (2015). The medial prefrontal cortex: coordinator of autonomic, neuroendocrine and behavioural responses to stress. J Neuroendocrinol. 27(6):446-456. doi: 10.1111/jne.12272.

Meltzer, J. A., Negishi, M., Mayes, L. C., Constable, R. T. (2007). Individual differences in EEG theta and alpha dynamics during working memory correlate with fMRI responses across subjects. Clin Neurophysiol. 118:2419-2436. doi: 10.1016/j.clinph.2007.07.023.

Melzack, R., Stillwell, D. M., Fox, E. J. (1977). Trigger points and acupuncture points for pain: correlations and implications. Pain 3:3–23.

Metting, van, Rijin, ,A. C., Peper, A., Grimbergen, C. A. (1990). High-quality recording of bioelectric events. Part 1. Interference reduction, theory and practice. Med Biol Eng Comput. 25:389–397.

Michels, L., Bucher, K., Lunchinger, R., Klaver, P., Martin, E., Jeanmonod, D., et al. (2010). Simultaneous EEG-fMRI during a working memory task: modulations in low and high frequency bands. PLoS One.5(4):e10298. doi: 10.1371/journal.pone.0010298.

Mizuhara, H., Wang, L. Q., Kobayashi, K., Yamaguchi, Y. (2004). A long-range cortical network emerging with theta oscillation in a mental task. Neuroreport. 15(8):1233-1238. doi: 10.1097/01.wnr.0000126755.09715.b3.

Morikawa, Y., Takamoto, K., Nishimaru, H., Taguchi, T., Urakawa, S., Sakai, S., et al. (2017). Compression at Myofascial Trigger Point on Chronic Neck Pain Provides Pain Relief through the Prefrontal Cortex and Autonomic Nervous System: A Pilot Study. Front Neurosci. 11:186. doi: 10.3389/fnins.2017.00186.

Nakamichi, N., Takamoto, K., Nishimaru, H., Fujiwara, K., Takamura, Y., Matsumoto, J., et al. (2018). Cerebral Hemodynamics in Speech-Related Cortical Areas: Articulation Learning Involves the Inferior Frontal Gyrus, Ventral Sensory-Motor Cortex, and Parietal-Temporal Sylvian Area. Front Neurol. 9:939. doi: 10.3389/fneur.2018.00939.

Nakamura, M., Nishiwaki, Y., Ushida, T., Toyama, Y. (2011). Prevalence and characteristics of chronic musculoskeletal pain in Japan. J Orthop Sci. 16(4):424-32. doi: 10.1007/s00776-011-0102-y.

Napadow, V., Kim, J., Clauw, D. J., Harris, R. E. (2012). Decreased intrinsic brain connectivity is associated with reduced clinical pain in fibromyalgia. Arthritis Rheum. 64(7):2398-403. doi: 10.1002/art.34412.

Napadow, V., LaCount, L., Park, K., As-Sanie, S., Clauw, D. J., Harris, R. E. (2010). Intrinsic brain connectivity in fibromyalgia is associated with chronic pain intensity. Arthritis Rheum. 62(8):2545-55. doi: 10.1002/art.27497.

Nichols, T. E., Holmes, A. P. (2002). Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp.15:1-25.

Niddam, D. M., Lee. S. H., Su, Y. T., Chan, R. C. (2017). Brain structural changes in patients with chronic myofascial pain. Eur J Pain. 21(1):148-158. doi: 10.1002/ejp.911.

Niddam, D. M., Chan, R. C., Lee, S. H., Yeh, T. C., Hsieh, J. C. (2008). Central representation of hyperalgesia from myofascial trigger point. Neuroimage. 39(3):1299-306. doi: 10.1016/j.neuroimage.2007.09.051.

Niddam, D. M. (2009). Brain manifestation and modulation of pain from myofascial trigger points. Curr Pain Headache Rep. 13(5):370-5.

