リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「イリジウム触媒を用いたアミド基選択的な還元的求核付加反応の開発と応用 (本文)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

イリジウム触媒を用いたアミド基選択的な還元的求核付加反応の開発と応用 (本文)

高橋, 芳人 慶應義塾大学

2020.03.23

概要

人の手によって自然現象を解明し超越する。その叡智を求める探究心を原動力とした、人間讃歌的な願いが自然科学を研究する研究者の悲願ではないだろうか。筆者らにとってそれは、分子を自在に操り、自然現象ですら成し得ない化学反応を実現し、前人未到の分子の合成を意味する。

有機合成化学において「選択性」とは、実験によって得られた結果に理論的意味合いを付与 する特別な言葉である。例えば「立体選択性」は、その反応によって生じる新たな結合を分子 の三次元的な構造から考察し、その立体的な配置を説明する。また「位置選択性」は、反応が 進行する際に結合形成可能な位置が複数ある場合の議論に用いられる。そして「官能基選択性」は、複数の官能基共存下において、化学的特徴から反応剤が特定の官能基に対して活性か不活 性かを議論する際に使われる。今日までに多くの分子変換反応は「選択性」によって説明され、「選択性」をもとに開発されてきた。

筆者は、「選択性」の究極的な制御が自在な分子変換を可能にすると考え、「官能基選択性」に着目したアミド基変換反応の研究を続けてきた。アミド基は、他の官能基と比較して、あらゆる反応条件に対し不活性な官能基として知られている。本研究では、そのアミド基の化学選択的な分子変換法の開発においてある一定の成果をあげた。また、開発した手法を応用し、既存の有機合成化学では困難であった分子変換に成功したので、以下にその内容について詳述する。

この論文で使われている画像

参考文献

1. Selected reviews on chemoselectivity. (a) Boudier, A.; Bromm, L. O.; Lotz, M.; Knochel, P. New Applications of Polyfunctional Organometallic Compounds in Organic Synthesis. Angew. Chem. Int. Ed. 2000, 39, 4414–4435. (b) Shenvi, R. A.; O’Malley, D. P.; Baran, P. S. Chemoselectivity: The Mother of Invention in Total Synthesis. Acc. Chem. Res. 2009, 42, 530–541. (c) Afagh, N. A.; Yudin, A. K. Chemoselectivity and the Curious Reactivity Preferences of Functional Groups. Angew. Chem. Int. Ed. 2010, 49, 262–310.

2. The list of selected reviews on nucleophilic addition to amides (a) Seebach, D. Generation of Secondary, Tertiary, and Quaternary Centers by Geminal Disubstitution of Carbonyl Oxygens. Angew. Chem. Int. Ed. 2011, 50, 96–101. (b) Pace, V.; Holzer, W. Chemoselective Activation Strategies of Amidic Carbonyls towards Nucleophilic Reagents. Aust. J. Chem. 2013, 66, 507–510. (c) Sato, T.; Chida, N. Nucleophilic Addition to N-Alkoxyamides. Org. Biomol. Chem. 2014, 12, 3147–3150. (d) Pace, V.; Holzer, W.; Olofsson, B. Increasing the Reactivity of Amides towards Organometallic Reagents: An Overview. Advanced Synthesis & Catalysis, 2014, 356, 3697–3736. (e) Volkov, A.; Tinnis, F.; Slagbrand, T.; Trillo, P.; Adolfsson, H. Chemoselective Reduction of Carboxamides. Chem. Soc. Rev. 2016, 45, 6685–6697. (f) Kaiser, D.; Maulide, N. Making the Least Reactive Electrophile the First in Class: Domino Electrophilic Activation of Amides. J. Org. Chem. 2016, 81, 4421–4428. (g) Sato, T.; H.; Chida. Nucleophilic Addition to N─Alkoxyamides: Development and Application to the Total Synthesis of Gephyrotoxin. J. Synth. Org. Chem., Jpn., 2016, 74, 599–610 (h) Więcław, M. M.; Stecko, S. Hydrozirconation of C=X Functionalities with Schwartz’s Reagent. Euro. J. Org. Chem. 2018, 2018, 6601–6623. (i) Chardon, A.; Morisset, E.; Rouden, J.; Blanchet, J. Recent Advances in Amide Reductions. Synthesis 2018, 50, 984–997. (j) Sato, T.; Yoritate, M.; Tajima, H.; Chida, N. Total Synthesis of Complex Alkaloids by Nucleophilic Addition to Amides. Org. Biomol. Chem. 2018, 16, 3864–3875.

3. Examples of nucleophlic addition to amides utilizing thioiminium salts. (a) Murai, T.; Mutoh, Y.; Ohta, Y.; Murakami, M. Synthesis of Tertiary Propargylamines by Sequential Reactions of in Situ Generated Thioiminium Salts with Organolithium and - Magnesium Reagents. J. Am. Chem. Soc. 2004, 126, 5968–5969. (b) Agosti, A.; Britto, S.; Renaud, P. An Efficient Method to Convert Lactams and Amides into 2,2-Dialkylated Amines. Org. Lett. 2008, 10, 1417–1420.

4. Xiao, K. J.; Luo, J. M.; Ye, K. Y.; Wang, Y.; Huang, P. Q. Direct, One-Pot Sequential Reductive Alkylation of Lactams/Amides with Grignard and Organolithium Reagents through Lactam/Amide Activation. Angew. Chem. Int. Ed. 2010, 49, 3037–3040.

5. Examples of reductive nucleophilic addition to amides with Schwartz’s reagent. (a) Oda, Y.; Sato, T.; Chida, N. Direct Chemoselective Allylation of Inert Amide Carbonyls. Org. Lett. 2012, 14, 950–953. (b) Nakajima, M.; Oda, Y.; Wada, T.; Minamikawa, R.; Shirokane, K.; Sato, T.; Chida, N. Chemoselective Reductive Nucleophilic Addition to Tertiary Amides, Secondary Amides, and N-Methoxyamides. Chem. Eur. J. 2014, 20, 17565–17571.

6. Nahm, S.; Weinreb, S. M. N-Methoxy-n-Methylamides as Effective Acylating Agents. Tetrahedron Lett. 1981, 22, 3815–3818.

