リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Active auroral arc powered by accelerated electrons from very high altitudes」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Active auroral arc powered by accelerated electrons from very high altitudes

Imajo, Shun Miyoshi, Yoshizumi Kazama, Yoichi Asamura, Kazushi Shinohara, Iku Shiokawa, Kazuo Kasahara, Yoshiya Kasaba, Yasumasa Matsuoka, Ayako Wang, Shiang-Yu Tam, Sunny W. Y. Chang, Tzu‑Fang Wang, Bo‑Jhou Angelopoulos, Vassilis Jun, Chae-Woo Shoji, Masafumi Nakamura, Satoko Kitahara, Masahiro Teramoto, Mariko Kurita, Satoshi Hori, Tomoaki 京都大学 DOI:10.1038/s41598-020-79665-5

2021.01.18

概要

Bright, discrete, thin auroral arcs are a typical form of auroras in nightside polar regions. Their light is produced by magnetospheric electrons, accelerated downward to obtain energies of several kilo electron volts by a quasi-static electric field. These electrons collide with and excite thermosphere atoms to higher energy states at altitude of ~ 100 km; relaxation from these states produces the auroral light. The electric potential accelerating the aurora-producing electrons has been reported to lie immediately above the ionosphere, at a few altitudes of thousand kilometres1. However, the highest altitude at which the precipitating electron is accelerated by the parallel potential drop is still unclear. Here, we show that active auroral arcs are powered by electrons accelerated at altitudes reaching greater than 30, 000 km. We employ high-angular resolution electron observations achieved by the Arase satellite in the magnetosphere and optical observations of the aurora from a ground-based all-sky imager. Our observations of electron properties and dynamics resemble those of electron potential acceleration reported from low-altitude satellites except that the acceleration region is much higher than previously assumed. This shows that the dominant auroral acceleration region can extend far above a few thousand kilometres, well within the magnetospheric plasma proper, suggesting formation of the acceleration region by some unknown magnetospheric mechanisms.

この論文で使われている画像

関連論文

参考文献

1. Karlsson, T. et al. Quiet, discrete auroral arcs—observations. Space Sci. Rev. 216, 16 (2020).

2. Knight, S. Parallel electric fields. Planet. Space Sci. 21, 741–750 (1973).

3. Lyons, L. R. The field-aligned current versus electric potential relation and auroral electrodynamics. In Physics of Auroral Arc

Formation (Es. Akasofu, S. -I. & Kan J. K.) 252–259 (American Geophysical Union, 2013).

4. Ergun, R. E. et al. Parallel electric fields in the upward current region of the aurora: Indirect and direct observations. Phys. Plasmas

9, 3685 (2002).

5. Mozer, F. S. & Kletzing, C. A. Direct observation of large, quasi-static, parallel electric fields in the auroral acceleration region.

Geophys. Res. Lett. 25, 1629–1632 (1998).

6. McFadden, J. P., Carlson, C. W. & Ergun, R. E. Microstructure of the auroral acceleration region as observed by FAST. J. Geophys.

Res. Space Phys. 104, 14453–14480 (1999).

Scientific Reports |

Vol:.(1234567890)

(2021) 11:1610 |

https://doi.org/10.1038/s41598-020-79665-5

www.nature.com/scientificreports/

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

7. Alm, L., Marklund, G. T. & Karlsson, T. In situ observations of density cavities extending above the auroral acceleration region. J.

Geophys. Res. Space Phys. 119, 5286–5294 (2014).

8. Alm, L., Li, B., Marklund, G. T. & Karlsson, T. Statistical altitude distribution of the auroral density cavity. J. Geophys. Res. Space

Phys. 120, 996–1006 (2015).

9. Figueiredo, S. et al. Temporal and spatial evolution of discrete auroral arcs as seen by Cluster. Ann. Geophys. 23, 2531–2557 (2005).

10. Shiokawa, K. et al. Arase observation of the source region of auroral arcs and diffuse auroras in the inner magnetosphere. J. Geophys.

Res. Space Phys. 125, e2019JA027310 (2020).

11. Kazama, Y. et al. Low-energy particle experiments–electron analyzer (LEPe) onboard the Arase spacecraft. Earth Planets Space

69, 165 (2017).

