リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「小学生におけるう蝕経験と舌苔微生物叢の構成」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

小学生におけるう蝕経験と舌苔微生物叢の構成

張, 代熙 ZHANG, DAIXI チョウ, ダイキ 九州大学

2021.09.24

概要

The tongue microbiota of elderly adults is composed of two cohabiting commensal groups and their ratios are related to the number of teeth with dental caries experience. In this study, the variation in the tongue microbiota of primary school children and its relationship with the dental caries experience were investigated. We examined the tongue microbiota of 138 children aged 6–7 years and 11–12 years (61 and 77 children, respectively) who underwent annual dental examinations. The bacterial composition was determined by sequencing the V1–V2 region of the 16S rRNA gene. Cooccurrence network analysis indicated two groups of cohabiting predominant commensals in the tongue microbiota of children. The microbiota in children without a history of dental caries showed significantly higher relative abundances of one of the cohabiting groups, primarily composed of Neisseria subflava, Porphyromonas pasteri, and Fusobacterium periodonticum, compared to that in children with a history of dental caries, which is consistent with that of elderly adults with fewer teeth with dental caries experience. Linear discriminant analysis Effect Size (LEfSe) further identified Streptococcus oralis subsp. dentisani, belonging to the aforementioned commensal group, as a discriminant species in children without dental caries experience aged 6–7 years and 11–12 years. Our results describe the tongue microbiota composition of primary school children without history of dental caries and support the possibility that dental caries experience is accompanied by a shift in the tongue microbiota.

参考文献

1. Pitts NB, Zero DT, Marsh PD, Ekstrand K, Weintraub JA, Ramos-Gomez F, Tagami J, Twetman S, Tsakos G, Ismail A. 2017. Dental caries. Nat Rev Dis Primers 3:17030. https://doi.org/10.1038/nrdp.2017.30.

2. Loesche WJ. 1986. Role of Streptococcus mutans in human dental decay. Microbiol Rev 50:353–380. https://doi.org/10.1128/MR.50.4.353-380.1986.

3. Kuramitsu HK, He X, Lux R, Anderson MH, Shi W. 2007. Interspecies inter- actions within oral microbial communities. Microbiol Mol Biol Rev 71:653–670. https://doi.org/10.1128/MMBR.00024-07.

4. Bratthall D. 1970. Demonstration of five serological groups of streptococ- cal strains resembling Streptococcus mutans. Odontol Revy 21:143–152.

5. Marsh PD. 2006. Dental plaque as a biofilm and a microbial community— implications for health and disease. BMC Oral Health 6 Suppl 1:S14. https://doi.org/10.1186/1472-6831-6-S1-S14.

6. Takahashi N, Nyvad B. 2011. The role of bacteria in the caries process: ec- ological perspectives. J Dent Res 90:294–303. https://doi.org/10.1177/ 0022034510379602.

7. Mager DL, Ximenez-Fyvie LA, Haffajee AD, Socransky SS. 2003. Distribu- tion of selected bacterial species on intraoral surfaces. J Clin Periodontol 30:644–654. https://doi.org/10.1034/j.1600-051x.2003.00376.x.

8. Kageyama S, Takeshita T, Asakawa M, Shibata Y, Takeuchi K, Yamanaka W, Yamashita Y. 2017. Relative abundance of total subgingival plaque-spe- cific bacteria in salivary microbiota reflects the overall periodontal condi- tion in patients with periodontitis. PLoS One 12:e0174782. https://doi.org/10.1371/journal.pone.0174782.

9. Segata N, Haake SK, Mannon P, Lemon KP, Waldron L, Gevers D, Huttenhower C, Izard J. 2012. Composition of the adult digestive tract bac- terial microbiome based on seven mouth surfaces, tonsils, throat and stool samples. Genome Biol 13:R42. https://doi.org/10.1186/gb-2012-13-6-r42.

10. Asakawa M, Takeshita T, Furuta M, Kageyama S, Takeuchi K, Hata J, Ninomiya T, Yamashita Y. 2018. Tongue microbiota and oral health status in community-dwelling elderly adults. mSphere 3:e00332-18. https://doi.org/10.1128/mSphere.00332-18.

11. Takeshita T, Kageyama S, Furuta M, Tsuboi H, Takeuchi K, Shibata Y, Shimazaki Y, Akifusa S, Ninomiya T, Kiyohara Y, Yamashita Y. 2016. Bacte- rial diversity in saliva and oral health-related conditions: the Hisayama Study. Sci Rep 6:22164. https://doi.org/10.1038/srep22164.

12. Watts SC, Ritchie SC, Inouye M, Holt KE. 2019. FastSpar: rapid and scalable correlation estimation for compositional data. Bioinformatics 35:1064–1066. https://doi.org/10.1093/bioinformatics/bty734.

13. Greene JC, Vermillion JR. 1964. The simplified oral hygiene index. J Am Dent Assoc 68:7–13. https://doi.org/10.14219/jada.archive.1964.0034.

14. Baker JL, Morton JT, Dinis M, Alvarez R, Tran NC, Knight R, Edlund A. 2021. Deep metagenomics examines the oral microbiome during dental caries, revealing novel taxa and co-occurrences with host molecules. Genome Res 31:64–74. https://doi.org/10.1101/gr.265645.120.

15. Al-Hebshi NN, Baraniya D, Chen T, Hill J, Puri S, Tellez M, Hasan NA, Colwell RR, Ismail A. 2019. Metagenome sequencing-based strain-level and functional characterization of supragingival microbiome associated with dental caries in children. J Oral Microbiol 11:1557986. https://doi.org/10.1080/20002297.2018.1557986.