7. Reduction of amides by Schwartz’s reagent. (a) Schedler, D. J. A.; Godfrey, A. G.; Ganem, B. Reductive Deoxygenation by Cp2ZrHCl: Selective Formation of Imines via Zirconation/Hydrozirconation of Amides. Tetrahedron Lett. 1993, 34, 5035–5038. (b) Schedler, D. J. A.; Li, J.; Ganem, B. Reduction of Secondary Carboxamides to Imines. J. Org. Chem. 1996, 61, 4115–4119.

8. Spletstoser, J. T.; White, J. M.; Tunoori, A. R.; Georg, G. I. Mild and Selective Hydrozirconation of Amides to Aldehydes Using Cp2Zr(H)Cl: Scope and Mechanistic Insight. J. Am. Chem. Soc. 2007, 129, 3408–3419.

9. Piper, T. S.; Lemal, D.; Wilkinson, G. A Silyliron Compound; an Fe-Si δ Bond. Naturwissenschaften 1956, 43, 129.

10. The list of selected reviews on hydrosilane transition metal complex. (a) Corey, J. Y. Reactions of Hydrosilanes with Transition Metal Complexes Characterization of the Products. Chem. Rev. 2011, 111, 863–1071. (b) Corey, J. Y. Reactions of Hydrosilanes with Transition Metal Complexes. Chem. Rev. 2016, 116, 11291–11435.

11. Selected reviews on hydrosilylation of amides. (a) Addis, D.; Das, S.; Junge, K.; Beller, M. Selective Reduction of Carboxylic Acid Derivatives by Catalytic Hydrosilylation. Angew. Chem. Int. Ed. 2011, 50, 6004–6011. (b) Zhang, M.; Zhang, A. Iron-Catalyzed Hydrosilylation Reactions. Appl. Organomet. Chem. 2010, 24, 751–757. (c) Werkmeister, S.; Junge, K.; Beller, M. Catalytic Hydrogenation of Carboxylic Acid Esters, Amides, and Nitriles with Homogeneous Catalysts. Org. Process Res. Dev. 2014, 18, 289–302. (d) Volkov, A.; Tinnis, F.; Slagbrand, T.; Trillo, P.; Adolfsson, H. Chemoselective Reduction of Carboxamides. Chem. Soc. Rev. 2016, 45, 6685–6697. (e) Kaiser, D.; Bauer, A.; Lemmerer, M.; Maulide, N. Amide Activation: An Emerging Tool for Chemoselective Synthesis. Chem. Soc. Rev. 2018, 47, 7899–7925. (f) Khalimon, A. Y.; Gudun, K. A.; Hayrapetyan, D. Base Metal Catalysts for Deoxygenative Reduction of Amides to Amines. Catalysts 2019, 9, 1–26. (g) Chardon, A.; Morisset, E.; Rouden, J.; Blanchet, J. Recent Advances in Amide Reductions. Synthesis 2018, 50, 984–997. (h) Iglesias, M.; Fernández-Alvarez, F. J.; Oro, L. A. Non-Classical Hydrosilane Mediated Reductions Promoted by Transition Metal Complexes. Coord. Chem. Rev. 2019, 386, 240–266. (i) Shaikh, N. S. Sustainable Amine Synthesis: Iron Catalyzed Reactions of Hydrosilanes with Imines, Amides, Nitroarenes and Nitriles. ChemistrySelect 2019, 4, 6753–6777.

12. Bower, S.; Kreutzer, K. A.; Buchwald, S. L. A Mild General Procedure for the One-Pot Conversion of Amides to Aldehydes. Angew. Chem. Int. Ed. 1996, 35, 1515–1516.

13. Selected example of hydrosilylation of tertiary amide to enamine using Vaska-type iridium catalyst. (a) Motoyama, Y.; Aoki, M.; Takaoka, N.; Aoto, R.; Nagashima, H. Highly Efficient Synthesis of Aldenamines from Carboxamides by Iridium-Catalyzed Silane-Reduction/Dehydration under Mild Conditions. Chem. Commun. 2009, 1574–1576. (b) Tahara, A.; Miyamoto, Y.; Aoto, R.; Shigeta, K.; Une, Y.; Sunada, Y.; Motoyama, Y.; Nagashima, H. Catalyst Design of Vaska-Type Iridium Complexes for Highly Efficient Synthesis of π-Conjugated Enamines. Organometallics 2015, 34, 4895–4907. (c) Une, Y.; Tahara, A.; Miyamoto, Y.; Sunada, Y.; Nagashima, H. Iridium-PPh3 Catalysts for Conversion of Amides to Enamines. Organometallics 2019, 38, 852–862. (d) Tahara, A.; Kitahara, I.; Sakata, D.; Kuninobu, Y.; Nagashima, H. Donor-Acceptor π- Conjugated Enamines: Functional Group Compatible Synthesis from Amides and Their Photoabsorption and Photoluminescence Properties. J. Org. Chem. 2019, 84, 15236-15254.

14. Yang, Z. P.; Lu, G. S.; Ye, J. L.; Huang, P. Q. Ir-Catalyzed Chemoselective Reduction of β-Amido Esters: A Versatile Approach to β-Enamino Esters. Tetrahedron 2019, 75, 1624–1631.

15. Selected example of semi-reduction of tertiary amides using Mo(CO)6. (a) Volkov, A.; Tinnis, F.; Slagbrand, T.; Pershagen, I.; Adolfsson, H. Mo(CO)6 Catalysed Chemoselective Hydrosilylation of α,β-Unsaturated Amides for the Formation of Allylamines. Chem. Commun. 2014, 50, 14508–14511. (b) Tinnis, F.; Volkov, A.; Slagbrand, T.; Adolfsson, H. Chemoselective Reduction of Tertiary Amides under Thermal Control: Formation of Either Aldehydes or Amines. Angew. Chem. Int. Ed. 2016, 55, 4562–4566.

16. Volkov, A.; Tinnis, F.; Adolfsson, H. Catalytic Reductive Dehydration of Tertiary Amides to Enamines under Hydrosilylation Conditions. Org. Lett. 2014, 16, 680–683.

17. Selected review of the mechanistic insights on hydrosilylation of carbonyl compounds (a) Riener, K.; Högerl, M. P.; Gigler, P.; Kühn, F. E. Rhodium-Catalyzed Hydrosilylation of Ketones: Catalyst Development and Mechanistic Insights. ACS Catal. 2012, 2, 613–621. (b) Iglesias, M.; Fernández-Alvarez, F. J.; Oro, L. A. Outer-Sphere Ionic Hydrosilylation Catalysis. ChemCatChem 2014, 6, 2486–2489. (c) Iglesias, M.; Fernández-Alvarez, F. J.; Oro, L. A. Non-Classical Hydrosilane Mediated Reductions Promoted by Transition Metal Complexes. Coord. Chem. Rev. 2019, 386, 240–266.

