リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Ambient Conditions of Winter Thunderstorms in Japan to Reproduce Observed Gamma‐Ray Glow Energy Spectra」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Ambient Conditions of Winter Thunderstorms in Japan to Reproduce Observed Gamma‐Ray Glow Energy Spectra

Diniz, G. S. Wada, Y. Ohira, Y. Nakazawa, K. Tsurumi, M. Enoto, T. 京都大学 DOI:10.1029/2022jd038246

2023.05.27

概要

Electric field of thunderclouds modifies components and energy spectra of the cosmic-ray air shower. In particular, thunderstorms accelerate charged particles, resulting in an enhancement of gamma-ray fluxes on the ground, known as a gamma-ray glow. This phenomenon has been observed in recent years by the Gamma-Ray Observation of Winter THunderclouds collaboration from winter thunderstorms in the Hokuriku area of Japan. The present work examines the ambient conditions required to produce spectral features of the previously detected gamma-ray glows, by using Monte Carlo simulations of particle interactions in the atmosphere. We focus on three parameters, the strength and length of the electric field, and the length of a null-field attenuation region below the electrified region. The average spectrum of observed gamma-ray glows in winter thunderstorms of Japan requires an electric field intensity close to 0.31 MV/m, slightly exceeding the Relativistic Runaway Electron Avalanche threshold of 0.284 MV/m. The vertical size of the electric field region should be comparable to 1 km. The estimated attenuation region size is 300–500 m, necessary to reduce the low-energy photon flux of the average gamma-ray glows. There is still a wide range of acceptable parameter sets with degeneracy to make a similar spectrum.

この論文で使われている画像

関連論文

参考文献

Agostinelli, S., Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce, P., et al. (2003). GEANT4: A simulation toolkit. Nuclear Instruments &

Methods, A506(3), 250–303. https://doi.org/10.1016/S0168-9002(03)01368-8

Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce Dubois, P., Asai, M., et al. (2006). Geant4 developments and applications. IEEE Transactions on Nuclear Science, 53(1), 270–278. https://doi.org/10.1109/tns.2006.869826

Allison, J., Amako, K., Apostolakis, J., Arce, P., Asai, M., Aso, T., et al. (2016). Recent developments in Geant4. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 835, 186–225. https://doi.org/10.1016/j.

nima.2016.06.125

Babich, L. P., Donskoy, E. N., Il’kaev, R. I., Kutsyk, I. M., & Roussel-Dupre, R. A. (2004). Fundamental parameters of a relativistic runaway

electron avalanche in air. Plasma Physics Reports, 30(7), 616–624. https://doi.org/10.1134/1.1778437

9 of 11

21698996, 2023, 10, Downloaded from https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2022JD038246 by Cochrane Japan, Wiley Online Library on [10/07/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

Journal of Geophysical Research: Atmospheres

10.1029/2022JD038246

Briggs, M. S., Fishman, G. J., Connaughton, V., Bhat, P. N., Paciesas, W. S., Preece, R. D., et al. (2010). First results on terrestrial gamma ray

flashes from the fermi gamma-ray burst monitor. Journal of Geophysical Research, 115(A7), A07323. https://doi.org/10.1029/2009JA015242

Chilingarian, A. (2013). Thunderstorm ground enhancements (TGEs) - New high-energy phenomenon originated in the terrestrial atmosphere.

Journal of Physics: Conference Series, 409(1), 012019. https://doi.org/10.1088/1742-6596/409/1/012019

Chilingarian, A., Hovsepyan, G., & Hovhannisyan, A. (2011). Particle bursts from thunderclouds: Natural particle accelerators above our heads.

Physical Review D, 83(6), 062001. https://doi.org/10.1103/PhysRevD.83.062001

Chilingarian, A., Hovsepyan, G., & Vanyan, L. (2014). On the origin of the particle fluxes from the thunderclouds: Energy spectra analysis. EPL,

106(5), 59001. https://doi.org/10.1209/0295-5075/106/59001

Chilingarian, A., Khanikyants, Y., Mareev, E., Pokhsraryan, D., Rakov, V. A., & Soghomonyan, S. (2017). Types of lightning discharges that

abruptly terminate enhanced fluxes of energetic radiation and particles observed at ground level. Journal of Geophysical Research: Atmospheres, 122(14), 7582–7599. https://doi.org/10.1002/2017JD026744

Chilingarian, A., Mailyan, B., & Vanyan, L. (2012). Recovering of the energy spectra of electrons and gamma rays coming from the thunderclouds. Atmospheric Research, 114–115, 1–16. https://doi.org/10.1016/j.atmosres.2012.05.008