Niederer, P., Mudra, R., Keller, E. (2008). Monte Carlo simulation of light propagation in adult brain: influence of tissue blood content and indocyanine green. Opto Electron Rev. 16:124–30. doi: 10.2478/s11772-008-0012-5.

Pascual-Marqui, R. D. (2002). Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find Exp Clin Pharmacol. 24(Suppl. D):5–12.

Pascual-Marqui, R. D. (2007a). Coherence and phase synchronization: generalization to pairs of multivariate time series, and removal of zero-lag contributions. rXiv:0706.1776v173.

Pascual-Marqui, R. D. (2007b). Instantaneous and lagged measurements of linear and nonlinear dependence between groups of multivariate time series: frequency decomposition. arXiv:0711.1455.

Pastoriza, L.N., Morrow, T.J., Casey, K.L., 1996. Medial frontal cortex lesions selectively attenuate the hot plate response: possible nocifensive apraxia in the rat. Pain. 64: 11–17.

Peng, K., Steele, S. C., Becerra, L., Borsook, D. (2018). Brodmann area 10: Collating, integrating and high level processing of nociception and pain. Progress in Neurobiology. 161:1-22. doi: 10.1016/j.pneurobio.2017.11.004.

Ploner, M., Sorg, C., & Gross, J. (2017). Brain rhythms of pain. Trends in cognitive sciences. 21(2): 100-110. doi: 10.1016/j.tics.2016.12.001.

Ren, Y., Zhang, L., Lu, Y., Yang, H., Westlund, K. N. (2009). Central lateral thalamic neurons receive noxious visceral mechanical and chemical input in rats. J Neurophysiol. 102(1):244-58. doi: 10.1152/jn.90985.2008.

Saager, R. B., Telleri, N. L., Berger, A. J. (2011). Two-detector Corrected Near Infrared Spectroscopy (C-NIRS) detects hemodynamic activation responses more robustly than single-detector NIRS. Neuroimage. 55(4):1679-85. doi: 10.1016/j.neuroimage.2011.01.043.

Saalmann, Y. B. (2014). Intralaminar and medial thalamic influence on cortical synchrony, information transmission and cognition. Front Syst Neurosci. 8:83. doi: 10.3389/fnsys.2014.00083.

Sarnthein, J., Stern, J., Aufenberg, C., Rousson, V., & Jeanmonod, D. (2005). Increased EEG power and slowed dominant frequency in patients with neurogenic pain. Brain. 129(1): 55-64.

Sarnthein, J., Jeanmonod, D. (2008). High thalamocortical theta coherence in patients with neurogenic pain. Neuroimage. 39(4):1910-7. doi: 10.1016/j.neuroimage.2007.10.019.

Sato, T., Nambu, I., Takeda, K., Aihara, T., Yamashita, O., Isogaya, Y., et al. (2016). Reduction of global interference of scalp-hemodynamics in functional near-infrared spectroscopy using short distance probes. Neuroimage. 141:120-132. doi: 10.1016/j.neuroimage.2016.06.054.

Scheeringa, R., Petersonn, K. M., Oostenveld, R., Norris, D. G., Hagoort, P., Bastiaansen, M. C. (2009). Trial-by-trial coupling between EEG and BOLD identifies networks related to alpha and theta EEG power increases during working memory maintenance. Neuroimage. 44:1224-1238. doi: 10.1016/j.neuroimage.2008.08.041.

Schulz, E., May, E. S., Postorino, M., Tiemann, L., Nickel, M. M., Witkovsky, V., et al. (2015). Prefrontal Gamma Oscillations Encode Tonic Pain in Humans. Cereb Cortex. 25(11):4407-14. doi: 10.1093/cercor/bhv043.

Schytz, H. W., Wienecke, T., Jensen, L. T., Selb, J., Boas, D. A., Ashina, M. (2009). Changes in cerebral blood flow after acetazolamide: an experimental study comparing near-infrared spectroscopy and SPECT. Eur J Neurol. 16:461–67. doi: 10.1111/j.1468-1331.2008.02398.x.