18. Ojima, I.; Nihonyanagi, M.; Nagai, Y. Rhodium Complex Catalysed Hydrosilylation of Carbonyl Compounds. J. Chem. Soc. Chem. Commun. 1972, 0, 938a–938a.

19. Ojima, I.; Nihonyanagi, M.; Kogure, T.; Kumagai, M.; Horiuchi, S.; Nakatsugawa, K.; Nagai, Y. Reduction of Carbonyl Compounds via Hydrosilylation. I. Hydrosilylation of Carbonyl Compounds Catalyzed by Tris(Triphenylphosphine)Chlororhodium. J. Organomet. Chem. 1975, 94, 449–461.

20. Ojima, I.; Kogure, T.; Nagai, Y. ASYMMETRIC REDUCTION OF KETONES VIA HYDROSILYLATION CATALYZED BY A RHODIUM(I) COMPLEX WITH CHIRAL PHOSPHINE LIGANDS. Chem. Lett. 1973, 2, 541–544.

21. Zheng, G. Z.; Chan, T. H. Regiocontrolled Hydrosilation of α,β-Unsaturated Carbonyl Compounds Catalyzed by Hydridotetrakis(Triphenylphosphine)Rhodium(I). Organometallics 1995, 14, 70–79.

22. Gade, L. H.; César, V.; Bellemin-Laponnaz, S. A Modular Assembly of Chiral Oxazolinylcarbene- Rhodium Complexes: Efficient Phosphane-Free Catalysts for the Asymmetric Hydrosilylation of Dialkyl Ketones. Angew. Chem. Int. Ed. 2004, 43, 1014–1017.

23. Schneider, N.; Finger, M.; Haferkemper, C.; Bellemin-Laponnaz, S.; Hofmann, P.; Gade, L. H. Metal Silylenes Generated by Double Silicon-Hydrogen Activation: Key Intermediates in the Rhodium-Catalyzed Hydrosilylation of Ketones. Angew. Chem. Int. Ed. 2009, 48, 1609–1613.

24. Schneider, N.; Finger, M.; Haferkemper, C.; Bellemin-Laponnaz, S.; Hofmann, P.; Gade, L. H. Multiple Reaction Pathways in Rhodium-Catalyzed Hydrosilylations of Ketones. Chem. Eur. J. 2009, 15, 11515–11529.

25. Gigler, P.; Bechlars, B.; Herrmann, W. A.; Kühn, F. E. Hydrosilylation with Biscarbene Rh(I) Complexes: Experimental Evidence for a Silylene-Based Mechanism. J. Am. Chem. Soc. 2011, 133, 1589–1596.

26. Parks, D. J.; Piers, W. E. Tris(Pentafluorophenyl)Boron-Catalyzed Hydrosilation of Aromatic Aldehydes, Ketones, and Esters. J. Am. Chem. Soc. 1996, 118, 9440–9441.

27. Rendler, S.; Oestreich, M. Conclusive Evidence for an SN2-Si Mechanism in the B(C6F5)3-Catalyzed Hydrosilylation of Carbonyl Compounds: Implications for the Related Hydrogenation. Angew. Chem. Int. Ed. 2008, 47, 5997–6000.

28. Park, S.; Brookhart, M. Hydrosilylation of Carbonyl-Containing Substrates Catalyzed by an Electrophilic Η1-Silane Iridium(III) Complex. Organometallics 2010, 29, 6057–6064.

29. Park, S.; Brookhart, M. Development and Mechanistic Investigation of a Highly Efficient Iridium(V) Silyl Complex for the Reduction of Tertiary Amides to Amines. J. Am. Chem. Soc. 2012, 134, 640–653.

30. Metsänen, T. T.; Hrobárik, P.; Klare, H. F. T.; Kaupp, M.; Oestreich, M. Insight into the Mechanism of Carbonyl Hydrosilylation Catalyzed by Brookharts Cationic Iridium(III) Pincer Complex. J. Am. Chem. Soc. 2014, 136, 6912–6915.

31. Zhao, L.; Nakatani, N.; Sunada, Y.; Nagashima, H.; Hasegawa, J. Y. Theoretical Study on the Rhodium-Catalyzed Hydrosilylation of C=C and C=O Double Bonds with Tertiary Silane. J. Org. Chem. 2019, 84, 8552–8561.

32. Gregory, A. W.; Chambers, A.; Hawkins, A.; Jakubec, P.; Dixon, D. J. Iridium-Catalyzed Reductive Nitro-Mannich Cyclization. Chem. Eur. J. 2015, 21, 111–114.

33. During the preparation of this dissertation, the group of Dixon independently reported the elegant reductive nucleophilic addition to tertiary amides using the Nagashima’s catalytic system, see: Fuentes de Arriba, Á. L.; Lenci, E.; Sonawane, M.; Formery, O.; Dixon, D. J. Iridium-Catalyzed Reductive Strecker Reaction for Late-Stage Amide and Lactam Cyanation. Angew. Chem. Int. Ed. 2017, 56, 3655–3659.

34. Xie, L. G.; Dixon, D. J. Tertiary Amine Synthesis: Via Reductive Coupling of Amides with Grignard Reagents. Chem. Sci. 2017, 8, 7492–7497.

35. Gabriel, P.; Xie, L.; Dixon, D. J. Iridium-Catalyzed Reductive Coupling of Grignard Reagents and Tertiary Amides. Org. Synth. 2019, 96, 511–527.

36. Xie, L. G.; Dixon, D. J. Iridium-Catalyzed Reductive Ugi-Type Reactions of Tertiary Amides. Nat. Commun. 2018, 9, 1–124.

37. Gabriel, P.; Gregory, A. W.; Dixon, D. J. Iridium-Catalyzed Aza-Spirocyclization of Indole-Tethered Amides: An Interrupted Pictet–Spengler Reaction. Org. Lett. 2019, 21, 6658–6662.

38. Huang, P. Q.; Ou, W.; Han, F. Chemoselective Reductive Alkynylation of Tertiary Amides by Ir and Cu(I) Bis-Metal Sequential Catalysis. Chem. Commun. 2016, 52, 11967–11970.

