リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Fundamental diagram of urban rail transit considering train–passenger interaction」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Fundamental diagram of urban rail transit considering train–passenger interaction

瀬尾 亨 和田 健太郎 福田 大輔 Toru Seo Kentaro Wada Daisuke Fukuda 東京工業大学 DOI:https://doi.org/10.1007/s11116-022-10281-0

2022.04.22

概要

Urban rail transit often operates with high service frequencies to serve heavy passenger demand during rush hours. Such operations can be delayed by two types of congestion: train congestion and passenger congestion, both of which interact with each other. This delay is problematic for many transit systems, since it can be amplified due to the inter- action. However, there are no tractable models describing them; and it makes difficult to analyze management strategies of congested transit systems in general and tractable ways. To fill this gap, this article proposes simple yet physical and dynamic model of urban rail transit. First, a fundamental diagram of transit system (i.e., theoretical relation among train-flow, train-density, and passenger-flow) is analytically derived considering the afore- mentioned physical interaction. Then, a macroscopic model of transit system for dynamic transit assignment is developed based on the fundamental diagram. Finally, accuracy of the macroscopic model is investigated by comparing to microscopic simulation. The proposed models would be useful for mathematical analysis on management strategies of urban rail transit systems, such as optimal dynamic pricing for travel demand management.

Keywords
Public transport · Rush hour · Fundamental diagram · Macroscopic fundamental diagram · Dynamic transit assignment

この論文で使われている画像

参考文献

Alonso, B., Munoz, J.C., Ibeas, A., Moura, J.L.: A congested and dwell time dependent transit corridor assignment model. J. Adv. Transport. (2017)

Carey, M., Kwieciński, A.: Stochastic approximation to the effects of headways on knock-on delays of trains. Transport. Res. Part B 28(4), 251–267 (1994)

Carey, M., McCartney, M.: An exit-flow model used in dynamic traffic assignment. Comput. Oper. Res.31(10), 1583–1602 (2004)

Cats, O., West, J., Eliasson, J.: A dynamic stochastic model for evaluating congestion and crowding effects in transit systems. Transport. Res. Part B 89, 43–57 (2016)

Chiabaut, N.: Evaluation of a multimodal urban arterial: The passenger macroscopic fundamental diagram.Transport. Res. Part B 81, 410–420 (2015)

Corman, F., Henken, J., Keyvan-Ekbatani, M.: Macroscopic fundamental diagrams for train operations—are we there yet? In: 2019 6th International Conference on Models and Technologies for Intelligent Trans- portation Systems, pp. 1–8 (2019)

Cunha, J., Reis, V., Teixeira, P.: Development of an agent-based model for railway infrastructure project appraisal. Transportation (2021)

Cuniasse, P.-A., Buisson, C., Rodriguez, J., Teboul, E., de Almeida, D.: Analyzing railroad congestion in a dense urban network through the use of a road traffic network fundamental diagram concept. Public Transport. 7(3), 355–367 (2015)

Daganzo, C.F.: Fundamentals of Transportation and Traffic Operations. Pergamon, Oxford (1997)

Daganzo, C.F.: Urban gridlock: macroscopic modeling and mitigation approaches. Transp. Res. Part B41(1), 49–62 (2007)

Daganzo, C.F.: A headway-based approach to eliminate bus bunching: systematic analysis and comparisons.Transp. Res. Part B 43(10), 913–921 (2009)

de Cea, J., Fernández, E.: Transit assignment for congested public transport systems: an equilibrium model.Transp. Sci. 27(2), 133–147 (1993)

de Palma, A., Kilani, M., Proost, S.: Discomfort in mass transit and its implication for scheduling and pric- ing. Transp. Res. Part B 71, 1–18 (2015)

de Palma, A., Lindsey, R., Monchambert, G.: The economics of crowding in public transport. Working Paper (hal-01203310) (2015b)

de Rivera, A.D., Dick, C.T.: Illustrating the implications of moving blocks on railway traffic flow behavior with fundamental diagrams. Transp. Res. Part C 123, 102982 (2021)

Dicembre, A., Ricci, S.: Railway traffic on high density urban corridors: capacity, signalling and timetable.J. Rail Transp. Plan. Manag. 1(2), 59–68 (2011)

Edie, L.C.: Discussion of traffic stream measurements and definitions. In: Almond, J. (ed.) Proceedings of the 2nd International Symposium on the Theory of Traffic Flow, pp. 139–154 (1963)

Farhi, N.: Physical models and control of the train dynamics in a metro line without junction. IEEE Trans.Control Syst. Technol. 27(4), 1829–1837 (2019)

Fosgerau, M.: Congestion in the bathtub. Econ. Transp. 4, 241–255 (2015)

Fukuda, D., Imaoka, M., Seo, T.: Empirical investigation of fundamental diagram for urban rail transit using Tokyo’s commuter rail data. In: TRANSITDATA2019: 5th International Workshop and Symposium (2019)

Geroliminis, N., Daganzo, C.F.: Macroscopic modeling of traffic in cities. In: Transportation Research Board 86th Annual Meeting (2007)

Geroliminis, N., Haddad, J., Ramezani, M.: Optimal perimeter control for two urban regions with macro- scopic fundamental diagrams: A model predictive approach. IEEE Trans. Intell. Transp. Syst. 14(1), 348–359 (2013)

Geroliminis, N., Levinson, D.M.: Cordon pricing consistent with the physics of overcrowding. In: Lam, W.H.K., Wong, S.C., Lo, H.K. (eds.) Transportation and Traffic Theory 2009. Springer, pp. 219–240 (2009)