Segerdahl, A. R., Mezue, M., Okell, T. W., Farrar, J. T., Tracey, I. (2015). The dorsal posterior insula subserves a fundamental role in human pain. Nat Neurosci. 18: 499–500. doi: 10.1038/nn.3969.

Seiyama, A., Hazeki, O., Tamura, M. (1988). Noninvasive quantitative analysis of blood oxygenation in rat skeletal muscle. J Biochem. 103:419–24. doi: 10.1093/oxfordjournals.jbchem.a122285.

Seiyama, A., Seki, J., Tanabe, H. C., Sase, I., Takatsuki, A., Miyauchi, S., et al. (2004). Circulatory basis of fMRI signals: relationship between changes in the hemodynamic parameters and BOLD signal intensity. Neuroimage. 21:1204-1214. doi: 10.1016/j.neuroimage.2003.12.002.

Shah, J. P., Thaker, N., Heimur, J., Aredo, J.V, Sikdar, S., Gerber, L. (2015). Myofascial Trigger Points Then and Now: A Historical and Scientific Perspective. PM R. 7(7):746-761. doi: 10.1016/j.pmrj.2015.01.024.

Shao, S., Shen, K., Yu, K., Wilder-Smith, E. P., Li, X. (2012). Frequency-domain EEG source analysis for acute tonic cold pain perception. Clin Neurophysiol. 123:2042-2049. doi: 10.1016/j.clinph.2012.02.084.

Simons, D. G., Travell, J. G., Simons, L. S. (1999). Myofascial Pain and Dysfunction, The Trigger Point Manual, The Upper Extremities, vol. 1., second ed. Williams and Wilkins, Baltimore, USA.

Sten, S., Lundengard, K., Witt, S., Cedersund, G., Elinder, F., Engstorm, M. (2017). Neural inhibition can explain negative BOLD responses: A mechanistic modelling and fMRI study. Neuroimage. 158:219-231. doi: 10.1016/j.neuroimage.2017.07.002.

Stern, J., Jeanmonod, D., & Sarnthein, J. (2006). Persistent EEG overactivation in the cortical pain matrix of neurogenic pain patients. Neuroimage, 31(2): 721-731. doi: 10.1016/j.neuroimage.2005.12.042.

Sugai, K., Tsuji, O., Matsumoto, M., Nishiwaki, Y., Nakamura, M. (2017). Chronic musculoskeletal pain in Japan (the final report of the 3-year longitudinal study): Association with a future decline in activities of daily living. J Orthop Surg (Hong Kong). 25(3):2309499017727945. doi: 10.1177/2309499017727945.

Takahashi, T., Murata, T., Hamada, T., Omori, M., Kosaka, H., Kikuchi, M., et al. (2005). Changes in EEG and autonomic nervous activity during meditation and their association with personality traits. Int J Psychophysiol. 55: 199-207. doi: 10.1016/j.ijpsycho.2004.07.004.

Takamoto, K., Bito, I., Urakawa, S., Sakai, S., Kigawa, M., Ono, T., et al. (2015). Effects of compression at myofascial trigger points in patients with acute low back pain: A randomized controlled trial. Eur J Pain. 19(8):1186-96. doi: 10.1002/ejp.694.

Takeuchi, M., Hori, E., Takamoto, K., Tran, A. H., Satoru, K., Ishikawa, A.,et al. (2009). Brain cortical mapping by simultaneous recording of functional near infrared spectroscopy and electroencephalograms from the whole brain during right median nerve stimulation. Brain Topogr. 22(3):197-214. doi: 10.1007/s10548-009-0109-2.

Tang, Y.Y., Ma, Y., Fan, Y., Feng, H., Wang, J., Feng, S., et al. (2009). Central and autonomic nervous system interaction is altered by short-term meditation. Proc Natl Acad Sci U S A. 106(22):8865-8870. doi: 10.1073/pnas.0904031106.

Tong, Y., Lindsey, KP., deB Frederick, B., (2011). Partitioning of physiological noise signals in the brain with concurrent near-infrared spectroscopy and fMRI. J Cereb Blood Flow Metab. 31(12):2352-62. https://doi.org/10.1038/jcbfm.2011.100.