39. Hu, X. N.; Shen, T. L.; Cai, D. C.; Zheng, J. F.; Huang, P. Q. The Iridium-Catalysed Reductive Coupling Reaction of Tertiary Lactams/Amides with Isocyanoacetates. Org. Chem. Front. 2018, 5, 2051–2056.

40. Wang, S. R.; Huang, P. Q. Cross-Coupling of Secondary Amides with Tertiary Amides: The Use of Tertiary Amides as Surrogates of Alkyl Carbanions for Ketone Synthesis. Chinese J. Chem. 2019, 2015–2019.

41. Trillo, P.; Slagbrand, T.; Adolfsson, H. Straightforward α-Amino Nitrile Synthesis Through Mo(CO)6-Catalyzed Reductive Functionalization of Carboxamides. Angew. Chem. Int. Ed. 2018, 57, 12347–12351.

42. Trillo, P.; Slagbrand, T.; Tinnis, F.; Adolfsson, H. Facile Preparation of Pyrimidinediones and Thioacrylamides: Via Reductive Functionalization of Amides. Chem. Commun. 2017, 53, 9159– 9162.

43. Trillo, P.; Slagbrand, T.; Tinnis, F.; Adolfsson, H. Mild Reductive Functionalization of Amides into N-Sulfonylformamidines. ChemistryOpen 2017, 6, 484–487.

44. Jakubec, P.; Hawkins, A.; Felzmann, W.; Dixon, D. J. Total Synthesis of Manzamine A and Related Alkaloids. J. Am. Chem. Soc. 2012, 134, 17482–17485.

45. Tan, P. W.; Seayad, J.; Dixon, D. J. Expeditious and Divergent Total Syntheses of Aspidosperma Alkaloids Exploiting Iridium(I)-Catalyzed Generation of Reactive Enamine Intermediates. Angew. Chem. Int. Ed. 2016, 55, 13436–13440.

46. Takahashi, Y.; Sato, T.; Chida, N. Iridium-Catalyzed Reductive Nucleophilic Addition to Tertiary Amides. Chem. Lett. 2019, 48, 1138–1141.

47. Yoritate, M.; Takahashi, Y.; Tajima, H.; Ogihara, C.; Yokoyama, T.; Soda, Y.; Oishi, T.; Sato, T.; Chida, N. Unified Total Synthesis of Stemoamide-Type Alkaloids by Chemoselective Assembly of Five-Membered Building Blocks. J. Am. Chem. Soc. 2017, 139, 18386–18391.

48. Williams, D. R.; Shamim, K.; Reddy, J. P.; Amato, G. S.; Shaw, S. M. Total Synthesis of (-)- Stemonine. Org. Lett. 2003, 5, 3361–3364.

49. Shirokane, K.; Wada, T.; Yoritate, M.; Minamikawa, R.; Takayama, N.; Sato, T.; Chida, N. Total Synthesis of (±)-Gephyrotoxin by Amide-Selective Reductive Nucleophilic Addition. Angew. Chem. Int. Ed. 2014, 53, 512–516.

50. Blackburn, S. N.; Haszeldine, R. N.; Parish, R. V; Setchfield, J. H. Homogeneous Catalysis by Iridium (I) Complexes of the Reaction Between Silanes and Alcohols or Dideuterium. Journal of Organometallic Chemistry. 1980, 192, 329–338.

51. Key features of N-alkoxyamide derivatives. (a) Yanagita, Y.; Nakamura, H.; Shirokane, K.; Kurosaki, Y.; Sato, T.; Chida, N. Direct Nucleophilic Addition to N‐Alkoxyamides. Chem. Eur. J. 2013, 19, 678–684. (b) Barrios, F. J.; Zhang, X.; Colby, D. A. Dialkylaluminum N,O-Dimethylhydroxylamine Complex as a Reagent to Mask Reactive Carbonyl Groups in Situ from Nucleophiles. Org. Lett. 2010, 12, 5588–5591. (c) Kurosaki, Y.; Shirokane, K.; Oishi, T.; Sato, T.; Chida, N. Concise Synthesis of α-Trisubstituted Amines from Ketones Using N-Methoxyamines. Org. Lett. 2012, 14, 2098–2101. (d) Chiara, J. L.; Destabel, C.; Gallego, P.; Marco-Contelles, J. Cleavage of N−O Bonds Promoted by Samarium Diiodide: Reduction of Free or N-Acylated O-Alkylhydroxylamines. J. Org. Chem. 1996, 61, 359–360. (e) Ritter, A. R.; Miller, M. J. Amino Acid-Derived Chiral Acyl Nitroso Compounds: Diastereoselectivity in Intermolecular Hetero Diels-Alder Reactions. J. Org. Chem. 1994, 59, 4602–4611. (f) Gong, J.; Lin, G.; Sun, W.; Li, C. - C.; Yang, Z. Total Synthesis of (±) Maoecrystal V. J. Am. Chem. Soc. 2010, 132, 16745–16746. (g) Yoritate M. Two-step Synthesis of Multi-substituted Amines and Unified Total Synthesis of Stemoamide-type Alkaloids. Ph.D. T. Keio University, Japan, 2017.

52. Yamamoto, S.; Komiya, Y.; Kobayashi, A.; Minamikawa, R.; Oishi, T.; Sato, T.; Chida, N. Asymmetric Total Synthesis of Fasicularin by Chiral N-Alkoxyamide Strategy. Org. Lett. 2019, 21, 1868–1871.

53. Selected example of reports on proximity effect of two Si–H groups. (a) Nagashima, H. Efficient Transition Metal-Catalyzed Reactions of Carboxylic Acid Derivatives with Hydrosilanes and Hydrosiloxanes, Afforded by Catalyst Design and the Proximity Effect of Two Si-H Groups. Synlett 2015, 26, 866–890. (b) Nakatani, N.; Hasegawa, J. Y.; Sunada, Y.; Nagashima, H. Platinum-Catalyzed Reduction of Amides with Hydrosilanes Bearing Dual Si-H Groups: A Theoretical Study of the Reaction Mechanism. Dalt. Trans. 2015, 44, 19344–19356.

54. Iridium complex reported by Curtis. (a) Greene, J.; Curtis, M. D. Catalysis of Siloxane Metathesis by Cyclometalladisiloxanes. Mechanistic Similarities to Olefin Metathesis Catalysis. J. Am. Chem. Soc. 1977, 99, 5176–5177. (b) Curtis, M. D.; Greene, J.; Butler, W. M. Small Ring Metallocycles. V. Crystal and Molecular Structure of Hydrido-1,3-(1,1,3,3-Tetramethyldisiloxanediyl) Carbonylbis (Triphenylphosphine) Iridium (III), Me2SiOSiMe2Ir(H)(CO)(PPh3)2 · EtOH. J. Organomet. Chem. 1979, 164, 371–380.