16. Nadkarni MA, Caldon CE, Chhour KL, Fisher IP, Martin FE, Jacques NA, Hunter N. 2004. Carious dentine provides a habitat for a complex array of novel Prevotella-like bacteria. J Clin Microbiol 42:5238–5244. https://doi.org/10.1128/JCM.42.11.5238-5244.2004.

17. Teng F, Yang F, Huang S, Bo C, Xu ZZ, Amir A, Knight R, Ling J, Xu J. 2015. Prediction of early childhood caries via spatial-temporal variations of oral microbiota. Cell Host Microbe 18:296–306. https://doi.org/10.1016/j.chom.2015.08.005.

18. Tanner AC, Kent RL, Jr., Holgerson PL, Hughes CV, Loo CY, Kanasi E, Chalmers NI, Johansson I. 2011. Microbiota of severe early childhood caries before and after therapy. J Dent Res 90:1298–1305. https://doi.org/ 10.1177/0022034511421201.

19. Hurley E, Barrett MPJ, Kinirons M, Whelton H, Ryan CA, Stanton C, Harris HMB, O’Toole PW. 2019. Comparison of the salivary and dentinal micro- biome of children with severe-early childhood caries to the salivary microbiome of caries-free children. BMC Oral Health 19:13. https://doi.org/10.1186/s12903-018-0693-1.

20. Gomez A, Espinoza JL, Harkins DM, Leong P, Saffery R, Bockmann M, Torralba M, Kuelbs C, Kodukula R, Inman J, Hughes T, Craig JM, Highlander SK, Jones MB, Dupont CL, Nelson KE. 2017. Host genetic con- trol of the oral microbiome in health and disease. Cell Host Microbe 22:269–278. https://doi.org/10.1016/j.chom.2017.08.013.

21. Camelo-Castillo A, Benitez-Paez A, Belda-Ferre P, Cabrera-Rubio R, Mira A. 2014. Streptococcus dentisani sp. nov., a novel member of the mitis group. Int J Syst Evol Microbiol 64:60–65. https://doi.org/10.1099/ijs.0.054098-0.

22. Lopez-Lopez A, Camelo-Castillo A, Ferrer MD, Simon-Soro A, Mira A. 2017. Health-associated niche inhabitants as oral probiotics: the case of Strep- tococcus dentisani. Front Microbiol 8:379. https://doi.org/10.3389/fmicb .2017.00379.

23. Ferrer MD, Lopez-Lopez A, Nicolescu T, Perez-Vilaplana S, Boix-Amoros A, Dzidic M, Garcia S, Artacho A, Llena C, Mira A. 2020. Topic application of the probiotic Streptococcus dentisani improves clinical and microbiologi- cal parameters associated with oral health. Front Cell Infect Microbiol 10:465. https://doi.org/10.3389/fcimb.2020.00465.

24. Scoffield J, Michalek S, Harber G, Eipers P, Morrow C, Wu H. 2019. Dietary nitrite drives disease outcomes in oral polymicrobial infections. J Dent Res 98:1020–1026. https://doi.org/10.1177/0022034519855348.

25. Ismail AI, Sohn W, Tellez M, Amaya A, Sen A, Hasson H, Pitts NB. 2007. The International Caries Detection and Assessment System (ICDAS): an inte- grated system for measuring dental caries. Community Dent Oral Epide- miol 35:170–178. https://doi.org/10.1111/j.1600-0528.2007.00347.x.

26. Zhou Y, Gao H, Mihindukulasuriya KA, La Rosa PS, Wylie KM, Vishnivetskaya T, Podar M, Warner B, Tarr PI, Nelson DE, Fortenberry JD, Holland MJ, Burr SE, Shannon WD, Sodergren E, Weinstock GM. 2013. Bio- geography of the ecosystems of the healthy human body. Genome Biol 14:R1. https://doi.org/10.1186/gb-2013-14-1-r1.

27. Takeshita T, Nakano Y, Kumagai T, Yasui M, Kamio N, Shibata Y, Shiota S, Yamashita Y. 2009. The ecological proportion of indigenous bacterial populations in saliva is correlated with oral health status. ISME J 3:65–78. https://doi.org/10.1038/ismej.2008.91.

28. Wade WG, Prosdocimi EM. 2020. Profiling of oral bacterial communities. J Dent Res 99:621–629. https://doi.org/10.1177/0022034520914594.

29. Edgar RC. 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998. https://doi.org/10.1038/nmeth.2604.

30. Escapa IF, Chen T, Huang Y, Gajare P, Dewhirst FE, Lemon KP. 2018. New insights into human nostril microbiome from the expanded human oral microbiome database (eHOMD): a resource for the microbiome of the human aerodigestive tract. mSystems 3:e00187-18. https://doi.org/10.1128/mSystems.00187-18.

31. Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje JM. 2009. The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37:D141–5. https://doi.org/10.1093/nar/gkn879.

32. Friedman J, Alm EJ. 2012. Inferring correlation networks from genomic survey data. PLoS Comput Biol 8:e1002687. https://doi.org/10.1371/ journal.pcbi.1002687.

33. Lozupone C, Knight R. 2005. UniFrac: a new phylogenetic method for com- paring microbial communities. Appl Environ Microbiol 71:8228–8235. https://doi.org/10.1128/AEM.71.12.8228-8235.2005.

34. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C. 2011. Metagenomic biomarker discovery and explana- tion. Genome Biol 12:R60. https://doi.org/10.1186/gb-2011-12-6-r60.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る