リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「The role of histone lysine demethylase 2B in the pathology of canine hemangiosarcoma」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

The role of histone lysine demethylase 2B in the pathology of canine hemangiosarcoma

Gulay, Kevin Christian Montecillo 北海道大学

2021.09.24

概要

血管肉腫は血管内皮細胞由来の悪性腫瘍であり,脾臓・肝臓・心右心耳に好発する。どの動物にも起こりうるが,特にイヌでは高頻度に発生し,ヒトではまれである.血管肉腫に対する有効な治療法は存在せず,新規治療法の開発が望まれているものの,その病態の詳細は未だ明らかではない.エピジェネティクスとはDNA塩基配列の変化を伴わない遺伝子発現制御機構である.DNAとともにクロマチンを構成するヒストンタンパク質は,メチル化やアセチル化などの修飾を受けることによって,クロマチン構造を変化させて遺伝子発現を制御する.がん細胞ではエピジェネティクス異常が生じており,遺伝子発現が正常に制御されていない.このため,エピジェネティクス異常は細胞のがん化にも深く関与していると考えられる.しかし,血管肉腫のエピジェネティクスに関する研究はこれまでに報告がなく,その役割は未だ明らかではない.本研究ではイヌ血管肉腫のエピジェネティクス機構に着目し,エピジェネティクスが血管肉腫の病態に果たす役割を明らかにすることを目的とした.
 まず筆者はイヌ正常血管内皮細胞とイヌ血管肉腫細胞におけるエピジェネティクス関連遺伝子の発現調べ,ヒストン脱メチル化酵素KDM2Bが血管肉腫細胞で高発現していることを明らかにした.次に,血管肉腫細胞においてKDM2Bをノックダウンすると,細胞死が誘導されることがわかった.KDM2Bノックダウン血管肉腫細胞ではDNA修復機構の活性が抑制されており,その結果DNAダメージが蓄積することによって,アポトーシスが誘導されていることがわかった.次に,イヌ血管肉腫細胞をヌードマウスに移植し,腫瘍が形成されてからKDM2Bをノックダウンしたところ,腫瘍の退縮が認められ,KDM2Bはin vivoでも腫瘍細胞の生存・増殖に必須であることがわかった.また,臨床症例を用いた解析でもKDM2Bは血管肉腫細胞で高発現しており,臨床例においてもKDM2Bが重要な役割を有していることが示唆された.さらに新規治療法の可能性を探るため,ヒストン脱メチル化酵素の阻害剤であるGSK-J4が血管肉腫に対して効果を示すかどうかを調べた.その結果,GSK-J4はKDM2Bノックダウンと同様の機構で細胞死を誘導し,in vivoにおいても腫瘍の増殖を遅らせることが明らかになった.これらの結果から,GSK-J4はイヌ血管肉腫におけるドキソルビシン治療に代わる新たな治療法として機能しうることがわかった.
 筆者の知る限り,本研究はイヌ血管肉腫における初めてのエピジェネティクス研究であり,これらの結果は血管肉腫に対する新規治療法開発への基礎となるものである.血管肉腫の病態におけるKDM2Bの役割をさらに理解するために,今後の研究では,イヌの年齢,性別,品種,治療法の効果,生存率,治療成績などの患者プロファイルとKDM2Bとの関係を明らかにすることが重要である.また,現段階では,血管肉腫のin vivo解析を行うためには免疫不全マウスを使用なくてはならない.しかし,免疫細胞は腫瘍微小環境の重要な一要素であり,真の血管肉腫の病態を明らかにすることはできない.したがって、血管肉腫のための同種移植モデル (syngeneic model) を確立する必要がある。

この論文で使われている画像

参考文献

1. Adjiri, A. (2016). Identifying and Targeting the Cause of Cancer is Needed to Cure Cancer. Oncology and Therapy, 4(1), 17–33. https://doi.org/10.1007/s40487-015- 0015-6