55. Examples of nucleophilic addition to amides utilizing N-acyliminiumion. (a) Suh, Y. G.; Shin, D. Y.; Jung, J. K.; Kim, S. H. The Versatile Conversion of Acyclic Amides to α-Alkylated Amines. Chem. Commun. 2002, 2, 1064–1065. (b) Suh, Y. G.; Kim, S. H.; Jung, J. K.; Shin, D. Y. The Versatile Conversion of Lactams to the α- Alkylated Azacycles via Cyclic N,O-Acetal TMS Ether. Tetrahedron Lett. 2002, 43, 3165–3167. (c) Jung, J. W.; Shin, D. Y.; Seo, S. Y.; Kim, S. H.; Paek, S. M.; Jung, J. K.; Suh, Y. G. A New Entry to Functionalized Cycloalkylamines: Diastereoselective Intramolecular Amidoalkylation of N,O-Acetal TMS Ether Possessing Allylsilane. Tetrahedron Lett. 2005, 46, 573–575.

56. Huang, P. Q.; Huang, Y. H.; Xiao, K. J.; Wang, Y.; Xia, X. E. A General Method for the One-Pot Reductive Functionalization of Secondary Amides. J. Org. Chem. 2015, 80, 2861–2868.

57. Cheng, C.; Brookhart, M. Iridium-Catalyzed Reduction of Secondary Amides to Secondary Amines and Imines by Diethylsilane. J. Am. Chem. Soc. 2012, 134, 11304–11307.

58. Yao, W.; Fang, H.; He, Q.; Peng, D.; Liu, G.; Huang, Z. A BEt3 -Base Catalyst for Amide Reduction with Silane. J. Org. Chem. 2019, 84, 6084–6093.

59. During the preparation of this dissertation, the group of Huang independently reported the elegant reductive nucleophilic addition to secondary amides using the Brookhart’s catalytic system, see: Ou, W.; Han, F.; Hu, X. N.; Chen, H.; Huang, P. Q. Iridium-Catalyzed Reductive Alkylations of Secondary Amides. Angew. Chem. Int. Ed. 2018, 57, 11354–11358.

60. Sato, M.; Azuma, H.; Daigaku, A.; Sato, S.; Takasu, K.; Okano, K.; Tokuyama, H. Total Synthesis of (−)-Histrionicotoxin through a Stereoselective Radical Translocation–Cyclization Reaction. Angew. Chem. Int. Ed. 2017, 56, 1087–1091.

61. Takahashi, Y.; Yoshii, R.; Sato, T.; Chida, N. Iridium-Catalyzed Reductive Nucleophilic Addition to Secondary Amides. Org. Lett. 2018, 20, 5705–5708.

62. Kobayashi, S.; Nagayama, S. Aldehydes vs Aldimines. Unprecedented Aldimine-Selective Nucleophilic Additions in the Coexistence of Aldehydes Using a Lanthanide Salt as a Lewis Acid Catalyst. J. Am. Chem. Soc. 1997, 119, 10049–10053.

63. Yasuda, M.; Sugawa, Y.; Yamamoto, A.; Shibata, I.; Baba, A. Allylic Tin(IV)-Tin(II) Chloride-Acetonitrile as a Novel System for Allylation of Carbonyls or Imines. Tetrahedron Lett. 1996, 37, 5951–5954.

64. Das, S.; Li, Y.; Bornschein, C.; Pisiewicz, S.; Kiersch, K.; Michalik, D.; Gallou, F.; Junge, K.; Beller, M. Selective Rhodium-Catalyzed Reduction of Tertiary Amides in Amino Acid Esters and Peptides. Angew. Chem. Int. Ed. 2015, 54, 12389–12393.

65. Das, S.; Li, Y.; Lu, L. Q.; Junge, K.; Beller, M. A General and Selective Rhodium-Catalyzed Reduction of Amides, N-Acyl Amino Esters, and Dipeptides Using Phenylsilane. Chem. Eur. J. 2016, 22, 7050–7053.

66. Peruzzi, M. T.; Mei, Q. Q.; Lee, S. J.; Gagné, M. R. Chemoselective Amide Reductions by Heteroleptic Fluoroaryl Boron Lewis Acids. Chem. Commun. 2018, 54, 5855–5858.

67. Ni, J.; Oguro, T.; Sawazaki, T.; Sohma, Y.; Kanai, M. Hydroxy Group Directed Catalytic Hydrosilylation of Amides. Org. Lett. 2018, 20, 7371–7374.

68. Sygusch, J.; Brisse, F.; Hanessian, S.; Kluepfel, D. The Molecular Structure of Naphthyridinomycin- a Broad Spectrum Antibiotic. Tetrahedron Lett. 1974, 15, 4021–4023.

69. List of selected reviews on synthesis of tetreahydroisoquinoline alkaloids. (a) Scott, J. D.; Williams, R. M. Chemistry and Biology of the Tetrahydroisoquinoline Antitumor Antibiotics. Chem. Rev. 2002, 102, 1669–1730. (b) Siengalewicz, P.; Rinner, U.; Mulzer, J. Recent Progress in the Total Synthesis of Naphthyridinomycin and Lemonomycin Tetrahydroisoquinoline Antitumor Antibiotics (TAAs). Chem. Soc. Rev. 2008, 37, 2676–2690. (c) vendaño, C.; De La Cuesta, E. Recent Synthetic Approaches to 6,15-Iminoisoquino[3,2-b]3- Benzazocine Compounds. Chem. Eur. J. 2010, 16, 9722–9734. (d) Diaz Muñoz, G.; Dudley, G. B. Synthesis of 1,2,3,4-Tetrahydroquinolines Including Angustureine and Congeneric Alkaloids. A Review. Org. Prep. Proced. Int. 2015, 47, 179–206.(e) Chrzanowska, M.; Grajewska, A.; Rozwadowska, M. D. Asymmetric Synthesis of Isoquinoline Alkaloids: 2004-2015. Chem. Rev. 2016, 116, 12369–12465.

70. Arai, T.; Takahashi, K.; Kubo, A. New Antibiotics, Saframycins A, B, C, D and E. J. Antibiot. (Tokyo). 1977, 30, 1015–1018.