12. Angelopoulos, V. The THEMIS mission. Space Sci. Rev. 145, 5. https​://doi.org/10.1007/s1121​4-008-9336-1 (2008).

13. Mende, S. B. et al. The THEMIS array of ground-based observatories for the study of auroral substorms. Space Sci. Rev. 145, 357.

https​://doi.org/10.1007/s1121​4-008-9380-x (2008).

14. Asamura, K., Kazama, Y., Yokota, S., Kasahara, S. & Miyoshi, Y. Low-energy particle experiments–ion mass analyzer (LEPi) onboard

the ERG (Arase) satellite. Earth Planets Space 70, 70 (2018).

15. Kasahara, Y. et al. The plasma wave experiment (PWE) on board the Arase (ERG) satellite. Earth Planets Space 70, 86 (2018).

16. Kasaba, Y. et al. Wire Probe Antenna (WPT) and Electric Field Detector (EFD) of Plasma Wave Experiment (PWE) aboard the

Arase satellite: Specifications and initial evaluation results. Earth Planets Space 69, 174 (2017).

17. Matsuoka, A. et al. The ARASE (ERG) magnetic field investigation. Earth Planets Space 70, 43 (2018).

18. Miyoshi, Y. et al. The ERG Science Center. Earth Planets Space 70, 96 (2018).

19. Miyoshi, Y. et al. Geospace exploration project ERG. Earth Planets Space 70, 101 (2018).

20. Tsyganenko, N. A. & Andreeva, V. A. A forecasting model of the magnetosphere driven by an optimal solar wind coupling function. J. Geophys. Res. A: Space Phys. 120, 8401–8425 (2015).

21. Tsyganenko, N. A. & Sitnov, M. I. Modeling the dynamics of the inner magnetosphere during strong geomagnetic storms. J.

Geophys. Res. 110, A03208 (2005).

22. Tsyganenko, N. A. A model of the near magnetosphere with a dawn-dusk asymmetry. J. Geophys. Res. Space Phys. 107, 1–17 (2002).

23. Tsyganenko, N. A. Effects of the solar wind conditions in the global magnetospheric configurations as deduced from data-based

field models. in International conference on substorms vol. 389 181 (1996).

24. Akasofu, S. I. The development of the auroral substorm. Planet. Space Sci. 12, 273–282 (1964).

25. Lin, C. S. & Hoffman, R. A. Characteristics of the inverted-V event. J. Geophys. Res. 84, 1514 (1979).

26. Reiff, P. H. et al. Determination of auroral electrostatic potentials using high- and low-altitude particle distributions. J. Geophys.

Res. 93, 7441 (1988).

27. Chaston, C. C. et al. Driven Alfven waves and electron acceleration: A FAST case study. Geophys. Res. Lett. 29, 30–1–30–4 (2002).

28. Wygant, J. R. et al. Evidence for kinetic Alfvén waves and parallel electron energization at 4–6 Re altitudes in the plasma sheet

boundary layer. J. Geophys. Res. Space Phys. 107, 1–15 (2002).

29. Egedal, J., Daughton, W. & Le, A. Large-scale electron acceleration by parallel electric fields during magnetic reconnection. Nat.

Phys. 8, 321–324 (2012).

30. Varsani, A. et al. Simultaneous remote observations of intense reconnection effects by DMSP and MMS spacecraft during a storm

time substorm. J. Geophys. Res. Space Phys. 122, 10891–10909 (2017).

31. Block, L. P. A double layer review. Astrophys. Space Sci. 55, 59–83 (1978).

32. Ergun, R. E., Carlson, C. W., McFadden, J. P., Mozer, F. S. & Strangeway, R. J. parallel electric fields in discrete arcs. Geophys. Res.

Lett. 27, 4053–4056 (2000).

33. Mozer, F. S. et al. Megavolt parallel potentials arising from double-layer streams in the earth’s outer radiation belt. Phys. Rev. Lett.

111, 1–5 (2013).

34. Mauk, B. H. et al. Discrete and broadband electron acceleration in Jupiter’s powerful aurora. Nature 549, 66–69 (2017).

35. Xu, S. et al. Inverted-V electron acceleration events concurring with localized auroral observations at mars by MAVEN. Geophys.

Res. Lett. 47, 1–8 (2020).