2. Aoshima, K., Fukui, Y., Gulay, K. C. M., Erdemsurakh, O., Morita, A., Kobayashi, A., & Kimura, T. (2018). Notch2 signal is required for the maintenance of canine hemangiosarcoma cancer stem cell-like cells. BMC Veterinary Research, 14(1), 301. https://doi.org/10.1186/s12917-018-1624-8

3. Arruebo, M., Vilaboa, N., Sáez-Gutierrez, B., Lambea, J., Tres, A., Valladares, M., & González-Fernández, Á. (2011). Assessment of the Evolution of Cancer Treatment Therapies. Cancers, 3(3), 3279–3330. https://doi.org/10.3390/cancers3033279

4. Bankhead, P., Loughrey, M. B., Fernández, J. A., Dombrowski, Y., McArt, D. G., Dunne, P. D., McQuaid, S., Gray, R. T., Murray, L. J., Coleman, H. G., James, J. A., Salto-Tellez, M., & Hamilton, P. W. (2017). QuPath: Open source software for digital pathology image analysis. Scientific Reports, 7(1), 16878. https://doi.org/10.1038/s41598-017-17204-5

5. Batschinski, K., Nobre, A., Vargas-Mendez, E., Tedardi, M. V., Cirillo, J., Cestari, G., Ubukata, R., & Dagli, M. L. Z. (2018). Canine visceral hemangiosarcoma treated with surgery alone or surgery and doxorubicin: 37 cases (2005-2014). The Canadian Veterinary Journal = La Revue Veterinaire Canadienne, 59(9), 967–972.

6. Boom, V. van den, Maat, H., Geugien, M., López, A. R., Sotoca, A. M., Jaques, J., Brouwers-Vos, A. Z., Fusetti, F., Groen, R. W. J., Yuan, H., Martens, A. C. M., Stunnenberg, H. G., Vellenga, E., Martens, J. H. A., & Schuringa, J. J. (2016). Non- canonical PRC1.1 Targets Active Genes Independent of H3K27me3 and Is Essential for Leukemogenesis. Cell Reports, 14(2), 332–346. https://doi.org/10.1016/j.celrep.2015.12.034

7. Brzostek-Racine, S., Gordon, C., Scoy, S. V., & Reich, N. C. (2011). The DNA Damage Response Induces IFN. The Journal of Immunology, 187(10), 5336–5345. https://doi.org/10.4049/jimmunol.1100040

8. Carvalho, C., Santos, R., Cardoso, S., Correia, S., Oliveira, P., Santos, M., & Moreira, P. (2009). Doxorubicin: The Good, the Bad and the Ugly Effect. Current Medicinal Chemistry, 16(25), 3267–3285. https://doi.org/10.2174/092986709788803312

9. Chen, J., Harding, S. M., Natesan, R., Tian, L., Benci, J. L., Li, W., Minn, A. J., Asangani, I. A., & Greenberg, R. A. (2020). Cell Cycle Checkpoints Cooperate to Suppress DNA- and RNA-Associated Molecular Pattern Recognition and Anti- Tumor Immune Responses. Cell Reports, 32(9), Article 9. https://doi.org/10.1016/j.celrep.2020.108080

10. Chen, L., Fu, L., Kong, X., Xu, J., Wang, Z., Ma, X., Akiyama, Y., Chen, Y., & Fang, J. (2014). Jumonji domain-containing protein 2B silencing induces DNA damage response via STAT3 pathway in colorectal cancer. British Journal of Cancer, 110(4), 1014–1026. https://doi.org/10.1038/bjc.2013.808

11. Clifford, C. A., Mackin, A. J., & Henry, C. J. (2000). Treatment of Canine Hemangiosarcoma: 2000 and Beyond. Journal of Veterinary Internal Medicine, 14(5), 479–485. https://doi.org/10.1111/j.1939-1676.2000.tb02262.x

12. Dawson, M. A., & Kouzarides, T. (2012). Cancer Epigenetics: From Mechanism to Therapy. Cell, 150(1), 12–27. https://doi.org/10.1016/j.cell.2012.06.013

13. Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., & Gingeras, T. R. (2013). STAR: Ultrafast universal RNA-seq aligner. Bioinformatics, 29(1), 15–21. https://doi.org/10.1093/bioinformatics/bts635

14. Edelheit, O., Hanukoglu, A., & Hanukoglu, I. (2009). Simple and efficient site- directed mutagenesis using two single-primer reactions in parallel to generate mutants for protein structure-function studies. BMC Biotechnology, 9(1), 61. https://doi.org/10.1186/1472-6750-9-61

15. Fosmire, S. P., Dickerson, E. B., Scott, A. M., Bianco, S. R., Pettengill, M. J., Meylemans, H., Padilla, M., Frazer-Abel, A. A., Akhtar, N., Getzy, D. M., Wojcieszyn, J., Breen, M., Helfand, S. C., & Modiano, J. F. (2004). Canine malignant hemangiosarcoma as a model of primitive angiogenic endothelium. Laboratory Investigation, 84(5), 562–572. https://doi.org/10.1038/labinvest.3700080

16. Goodman, L. S., & Wintrobe, M. M. (1946). Nitrogen mustard therapy; use of methyl-bis (beta-chloroethyl) amine hydrochloride and tris (beta-chloroethyl) amine hydrochloride for Hodgkin’s disease, lymphosarcoma, leukemia and certain allied and miscellaneous disorders. Journal of the American Medical Association, 132, 126–132. https://doi.org/10.1001/jama.1946.02870380008004

17. Guzmán, C., Bagga, M., Kaur, A., Westermarck, J., & Abankwa, D. (2014). ColonyArea: An ImageJ Plugin to Automatically Quantify Colony Formation in Clonogenic Assays. PLOS ONE, 9(3), e92444. https://doi.org/10.1371/journal.pone.0092444

18. Han, X.-R., Zha, Z., Yuan, H.-X., Feng, X., Xia, Y.-K., Lei, Q.-Y., Guan, K.-L., & Xiong, Y. (2016). KDM2B/FBXL10 targets c-Fos for ubiquitylation and degradation in response to mitogenic stimulation. Oncogene, 35(32), 4179–4190. https://doi.org/10.1038/onc.2015.482

19. Harasawa, R., Mizusawa, H., Nozawa, K., Nakagawa, T., Asada, K., & Kato, I. (1993). Detection and tentative identification of dominant mycoplasma species in cell cultures by restriction analysis of the 16S-23S rRNA intergenic spacer regions. Research in Microbiology, 144(6), 489–493. https://doi.org/10.1016/0923-2508(93)90057-9

20. Harasawa, Ryô, Mizusawa, H., Fujii, M., Yamamoto, J., Mukai, H., Uemori, T., Asada, K., & Kato, I. (2005). Rapid detection and differentiation of the major mycoplasma contaminants in cell cultures using real-time PCR with SYBR Green I and melting curve analysis. Microbiology and Immunology, 49(9), 859–863. https://doi.org/10.1111/j.1348-0421.2005.tb03675.x

21. He, J., Nguyen, A. T., & Zhang, Y. (2011). KDM2B/JHDM1b, an H3K36me2-specific demethylase, is required for initiation and maintenance of acute myeloid leukemia. Blood, 117(14), 3869–3880. https://doi.org/10.1182/blood-2010-10-312736

22. Heidelberger, C., Chaudhuri, N. K., Danneberg, P., Mooren, D., Griesbach, L., Duschinsky, R., Schnitzer, R. J., Pleven, E., & Scheiner, J. (1957). Fluorinated pyrimidines, a new class of tumour-inhibitory compounds. Nature, 179(4561), 663– 666. https://doi.org/10.1038/179663a0

23. Heinemann, B., Nielsen, J. M., Hudlebusch, H. R., Lees, M. J., Larsen, D. V., Boesen, T., Labelle, M., Gerlach, L.-O., Birk, P., & Helin, K. (2014). Inhibition of demethylases by GSK-J1/J4. Nature, 514(7520), E1–E2. https://doi.org/10.1038/nature13688