Tsuzuki, D., Jurcak, V., Singh, A., Okamoto, M., Watanabe, E., Dan, I. (2007). Virtual spatial registration of stand-alone fNIRS data to MNI space. NeuroImage. 34:1506–18. doi: 10.1016/j.neuroimage.2006.10.043.

Umeno, K., Hori, E., Tabuchi, E., Takakura, H., Miyamoto, K., Ono, T., et al. (2003). Gamma-band EEGs predict autonomic responses during mental arithmetic. Neuroreport. 14: 477–480. doi: 10.1097/00001756-200303030-00036

Wang, J., Wang, J., Xing, G. G., Li, X., Wan, Y. (2016). Enhanced Gamma Oscillatory Activity in Rats with Chronic Inflammatory Pain. Front Neurosci. 10:489. doi: 10.3389/fnins.2016.00489.

White, T. P., Jansen, M., Doege, K., Mullinger, K. J., Park, S. B., Liddle, E. B., et al. (2013). Theta power during encoding predicts subsequent-memory performance and default mode network deactivation. Hum Brain Mapp. 34:2929-2943. doi: 10.1002/hbm.22114.

Whitt, J. L., Masri, R., Pulimood, N. S., Keller, A. (2013). Pathological activity in mediodorsal thalamus of rats with spinal cord injury pain. J Neurosci. 33(9):3915-26. doi: 10.1523/JNEUROSCI.2639-12.2013.

Wray, S., Cope, M., Delpy, D. T., Wyatt, J. S., Reynolds, E. O. (1988). Characterization of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the non-invasive monitoring of cerebral oxygenation. Biochim Biophys Acta 933:184–92. doi: 10.1016/0005-2728(88)90069-2.

Yamada, T., Umeyama, S., Matsuda, K. (2009). Multidistance probe arrangement to eliminate artifacts in functional near-infrared spectroscopy. J Biomed Opt. 14(6):064034. doi: 10.1117/1.3275469.

Yamada, T., Umeyama, S., Ohashi, M. (2015). Removal of motion artifacts originating from optode fluctuations during functional near-infrared spectroscopy measurements. Biomed Opt Express. 6(12):4632-49. doi: 10.1364/BOE.6.004632.

Yasui, H., Takamoto, K., Hori, E., Urakawa, S., Nagashima, Y., Yada, Y., et al. (2010). Significant correlation between autonomic nervous activity and cerebral hemodynamics during thermotherapy on the neck. Auton Neurosci. 156(1-2):96-103. doi: 10.1016/j.autneu.2010.03.011.

Yasumura, A., Kokubo, N., Yamamoto, H., Yasumura, Y., Nakagawa, E., Kaga, M., Hiraki, K., Inagaki, M. (2014). Neurobehavioral and hemodynamic evaluation of Stroop and reverse Stroop interference in children with attention-deficit/hyperactivity disorder. Brain Dev. 36(2):97-106. https://doi.org/10.1016/j.braindev.2013.01.005.

Yi, M., Zhang, H. (2011). Nociceptive memory in the brain: cortical mechanisms of chronic pain. J Neurosci. 31(38):13343-5. doi: 10.1523/JNEUROSCI.3279-11.2011.

Zhang, Z. G., Hu, L., Hung, Y. S., Mouraux, A., Iannetti, G. D. (2012).Gamma-band oscillations in the primary somatosensory cortex--a direct and obligatory correlate of subjective pain intensity. J Neurosci. 32(22):7429-38. doi: 10.1523/JNEUROSCI.5877-11.2012.

Zhou, R., Wang, J., Qi, W., Liu, F. Y., Yi, M., Guo, H., et al. (2018). Elevated Resting State Gamma Oscillatory Activities in Electroencephalogram of Patients With Post-herpetic Neuralgia. Front Neurosci. 12:750. doi: 10.3389/fnins.2018.00750.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る