36. Tsyganenko, N. A. A magnetospheric magnetic field model with a warped tail current sheet. Planet. Space Sci. 37, 5–20 (1989).

37. Miyoshi, Y., Shinohara, I. & Jun, C.-W. The Level-2 orbit data of Exploration of energization and Radiation in Geospace (ERG)

Arase satellite, v03. https​://doi.org/10.34515​/DATA.ERG-12000​ (2018).

38. Asamura, K., Miyoshi, Y. & Shinohara, I. The LEPi instrument Level-2 3D flux data of Exploration of energization and Radiation

in Geospace (ERG) Arase satellite, v03.00. https​://doi.org/10.34515​/DATA.ERG-05000​ (2018).

39. Matsuoka, A. et al. The MGF instrument Level-2 high-resolution magnetic field data of Exploration of energization and Radiation

in Geospace (ERG) Arase satellite, v03.03. https​://doi.org/10.34515​/DATA.ERG-06000​ (2018).

40. Matsuoka, A. et al. The MGF instrument Level-2 spinfit magnetic field data of Exploration of energization and Radiation in Geospace (ERG) Arase satellite, v03.03. https​://doi.org/10.34515​/DATA.ERG-06001​ (2018).

41. Kasahara, Y. et al. The PWE/EFD instrument Level-2 spin-fit electric field data of Exploration of energization and Radiation in

Geospace (ERG) Arase satellite, v03.00. https​://doi.org/10.34515​/DATA.ERG-07000​ (2018).

42. Kasahara, Y. et al. The PWE/EFD instrument Level-2 spin-averaged potential data of Exploration of energization and Radiation

in Geospace (ERG) Arase satellite, v03.01. https​://doi.org/10.34515​/DATA.ERG-07001​ (2018).

Acknowledgements

The present study was supported by JSPS KAKENHI 15H05747, 16H06286, 17H00728, 20H01959, and 19K03949.

This study was supported by JSPS Bilateral Open Partnership Joint Research Projects. The LEP-e development

is supported by the Academia Sinica, the National Cheng Kung University, and also the Ministry of Science

and Technology of Taiwan under Contract No. MOST 105-311z1-Y-001-042 and MOST 106-2111-M-001-011.

T.-F. Chang acknowledges support from Taiwan grant MOST 109-2635-M-006-001. The authors would also like

to extend sincere thanks to all members of the ERG project, the ERG Science Center, the THEMIS team, and

contributors to SPEDAS and IDL GEOPACK software.

Author contributions

S.I. identified the event, analyzed the combined dataset, and wrote the paper. Y.M. oversaw the production of the

combined dataset and discussed its interpretation. I.S. oversaw the ERG project and discussed the interpretation

of the event. K.S. discussed the interpretation of the event and drafting the paper. Y. Kazama, S-Y.W., S.W.Y.T.,

T-F.C., B-J.W., and C-W.J. provided the low-energy particle experiments-electron analyser (LEP-e) data. K.A.

provided the low-energy particle experiments-ion analyser (LEP-i) data and discussed the interpretation of the

event. Y. Kasahara, Y. Kasaba, M.S., S.N., and M.K. provided plasma wave experiment/electric field detector

(PWE/EFD) data. A.M., M.T., and S.K., provided MaGnetic Field experiment (MGF) data. V.A. provided ASI/

Scientific Reports |

(2021) 11:1610 |

https://doi.org/10.1038/s41598-020-79665-5

Vol.:(0123456789)

www.nature.com/scientificreports/

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

THEMIS data and discussed drafting the paper. T.H. developed the pitch angle sorting tool for LEP-i data and

discussed the interpretation of the event. All authors reviewed the manuscript.

Competing interests The authors declare no competing interests.

Additional information

Supplementary Information The online version contains supplementary material available at https​://doi.

org/10.1038/s4159​8-020-79665​-5.

Correspondence and requests for materials should be addressed to S.I.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and

institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International

License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the

Creative Commons licence, and indicate if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the

material. If material is not included in the article’s Creative Commons licence and your intended use is not

permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

© The Author(s) 2021

Scientific Reports |

Vol:.(1234567890)

(2021) 11:1610 |

https://doi.org/10.1038/s41598-020-79665-5

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る