24. Hong, X., Xu, Y., Qiu, X., Zhu, Y., Feng, X., Ding, Z., Zhang, S., Zhong, L., Zhuang, Y., Su, C., Hong, X., & Cai, J. (2016). MiR-448 promotes glycolytic metabolism of gastric cancer by downregulating KDM2B. Oncotarget, 7(16), 22092–22102. https://doi.org/10.18632/oncotarget.8020

25. Huang, L., Snyder, A. R., & Morgan, W. F. (2003). Radiation-induced genomic instability and its implications for radiation carcinogenesis. Oncogene, 22(37), 5848–5854. https://doi.org/10.1038/sj.onc.1206697

26. Johannes, C. M., Henry, C. J., Turnquist, S. E., Hamilton, T. A., Smith, A. N., Chun, R., & Tyler, J. W. (2007). Hemangiosarcoma in cats: 53 cases (1992-2002). Journal of the American Veterinary Medical Association, 231(12), 1851–1856. https://doi.org/10.2460/javma.231.12.1851

27. Kim, J. J., & Tannock, I. F. (2005). Repopulation of cancer cells during therapy: An important cause of treatment failure. Nature Reviews. Cancer, 5(7), 516–525. https://doi.org/10.1038/nrc1650

28. Kim, J.-H., Graef, A. J., Dickerson, E. B., & Modiano, J. F. (2015). Pathobiology of Hemangiosarcoma in Dogs: Research Advances and Future Perspectives. Veterinary Sciences, 2(4), 388–405. https://doi.org/10.3390/vetsci2040388

29. Kottakis, F., Foltopoulou, P., Sanidas, I., Keller, P., Wronski, A., Dake, B. T., Ezell, S. A., Shen, Z., Naber, S. P., Hinds, P. W., McNiel, E., Kuperwasser, C., & Tsichlis, P. N. (2014). NDY1/KDM2B functions as a master regulator of polycomb complexes and controls self-renewal of breast cancer stem cells. Cancer Research, 74(14), 3935–3946. https://doi.org/10.1158/0008-5472.CAN-13-2733

30. Kottakis, F., Polytarchou, C., Foltopoulou, P., Sanidas, I., Kampranis, S. C., & Tsichlis, P. N. (2011). FGF-2 regulates cell proliferation, migration, and angiogenesis through an NDY1/KDM2B-miR-101-EZH2 pathway. Molecular Cell, 43(2), 285–298. https://doi.org/10.1016/j.molcel.2011.06.020

31. Kurt, I. C., Sur, I., Kaya, E., Cingoz, A., Kazancioglu, S., Kahya, Z., Toparlak, O. D., Senbabaoglu, F., Kaya, Z., Ozyerli, E., Karahüseyinoglu, S., Lack, N. A., Gümüs, Z. H., Onder, T. T., & Bagci-Onder, T. (2017). KDM2B, an H3K36-specific demethylase, regulates apoptotic response of GBM cells to TRAIL. Cell Death & Disease, 8(6), e2897. https://doi.org/10.1038/cddis.2017.288

32. Li, B., & Dewey, C. N. (2011). RSEM: Accurate transcript quantification from RNA- Seq data with or without a reference genome. BMC Bioinformatics, 12(1), 323. https://doi.org/10.1186/1471-2105-12-323

33. Li, Y., Zhang, M., Sheng, M., Zhang, P., Chen, Z., Xing, W., Bai, J., Cheng, T., Yang, F.-C., & Zhou, Y. (2018). Therapeutic potential of GSK-J4, a histone demethylase KDM6B/JMJD3 inhibitor, for acute myeloid leukemia. Journal of Cancer Research and Clinical Oncology, 144(6), 1065–1077. https://doi.org/10.1007/s00432-018-2631-7

34. Maharani, A., Aoshima, K., Onishi, S., Gulay, K. C. M., Kobayashi, A., & Kimura, T. (2018). Cellular atypia is negatively correlated with immunohistochemical reactivity of CD31 and vWF expression levels in canine hemangiosarcoma. Journal of Veterinary Medical Science, 80(2), 213–218. https://doi.org/10.1292/jvms.17-0561