Coleman, L. M., & Dwyer, J. R. (2006). Propagation speed of runaway electron avalanches. Geophysical Research Letters, 33(11), L11810.

https://doi.org/10.1029/2006GL025863

Colman, J. J., Roussel-Dupré, R. A., & Triplett, L. (2010). Temporally self–similar electron distribution functions in atmospheric breakdown: The

thermal runaway regime. Journal of Geophysical Research, 115(A3), A00E16. https://doi.org/10.1029/2009JA014509

Cramer, E. S., Mailyan, B. G., Celestin, S., & Dwyer, J. R. (2017). A simulation study on the electric field spectral dependence of thunderstorm ground enhancements and gamma ray glows. Journal of Geophysical Research: Atmospheres, 122(9), 4763–4772. https://doi.

org/10.1002/2016JD026422

Diniz, G., Wada, Y., Ohira, Y., Nakazawa, K., & Enoto, T. (2022). Atmospheric electron spatial range extended by thundercloud electric field

below the relativistic runaway electron avalanche threshold. Journal of Geophysical Research: Atmospheres, 127(3), e2021JD035. https://doi.

org/10.1029/2021JD035958

Diniz, G. S., & Enoto, T. (2023). Ambient conditions gamma-ray glow compared with growth observations [dataset]. Mendeley. https://doi.

org/10.17632/67h7rgjvys.2

Dwyer, J. R. (2003). A fundamental limit on electric fields in air. Geophysical Research Letters, 30(20), 2055. https://doi.org/10.1029/2003GL017781

Dwyer, J. R., Rassoul, H. K., Al-Dayeh, M., Caraway, L., Wright, B., Chrest, A., et al. (2004). A ground level gamma-ray burst observed in association with rocket-triggered lightning. Geophysical Research Letters, 31(5), L05119. https://doi.org/10.1029/2003GL018771

Dwyer, J. R., Smith, D. M., & Cummer, S. A. (2012). High-energy atmospheric physics: Terrestrial gamma-ray flashes and related phenomena.

Space Science Reviews, 173(1–4), 133–196. https://doi.org/10.1007/s11214-012-9894-0

Enoto, T., Wada, Y., Furuta, Y., Nakazawa, K., Yuasa, T., Okuda, K., et al. (2017). Photonuclear reactions triggered by lightning discharge.

Nature, 551(7681), 481–484. https://doi.org/10.1038/nature24630

Fishman, G. J., Bhat, P. N., Mallozzi, R., Horack, J. M., Koshut, T., Kouveliotou, C., et al. (1994). Discovery of intense gamma-ray flashes of

atmospheric origin. Science, 264(5163), 1313–1316. https://doi.org/10.1126/science.264.5163.1313

Gurevich, A., Milikh, G., & Roussel-Dupre, R. (1992). Runaway electron mechanism of air breakdown and preconditioning during a thunderstorm. Physics Letters A, 165(5), 463–468. https://doi.org/10.1016/0375-9601(92)90348-P

Hare, B. M., Uman, M. A., Dwyer, J. R., Jordan, D. M., Biggerstaff, M. I., Caicedo, J. A., et al. (2016). Ground-level observation of a terrestrial gamma ray flash initiated by a triggered lightning. Journal of Geophysical Research: Atmospheres, 121(11), 6511–6533. https://doi.

org/10.1002/2015JD024426

Kelley, N. A., Smith, D. M., Dwyer, J. R., Splitt, M., Lazarus, S., Martinez-McKinney, F., et al. (2015). Relativistic electron avalanches as a

thunderstorm discharge competing with lightning. Nature Communications, 6(1), 7845. https://doi.org/10.1038/ncomms8845

Kochkin, P., van Deursen, A. P. J., Marisaldi, M., Ursi, A., de Boer, A. I., Bardet, M., et al. (2017). In-flight observation of gamma ray glows by

ildas. Journal of Geophysical Research: Atmospheres, 122(23), 12801–12811. https://doi.org/10.1002/2017JD027405

Lehtinen, N. G., & Østgaard, N. (2018). X-ray emissions in a multiscale fluid model of a streamer discharge. Journal of Geophysical Research:

Atmospheres, 123(13), 6935–6953. https://doi.org/10.1029/2018JD028646

Marisaldi, M., Fuschino, F., Labanti, C., Galli, M., Longo, F., Del Monte, E., et al. (2010). Detection of terrestrial gamma ray flashes up to 40

MeV by the agile satellite. Journal of Geophysical Research, 115(A3), A00E13. https://doi.org/10.1029/2009JA014502

Nicoll, K. A. (2012). Measurements of atmospheric electricity aloft. Surveys in Geophysics, 33(5), 991–1057. https://doi.org/10.1007/

s10712-012-9188-9

Østgaard, N., Christian, H. J., Grove, J. E., Sarria, D., Mezentsev, A., Kochkin, P., et al. (2019). Gamma ray glow observations at 20-km altitude.