71. Arai, T.; Yazawa, K.; Takahashi, T.; Maeda, A.; Mikami, Y. Directed Biosynthesis of New Saframycin Derivatives with Resting Cells of Streptomyces Lavendulae. Antimicrob. Agents Chemother. 1985, 28, 5–11.

72. Fukuyama, T.; Yang, L.; Ajeck, K. L.; Sachleben, R. A. Total Synthesis of (±) Saframycin A. J. Am. Chem. Soc. 1990, 112, 3712–3713.

73. Shawe, T. T.; Liebeskind, L. S. Saframycin Synthetic Studies. Tetrahedron 1991, 47, 5643–5666.

74. Myers, A. G.; Kung, D. W. A Concise, Stereocontrolled Synthesis of (−)-Saframycin A by the Directed Condensation of α-Amino Aldehyde Precursors. J. Am. Chem. Soc. 1999, 121, 10828– 10829.

75. Selected reviews on peptide drugs (a) Räder, A. F. B.; Weinmüller, M.; Reichart, F.; Schumacher-Klinger, A.; Merzbach, S.; Gilon, C.; Hoffman, A.; Kessler, H. Orally Active Peptides: Is There a Magic Bullet? Angew. Chem. Int. Ed. 2018, 57, 14414–14438. (b) Henninot, A.; Collins, J. C.; Nuss, J. M. The Current State of Peptide Drug Discovery: Back to the Future? J. Med. Chem. 2018, 61, 1382–1414. (c) Lau, J. L.; Dunn, M. K. Therapeutic Peptides: Historical Perspectives, Current Development Trends, and Future Directions. Bioorganic Med. Chem. 2018, 26, 2700–2707. (d) Dougherty, P. G.; Sahni, A.; Pei, D. Understanding Cell Penetration of Cyclic Peptides. Chem. Rev. 2019, 119, 10241–10287

76. 舛屋圭一. 特殊環状ペプチドがもたらす創薬研究開発の新潮流. 日本薬理学雑誌 2016, 148, 322–328.

77. Selected reviews on peptide modification. (a) Hackenberger, C. P. R.; Schwarzer, D. Chemoselective Ligation and Modification Strategies for Peptides and Proteins. Angew. Chem. Int. Ed. 2008, 47, 10030–10074. (b) Wang, W.; Lorion, M. M.; Shah, J.; Kapdi, A. R.; Ackermann, L. Late-Stage Peptide Diversification by Position-Selective C−H Activation. Angew. Chem. Int. Ed. 2018, 57, 14700– 14717.

78. Selected examples of amino acid side chain ligated modification of peptides. (a) Ohata, J.; Minus, M. B.; Abernathy, M. E.; Ball, Z. T. Histidine-Directed Arylation/Alkenylation of Backbone N-H Bonds Mediated by Copper (II). J. Am. Chem. Soc. 2016, 138, 7472–7475. (b) Roque, J. B.; Kuroda, Y.; Göttemann, L. T.; Sarpong, R. Deconstructive Diversification of Cyclic Amines. Nature 2018, 564, 244–248. (c) Yu, Y.; Zhang, L. K.; Buevich, A. V.; Li, G.; Tang, H.; Vachal, P.; Colletti, S. L.; Shi, Z. C. Chemoselective Peptide Modification via Photocatalytic Tryptophan β-Position Conjugation. J. Am. Chem. Soc. 2018, 140, 6797–6800. (d) Christian, A. H.; Jia, S.; Cao, W.; Zhang, P.; Meza, A. T.; Sigman, M. S.; Chang, C. J.; Toste, F. D. A Physical Organic Approach to Tuning Reagents for Selective and Stable Methionine Bioconjugation. J. Am. Chem. Soc. 2019, 141, 12657–12662. (e) Chen, X.; Ye, F.; Luo, X.; Liu, X.; Zhao, J.; Wang, S.; Zhou, Q.; Chen, G.; Wang, P. Histidine- Specific Peptide Modification via Visible-Light-Promoted C-H Alkylation. J. Am. Chem. Soc. 2019, 141, 18230-18237.

79. The first report on effect of back-bone reduction of peptides. Russell, A. B. Studies in the Synthesis of Peptides and Related Compounds. Ph.D. Thesis. London University, UK., 1971.

80. Szelke, M.; Leckie, B. J.; Tree, M.; Brown, A.; Grant, J.; Hallett, A.; Hughes, M.; Jones, D. M.; Lever, A. F. H-77: a potent new renin inhibitor. In vitro and in vivo studies. Hypertension, 1982, 4, 59–69.

81. Szelke, M.; Leckie, B.; Hallett, A.; Jones, D. M.; Sueiras, J.; Atrash, B.; Lever, A. F. Potent new inhibitors of human renin. Nature, 1982, 299, 555–557.

82. Dauber-Osguthorpe, P.; Campbell, M. M.; Osguthorpe, D. J. Conformational analysis of peptide surrogates Reduced and retro-amide links in blocked alanine and in secondary structures. Int. J. Peptide Protein Res. 1991, 38, 357–377.

83. Marraud, M.; Dupont, V.; Grand, V.; Zerkout, S.; Lecoq, A.; Boussard, G.; Vidal, J.; Collet, A.; Aubry, A. Modifications of the Amide Bond and Conformational Constraints in Pseudopeptide Analogues. Biopolymers 1993, 33, 1135–1148.

84. Wlodawer, A.; Erickson, J. W. STRUCTURE-BASED INHIBITORS OF HIV-1 PROTEASE. Annu. Rev. Biochem. 1993, 62, 543–585.

85. Jover, J.; Cirera, J. Computational Assessment on the Tolman Cone Angles for P-Ligands. Dalt. Trans. 2019, 48, 15036–15048.

86. Dahlenburg, L.; Menzel, R.; Puchta, R.; Heinemann, F. W. Experimental and Computational Studies of Two New Mono- and Dinuclear Iridium Complexes Containing a Buchwald Biphenyl Phosphine Ligand. Inorganica Chim. Acta 2008, 361, 2623–2630.

87. Fanning, K. N.; Jamieson, A. G.; Sutherland, A. Kate N. Fanning, Andrew G. Jamieson and Andrew Sutherland. Stereoselective β-Hydroxy-α-Amino Acid Synthesis via an Ether-Directed, Palladium- Catalyzed Aza-Claisen Rearrangement. Org. Biomol. Chem. 2005, 3749–3756.