35. Mboko, W. P., Mounce, B. C., Wood, B. M., Kulinski, J. M., Corbett, J. A., & Tarakanova, V. L. (2012). Coordinate Regulation of DNA Damage and Type I Interferon Responses Imposes an Antiviral State That Attenuates Mouse Gammaherpesvirus Type 68 Replication in Primary Macrophages. Journal of Virology, 86(12), 6899–6912. https://doi.org/10.1128/JVI.07119-11

36. Meerbrey, K. L., Hu, G., Kessler, J. D., Roarty, K., Li, M. Z., Fang, J. E., Herschkowitz, J. I., Burrows, A. E., Ciccia, A., Sun, T., Schmitt, E. M., Bernardi, R. J., Fu, X., Bland, C. S., Cooper, T. A., Schiff, R., Rosen, J. M., Westbrook, T. F., & Elledge, S. J. (2011). The pINDUCER lentiviral toolkit for inducible RNA interference in vitro and in vivo. Proceedings of the National Academy of Sciences of the United States of America, 108(9), 3665–3670. https://doi.org/10.1073/pnas.1019736108

37. Megquier, K., Turner-Maier, J., Swofford, R., Kim, J.-H., Sarver, A. L., Wang, C., Sakthikumar, S., Johnson, J., Koltookian, M., Lewellen, M., Scott, M. C., Schulte, A. J., Borst, L., Tonomura, N., Alfoldi, J., Painter, C., Thomas, R., Karlsson, E. K., Breen, M., … Lindblad-Toh, K. (2019). Comparative Genomics Reveals Shared Mutational Landscape in Canine Hemangiosarcoma and Human Angiosarcoma. Molecular Cancer Research, 17(12), 2410–2421. https://doi.org/10.1158/1541- 7786.MCR-19-0221

38. Moffat, J., Grueneberg, D. A., Yang, X., Kim, S. Y., Kloepfer, A. M., Hinkle, G., Piqani, B., Eisenhaure, T. M., Luo, B., Grenier, J. K., Carpenter, A. E., Foo, S. Y., Stewart, S. A., Stockwell, B. R., Hacohen, N., Hahn, W. C., Lander, E. S., Sabatini, D. M., & Root, D. E. (2006). A Lentiviral RNAi Library for Human and Mouse Genes Applied to an Arrayed Viral High-Content Screen. Cell, 124(6), 1283–1298. https://doi.org/10.1016/j.cell.2006.01.040

39. Moosavi, A., & Motevalizadeh Ardekani, A. (2016). Role of Epigenetics in Biology and Human Diseases. Iranian Biomedical Journal, 20(5), 246–258. https://doi.org/10.22045/ibj.2016.01

40. Mootha, V. K., Lindgren, C. M., Eriksson, K.-F., Subramanian, A., Sihag, S., Lehar, J., Puigserver, P., Carlsson, E., Ridderstråle, M., Laurila, E., Houstis, N., Daly, M. J., Patterson, N., Mesirov, J. P., Golub, T. R., Tamayo, P., Spiegelman, B., Lander, E. S., Hirschhorn, J. N., … Groop, L. C. (2003). PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nature Genetics, 34(3), 267–273. https://doi.org/10.1038/ng1180

41. Morin, R. D., Mendez-Lago, M., Mungall, A. J., Goya, R., Mungall, K. L., Corbett, R. D., Johnson, N. A., Severson, T. M., Chiu, R., Field, M., Jackman, S., Krzywinski, M., Scott, D. W., Trinh, D. L., Tamura-Wells, J., Li, S., Firme, M. R., Rogic, S., Griffith, M., … Marra, M. A. (2011). Frequent mutation of histone-modifying genes in non- Hodgkin lymphoma. Nature, 476(7360), 298–303. https://doi.org/10.1038/nature10351