Journal of Geophysical Research: Atmospheres, 124(13), 7236–7254. https://doi.org/10.1029/2019JD030312

Sarria, D., Rutjes, C., Diniz, G., Luque, A., Ihaddadene, K. M. A., Dwyer, J. R., et al. (2018). Evaluation of Monte Carlo tools for

high-energy atmospheric physics ii: Relativistic runaway electron avalanches. Geoscientific Model Development, 11(11), 4515–4535.

https://doi.org/10.5194/gmd-11-4515-2018

Sato, T. (2015). Analytical model for estimating terrestrial cosmic ray fluxes nearly anytime and anywhere in the world: Extension of PARMA/

EXPACS. PLoS One, 10(12), 1–33. https://doi.org/10.1371/journal.pone.0144679

Sato, T. (2016). Analytical model for estimating the zenith angle dependence of terrestrial cosmic ray fluxes. PLoS One, 11(8), 1–22. https://doi.

org/10.1371/journal.pone.0160390

Smith, D. M., Lopez, L. I., Lin, R. P., & Barrington-Leigh, C. P. (2005). Terrestrial gamma-ray flashes observed up to 20 MeV. Science,

307(5712), 1085–1088. https://doi.org/10.1126/science.1107466

Takahashi, T. (1978). Riming electrification as a charge generation mechanism in thunderstorms. Journal of the Atmospheric Sciences, 35(8),

1536–1548. https://doi.org/10.1175/1520-0469(1978)035<1536:REAACG>2.0.CO;2

Torii, T., Takeishi, M., & Hosono, T. (2002). Observation of gamma-ray dose increase associated with winter thunderstorm and lightning activity.

Journal of Geophysical Research, 107(D17), ACL2-1–ACL2-13. https://doi.org/10.1029/2001JD000938

Tsuchiya, H., Enoto, T., Yamada, S., Yuasa, T., Kawaharada, M., Kitaguchi, T., et al. (2007). Detection of high-energy gamma rays from winter

thunderclouds. Physical Review Letters, 99(16), 165002. https://doi.org/10.1103/PhysRevLett.99.165002

Tsuchiya, H., Hibino, K., Kawata, K., Hotta, N., Tateyama, N., Ohnishi, M., et al. (2012). Observation of thundercloud-related gamma rays and

neutrons in Tibet. Physical Review D, 85(9), 092006. https://doi.org/10.1103/PhysRevD.85.092006

Wada, Y., Bowers, G. S., Enoto, T., Kamogawa, M., Nakamura, Y., Morimoto, T., et al. (2018). Termination of electron acceleration in thundercloud by intracloud/intercloud discharge. Geophysical Research Letters, 45(11), 5700–5707. https://doi.org/10.1029/2018GL077784

Wada, Y., Enoto, T., Kubo, M., Nakazawa, K., Shinoda, T., Yonetoku, D., et al. (2021). Meteorological aspects of gamma-ray glows in winter

thunderstorms. Geophysical Research Letters, 48(7), e2020GL091. https://doi.org/10.1029/2020GL091910

DINIZ ET AL.

10 of 11

21698996, 2023, 10, Downloaded from https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2022JD038246 by Cochrane Japan, Wiley Online Library on [10/07/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

Journal of Geophysical Research: Atmospheres

10.1029/2022JD038246

Wada, Y., Enoto, T., Nakamura, Y., Furuta, Y., Yuasa, T., Nakazawa, K., et al. (2019). Gamma-ray glow preceding downward terrestrial gammaray flash. Communications Physics, 2(1), 67. https://doi.org/10.1038/s42005-019-0168-y

Wada, Y., Matsumoto, T., Enoto, T., Nakazawa, K., Yuasa, T., Furuta, Y., et al. (2021). Catalog of gamma-ray glows during four winter seasons

in Japan. Physical Review Research, 3(4), 043117. https://doi.org/10.1103/PhysRevResearch.3.043117

Williams, E. R. (1989). The tripole structure of thunderstorms. Journal of Geophysical Research, 94(D11), 13151–13167.

https://doi.org/10.1029/JD094iD11p13151

DINIZ ET AL.

11 of 11

21698996, 2023, 10, Downloaded from https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2022JD038246 by Cochrane Japan, Wiley Online Library on [10/07/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

Journal of Geophysical Research: Atmospheres

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る