88. Feenstra, R.W.; Stokkingreef, E.H.M.; Nivard, R.J.F.; Ottenheijm, H.C.J. Interconversion of (R) and (S)-α-Hydroxy Esters: Precursors of (S) and (R)-o-Benzyl-α-Hydroxylamino Acid Esters of High Optical Purity. Tetrahedron 1988, 44, 5583–5595.

89. Feenstra, R. W.; Stokkingreef, E. H. M.; Nivard, R. J. F.; Ottenheijm, H. C. J. An Efficient Synthesis of N-Hydroxy-α-Amino Acid Derivatives of High Optical Purity. Tetrahedron Lett. 1987, 28, 1215– 1218.

90. Hale, K. J.; Manaviazar, S.; George, J. H.; Walters, M. A.; Dalby, S. M. Total Synthesis of (+) - Azinothricin and (+) -Kettapeptin. 2009, 5, 10–13.

91. Peruzzi, M. T.; Gallou, F.; Lee, S. J.; Gagné, M. R. Site Selective Amide Reduction of Cyclosporine A Enables Diverse Derivation of an Important Cyclic Peptide. Org. Lett. 2019, 21, 3451–3455.

92. Saito, T.; Hirai, H.; Kim, Y. J.; Kojima, Y.; Matsunaga, Y.; Nishida, H.; Sakakibara, T.; Suga, O.; Sujaku, T.; Kojima, N. CJ-15,208, a Novel Kappa Opioid Receptor Antagonist from a Fungus, Ctenomyces Serratus ATCC15502. J. Antibiot. (Tokyo). 2002, 55, 847–854.

93. Selected reports on synthesis of CJ-15,208 (a) Kulkarni S.S., Ross N.C., McLaughlin J.P., Aldrich J.V. (2009) Synthesis of Cyclic Tetrapeptide CJ 15,208: A Novel Kappa Opioid Receptor Antagonist. In: Valle S.D., Escher E., Lubell W.D. (eds) Peptides for Youth. Advances in Experimental Medicine and Biology, vol 611. Springer, New York, NY. (b) Ross, N. C.; Kulkarni, S. S.; McLaughlin, J. P.; Aldrich, J. V. Synthesis of CJ-15,208, a Novel κ-Opioid Receptor Antagonist. Tetrahedron Lett. 2010, 51, 5020–5023. (c) Elek, G. Z.; Koppel, K.; Zubrytski, D.; Konrad, N.; Järving, I.; Lopp, M. Divergent Access to Histone Deacetylase Inhibitory Cyclopeptides via Late- Stage Cyclopropane Ring Cleavage Strategy . Short Synthesis of Chlamydocin. Org. Lett. 2019, 21, 8473–8478

94. Selected reports on bioactivity of CJ-15,208 (a) Dolle, R. E.; Michaut, M.; Martinez-Teipel, B.; Seida, P. R.; Ajello, C. W.; Muller, A. L.; DeHaven, R. N.; Carroll, P. J. Nascent Structure-Activity Relationship Study of a Diastereomeric Series of Kappa Opioid Receptor Antagonists Derived from CJ-15,208. Bioorganic Med. Chem. Lett. 2009, 19, 3647–3650. (b) Aldrich, J. V.; Kulkarni, S. S.; Senadheera, S. N.; Ross, N. C.; Reilley, K. J.; Eans, S. O.; Ganno, M. L.; Murray, T. F.; McLaughlin, J. P. Unexpected Opioid Activity Profiles of Analogues of the Novel Peptide Kappa Opioid Receptor Ligand CJ-15,208. ChemMedChem 2011, 6, 1739– 1745. (c) Aldrich, J. V.; Senadheera, S. N.; Ross, N. C.; Ganno, M. L.; Eans, S. O.; McLaughlin, J. P. The Macrocyclic Peptide Natural Product CJ-15,208 Is Orally Active and Prevents Reinstatement of Extinguished Cocaine-Seeking Behavior. J. Nat. Prod. 2013, 76, 433–438. (d) Aldrich, J. V.; Senadheera, S. N.; Ross, N. C.; Reilley, K. A.; Ganno, M. L.; Eans, S. E.; Murray, T. F.; McLaughlin, J. P. Alanine Analogues of [D-Trp]CJ-15,208: Novel Opioid Activity Profiles and Prevention of Drug- and Stress-Induced Reinstatement of Cocaine-Seeking Behaviour. Br. J. Pharmacol. 2014, 171, 3212–3222. (e) De Marco, R.; Bedini, A.; Spampinato, S.; Cavina, L.; Pirazzoli, E.; Gentilucci, L. Versatile Picklocks to Access All Opioid Receptors: Tuning the Selectivity and Functional Profile of the Cyclotetrapeptide c[Phe- d -Pro-Phe-Trp] (CJ-15,208). J. Med. Chem. 2016, 59, 9255–9261.

95. Jiang, J.; Li, W. R.; Joullié, M. M. Selective Removal of Fluorenylmethoxycarbonyl (Fmoc) Groups under Mild Conditions. Synth. Commun. 1994, 24, 187–195.

96. Hanada, S.; Motoyama, Y.; Nagashima, H. Dual Si-H Effects in Platinum-Catalyzed Silane Reduction of Carboxamides Leading to a Practical Synthetic Process of Tertiary-Amines Involving Self-Encapsulation of the Catalyst Species into the Insoluble Silicone Resin Formed. Tetrahedron Lett. 2006, 47, 6173–6177.

97. Brown, D. S.; Charreau, P.; Hansson, T.; Ley, S. V. Substitution Reactions of 2-Phenylsulphonyl- Piperidines and -Pyrrolidines with Carbon Nucleophiles: Synthesis of the Pyrrolidine Alkaloids Norruspoline and Ruspolinone. Tetrahedron 1991, 47, 1311–1328.

98. Dubé, D.; Scholte, A. A. Reductive N-Alkylation of Amides, Carbamates and Ureas. Tetrahedron Lett. 1999, 40, 2295–2298.

99. Choo, G. C. Y.; Miyamura, H.; Kobayashi, S. Synergistic Cascade Catalysis by Metal Nanoparticles and Lewis Acids in Hydrogen Autotransfer. Chem. Sci. 2015, 6, 1719–1727.

100. Lagerlund, O.; Larhed, M. Microwave-Promoted Aminocarbonylations of Aryl Chlorides Using Mo(CO)6 as a Solid Carbon Monoxide Source. J. Comb. Chem. 2006, 8, 4–6.