42. Morita, A., Aoshima, K., Gulay, K. C. M., Onishi, S., Shibata, Y., Yasui, H., Kobayashi, A., & Kimura, T. (2019). High drug efflux pump capacity and low DNA damage response induce doxorubicin resistance in canine hemangiosarcoma cell lines. Research in Veterinary Science, 127, 1–10. https://doi.org/10.1016/j.rvsc.2019.09.011

43. Murai, A., Asa, S. A., Kodama, A., Hirata, A., Yanai, T., & Sakai, H. (2012). Constitutive phosphorylation of the mTORC2/Akt/4E-BP1 pathway in newly derived canine hemangiosarcoma cell lines. BMC Veterinary Research, 8(1), 128. https://doi.org/10.1186/1746-6148-8-128

44. Odom, A. L., Hatwig, C. A., Stanley, J. S., & Benson, A. M. (1992). Biochemical determinants of adriamycin® toxicity in mouse liver, heart and intestine. Biochemical Pharmacology, 43(4), 831–836. https://doi.org/10.1016/0006- 2952(92)90250-M

45. Peta, E., Sinigaglia, A., Masi, G., Di Camillo, B., Grassi, A., Trevisan, M., Messa, L., Loregian, A., Manfrin, E., Brunelli, M., Martignoni, G., Palù, G., & Barzon, L. (2018). HPV16 E6 and E7 upregulate the histone lysine demethylase KDM2B through the c-MYC/miR-146a-5p axys. Oncogene, 37(12), 1654–1668. https://doi.org/10.1038/s41388-017-0083-1

46. Peters, I. R., Peeters, D., Helps, C. R., & Day, M. J. (2007). Development and application of multiple internal reference (housekeeper) gene assays for accurate normalisation of canine gene expression studies. Veterinary Immunology and Immunopathology, 117(1–2), 55–66. https://doi.org/10.1016/j.vetimm.2007.01.011

47. Prymak, C., McKee, L. J., Goldschmidt, M. H., & Glickman, L. T. (1988). Epidemiologic, clinical, pathologic, and prognostic characteristics of splenic hemangiosarcoma and splenic hematoma in dogs: 217 cases (1985). Journal of the American Veterinary Medical Association, 193(6), 706–712.

48. Robinson, M. D., McCarthy, D. J., & Smyth, G. K. (2010). edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26(1), 139–140. https://doi.org/10.1093/bioinformatics/btp616

49. Sastry, G. A. (1951). Angiosarcoma (hemangioendothelioma) in the thorax of a mule. The Veterinary Record, 63(8), 145–147. https://doi.org/10.1136/vr.63.8.145

50. Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671–675. https://doi.org/10.1038/nmeth.2089

51. Sharma, S., Kelly, T. K., & Jones, P. A. (2010). Epigenetics in cancer. Carcinogenesis, 31(1), 27–36. https://doi.org/10.1093/carcin/bgp220

52. Sheltzer, J. M., Blank, H. M., Pfau, S. J., Tange, Y., George, B. M., Humpton, T. J., Brito, I. L., Hiraoka, Y., Niwa, O., & Amon, A. (2011). Aneuploidy Drives Genomic Instability in Yeast. Science, 333(6045), 1026–1030. https://doi.org/10.1126/science.1206412

53. Shimizu, H., Nagel, D., & Toth, B. (1974). Ethylhydrazine hydrochloride as a tumor inducer in mice. International Journal of Cancer, 13(4), 500–505. https://doi.org/10.1002/ijc.2910130409

54. Stokes, M. P., Rush, J., Macneill, J., Ren, J. M., Sprott, K., Nardone, J., Yang, V., Beausoleil, S. A., Gygi, S. P., Livingstone, M., Zhang, H., Polakiewicz, R. D., & Comb, M. J. (2007). Profiling of UV-induced ATM/ATR signaling pathways. Proceedings of the National Academy of Sciences of the United States of America, 104(50), 19855–19860. https://doi.org/10.1073/pnas.0707579104

55. Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., Paulovich, A., Pomeroy, S. L., Golub, T. R., Lander, E. S., & Mesirov, J. P. (2005). Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences, 102(43), 15545–15550. https://doi.org/10.1073/pnas.0506580102