101. Degani, I.; Dughera, S.; Fochi, R.; Serra, E.; Generale, 1-(2,5-Dichlorophenyl)-2,2-Bis (Methylsulfanyl)Vinyl Esters as Highly Efficient Chemoselective Acylating Reagents. Synthesis 1999, 2, 1200–1208.

102. Ochiai, M.; Tada, S.; Arimoto, M.; Fujita, E. New Allylation Reaction using Allymetal (Group IVb) Compounds: Synthesis of N-Allylamides. Chem. Pharm. Bull. 1982, 30, 2836‒2839.

103. Petricci, E.; Botta, M.; Corelli, F.; Mugnaini, C. An Improved Synthesis of Solid-Supported Reagents (SSRs) for Selective Acylation of Amines by Microwave Irradiation. Tetrahedron Lett. 2002, 43, 6507–6509.

104. Kokare, N. D.; Nagawade, R. R.; Rane, V. P.; Shinde, D. B. Organophosphorus Esters of 1-Hydroxy- 2-Phenylbenzimidazole: Synthesis and Utilization as Novel Peptide Coupling Reagents. Synthesis 2007, 5, 766–772.

105. Mangawa, S. K.; Bagh, S. K.; Sharma, K.; Awasthi, S. K. S-Triazene Based Fluorous Coupling Reagent for Direct Amide Synthesis. Tetrahedron Lett. 2015, 56, 1960–1963.

106. Molander, G. A.; Hiebel, M. A. Synthesis of Amidomethyltrifluoroborates and Their Use in Cross- Coupling Reactions. Org. Lett. 2010, 12, 4876–4879.

107. Grieco, P. A.; Clark, D. S.; Withers, G. P. Direct Conversion of Carboxylic Acids into Amides. J. Org. Chem. 1979, 44, 2945–2947.

108. Kunishima, M.; Watanabe, Y.; Terao, K.; Tani, S. Substrate-Specific Amidation of Carboxylic Acids in a Liquid-Liquid Two-Phase System Using Cyclodextrins as Inverse Phase-Transfer Catalysts. European J. Org. Chem. 2004, 22, 4535–4540.

109. Miller, R. D.; Goelitz, P. An Efficient and General Synthesis of 5-Substituted Pyrrolidinones. J. Org. Chem. 1981, 46, 1616–1618.

110. C. R. Krüger, E. G. Rochow, O-Silyl-Substituted Enols. J. Organomet. Chem. 1964, 1, 476.

111. S. F. Martin, S. K. Bur. The Stereochemical Course of Intramolecular Vinylogous Mannich Reaction. Tetrahedron Letters. 1997, 38, 7641.

112. Sakamoto, M.; Akiyama, Y.; Furumi, N.; Ishii, K.; Tomimatsu, Y.; Date, T. Reaction of N-(1- Phenylalkylidene)benzylamines with Benzoyl Cyanides. Chem. Pharm. Bull. 1983, 31, 2623‒2631.

113. Chavarot, M.; Byrne, J. J.; Chavant, P. Y.; Vallée, Y. Sc(BINOL)2Li: a new heterobimetallic catalyst for the asymmetric Strecker reaction. Tetrahedron: Asymmetry 2001, 12, 1147‒1150.

114. Wiles, C.; Watts, P. Evaluation of the Heterogeneously Catalyzed Strecker Reaction Conducted under Continuous Flow. European J. Org. Chem. 2008, 33, 5597–5613.

115. Mansawat, W.; Bhanthumnavin, W.; Vilaivan T. N-Salicyl-β-aminoalcohols as a new class of ligand for catalytic asymmetric Strecker reactions. Tetrahedron Lett. 2003, 44, 3805‒3808.

116. Blacker, J.; Clutterbuck, L. A.; Crampton, M. R.; Grosjean, C.; North, M. Catalytic, Asymmetric Strecker Reactions Catalysed by TitaniumIV and VanadiumV(Salen) Complexes. Tetrahedron Asymmetry 2006, 17, 1449–1456.

117. Takamura, M.; Hamashima, Y.; Usuda, H.; Kanai, M.; Shibasaki, M. A Catalytic Asymmetric Strecker-Type Reaction Promoted by Lewis Acid‒Lewis Base Bifunctional Catalyst. Chem. Pharm. Bull. 2000, 48, 1586‒1592.

118. Atherton, J. H.; Blacker, J.; Crampton, M. R.; Grosjean, C. The Strecker Reaction: Kinetic and Equilibrium Studies of Cyanide Addition to Iminium Ions. Org. Biomol. Chem. 2004, 2, 2567–2571.

119. Wiles, C.; Watts, P. An Integrated Microreactor for the Multicomponent Synthesis of α-Aminonitriles. Org. Process Res. Dev. 2008, 12, 1001–1006.

120. Rao, K. R.; Nageswar, Y. V. D.; Kumer, H. M. S. Biocatalytic Asymmetric Synthesis of β- Aminoacid Esters: Improved Chiral Recognition in the Presence of β-Cyclodextrin. Tetrahedron Lett. 1991, 32, 6611‒6612.

121. Sundararajan, G.; Prabagaran, N. A New Polymer-Anchored Chiral Catalyst for Asymmetric Michael Addition Reactions. Org. Lett. 2001, 3, 389–392.

122. Keck, G. E.; Enholm, E. J. Homoally1amines from Aldimines and Allylstannanes. J. Org. Chem. 1985, 50, 146–147.

123. Nakamura, H.; Nakamura, K.; Yamamoto, Y. Catalytic Asymmetric Allylation of Imines via Chiral Bis-π-Allylpalladium Complexes. J. Am. Chem. Soc. 1998, 120, 4242‒4243.

124. Tsuge, O.; Kanemasa, S.; Yoshioka, M. Lithium Bromide/Triethylamine Induced Cycloaddition of N-Alkylidene 2-Amino Esters and Amides to Electron-Deficient Olefins with High Regioand Stereoselectivity. J. Org. Chem. 1988, 53, 1384–1391.

125. Oderaotoshi, Y.; Cheng, W.; Fujitomi, S.; Kasano, Y.; Minakata, S.; Komatsu, M. Exo- and Enantioselective Cycloaddition of Azomethine Ylides Generated from N-Alkylidene Glycine Esters Using Chiral Phosphine - Copper Complexes. Org. Lett. 2003, 5, 5043–5046.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る