56. Thomas, R., Borst, L., Rotroff, D., Motsinger-Reif, A., Lindblad-Toh, K., Modiano, J. F., & Breen, M. (2014). Genomic profiling reveals extensive heterogeneity in somatic DNA copy number aberrations of canine hemangiosarcoma. Chromosome Research : An International Journal on the Molecular, Supramolecular and Evolutionary Aspects of Chromosome Biology, 22(3), 305–319. https://doi.org/10.1007/s10577-014-9406-z

57. Tzatsos, A., Pfau, R., Kampranis, S. C., & Tsichlis, P. N. (2009). Ndy1/KDM2B immortalizes mouse embryonic fibroblasts by repressing the Ink4a/Arf locus. Proceedings of the National Academy of Sciences, 106(8), 2641–2646. https://doi.org/10.1073/pnas.0813139106

58. van Haaften, G., Dalgliesh, G. L., Davies, H., Chen, L., Bignell, G., Greenman, C., Edkins, S., Hardy, C., O’Meara, S., Teague, J., Butler, A., Hinton, J., Latimer, C., Andrews, J., Barthorpe, S., Beare, D., Buck, G., Campbell, P. J., Cole, J., … Futreal, P. A. (2009). Somatic mutations of the histone H3K27 demethylase gene UTX in human cancer. Nature Genetics, 41(5), 521–523. https://doi.org/10.1038/ng.349

59. Wang, T., Chen, K., Zeng, X., Yang, J., Wu, Y., Shi, X., Qin, B., Zeng, L., Esteban, M. A., Pan, G., & Pei, D. (2011). The Histone Demethylases Jhdm1a/1b Enhance Somatic Cell Reprogramming in a Vitamin-C-Dependent Manner. Cell Stem Cell, 9(6), 575–587. https://doi.org/10.1016/j.stem.2011.10.005

60. Wild-Bode, C., Weller, M., Rimner, A., Dichgans, J., & Wick, W. (2001). Sublethal irradiation promotes migration and invasiveness of glioma cells: Implications for radiotherapy of human glioblastoma. Cancer Research, 61(6), 2744–2750.

61. YAMAMOTO, S., HOSHI, K., HIRAKAWA, A., CHIMURA, S., KOBAYASHI, M., & MACHIDA, N. (2013). Epidemiological, Clinical and Pathological Features of Primary Cardiac Hemangiosarcoma in Dogs: A Review of 51 Cases. The Journal of Veterinary Medical Science, 75(11), 1433–1441. https://doi.org/10.1292/jvms.13-0064

62. Yan, M., Yang, X., Wang, H., & Shao, Q. (2018a). The critical role of histone lysine demethylase KDM2B in cancer. American Journal of Translational Research, 10(8), 2222–2233.

63. Yan, M., Yang, X., Wang, H., & Shao, Q. (2018b). The critical role of histone lysine demethylase KDM2B in cancer. American Journal of Translational Research, 10(8), 2222–2233.

64. Yoshino, H., Ueda, T., Kawahata, M., Kobayashi, K., Ebihara, Y., Manabe, A., Tanaka, R., Ito, M., Asano, S., Nakahata, T., & Tsuji, K. (2000). Natural killer cell depletion by anti-asialo GM1 antiserum treatment enhances human hematopoietic stem cell engraftment in NOD/Shi- scid mice. Bone Marrow Transplantation, 26(11), 1211–1216. https://doi.org/10.1038/sj.bmt.1702702

65. Young, R. J., Brown, N. J., Reed, M. W., Hughes, D., & Woll, P. J. (2010). Angiosarcoma. The Lancet. Oncology, 11(10), 983–991. https://doi.org/10.1016/S1470-2045(10)70023-1

66. Zhu, J., Tsai, H.-J., Gordon, M. R., & Li, R. (2018). Cellular Stress Associated with Aneuploidy. Developmental Cell, 44(4), 420–431. https://doi.org/10.1016/j.devcel.2018.02.002

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る