Geroliminis, N., Zheng, N., Ampountolas, K.: A three-dimensional macroscopic fundamental diagram for mixed bi-modal urban networks. Transport. Res. Part C 42, 168–181 (2014)

Gonzales, E.J., Daganzo, C.F.: Morning commute with competing modes and distributed demand: user equilibrium, system optimum, and pricing. Transp. Res. Part B 46(10), 1519–1534 (2012)

Greenshields, B.D.: A study of traffic capacity. Highway Res Board Proc. 14, 448–477 (1935)

Halvorsen, A., Koutsopoulos, H.N., Ma, Z., Zhao, J.: Demand management of congested public transport systems: a conceptual framework and application using smart card data. Transportation 47(5), 2337– 2365 (2019)

Higgins, A., Kozan, E.: Modeling train delays in urban networks. Transp. Sci. 32(4), 346–357 (1998)

Hoogendoorn, S.P., Daamen, W.: Pedestrian behavior at bottlenecks. Transp. Sci. 39(2), 147–159 (2005) Huan, N., Hess, S., Yao, E.: Understanding the effects of travel demand management on metro commut-ers’ behavioural loyalty: a hybrid choice modelling approach. Transportation (2021)

Huisman, D., Kroon, L.G., Lentink, R.M., Vromans, M.J.C.M.: Operations research in passenger railway transportation. Stat. Neerl. 59(4), 467–497 (2005)

Kariyazaki, K., Hibino, N., Morichi, S.: Simulation analysis of train operation to recover knock-on delay under high-frequency intervals. Case Stud. Transp. Policy 3(1), 92–98 (2015)

Kato, H., Kaneko, Y., Soyama, Y.: Departure-time choices of urban rail passengers facing unreliable ser- vice: Evidence from Tokyo. In: Proceedings of the International Conference on Advanced Systems for Public Transport 2012 (2012)

Koutsopoulos, H., Wang, Z.: Simulation of urban rail operations: application framework. Transp. Res.Rec. 2006, 84–91 (2007)

Kraus, M., Yoshida, Y.: The commuter’s time-of-use decision and optimal pricing and service in urban mass transit. J. Urban Econ. 51(1), 170–195 (2002)

Kumagai, J., Wakamatsu, M., Managi, S.: Do commuters adapt to in-vehicle crowding on trains? Trans- portation (2020)

Kusakabe, T., Iryo, T., Asakura, Y.: Estimation method for railway passengers’ train choice behavior with smart card transaction data. Transportation 37(5), 731–749 (2010)

Lam, W.H.K., Cheung, C.Y., Poon, Y.F.: A study of train dwelling time at the Hong Kong mass transit railway system. J. Adv. Transp. 32(3), 285–295 (1998)

Li, K.P., Gao, Z.Y., Ning, B.: Cellular automaton model for railway traffic. J. Comput. Phys. 209(1), 179–192 (2005)

Li, S., Dessouky, M.M., Yang, L., Gao, Z.: Joint optimal train regulation and passenger flow control strategy for high-frequency metro lines. Transp. Res. Part B 99, 113–137 (2017)

Lighthill, M.J., Whitham, G.B.: On kinematic waves. II. a theory of traffic flow on long crowded roads.Proc. R. Soc. Lond. A 229(1178), 317–345 (1955)

Mahmassani, H.S., Williams, J.C., Herman, R.: Investigation of network-level traffic flow relationships: some simulation results. Transp. Res. Rec. 971, 121–130 (1984)

Merchant, D.K., Nemhauser, G.L.: A model and an algorithm for the dynamic traffic assignment prob- lems. Transp. Sci. 12(3), 183–199 (1978)

Newell, G.F.: A simplified theory of kinematic waves in highway traffic. Transp. Res. Part B 27(4), 281–313 (Part I, II, and III) (1993)

Newell, G.F.: A simplified car-following theory: a lower order model. Transp. Res. Part B 36(3), 195– 205 (2002)

Newell, G.F., Potts, R.B.: Maintaining a bus schedule. In: Proceedings of the 2nd Australian Road Research Board. Vol. 2 (1964)

Niu, H., Zhou, X.: Optimizing urban rail timetable under time-dependent demand and oversaturated con- ditions. Transp. Res. Part C 36, 212–230 (2013)

Parbo, J., Nielsen, O.A., Prato, C.G.: Passenger perspectives in railway timetabling: a literature review.Transp. Rev. 36(4), 500–526 (2016)

Richards, P.I.: Shock waves on the highway. Oper. Res. 4(1), 42–51 (1956)

Schanzenbacher, F., Farhi, N., Leurent, F., Gabriel, G.: Feedback control for metro lines with a junction.IEEE Trans. Intell. Transp. Syst. 22(5), 2741–2750 (2021)

Seo, T., Wada, K., Fukuda, D.: Fundamental diagram of urban rail transit considering train–passenger interaction. arXiv preprint arXiv: 1708.02147(updated in 2021) (2017a)

Seo, T., Wada, K., Fukuda, D.: A macroscopic and dynamic model of urban rail transit with delay and congestion. In: Transportation Research Board 96th Annual Meeting (2017b)

Seo, T., Wada, K., Fukuda, D.: Transit fundamental diagram and its application to analysis of high fre- quency transitsystems. Proceedings of the Infrastructure Planning 60, (in Japanese) (2019)

Tabuchi, T.: Bottleneck congestion and modal split. J. Urban Econ. 34(3), 414–431 (1993)

Tian, Q., Huang, H.-J., Yang, H.: Equilibrium properties of the morning peak-period commuting in a many-to-one mass transit system. Transp. Res. Part B 41(6), 616–631 (2007)

Tirachini, A., Hensher, D.A., Rose, J.M.: Crowding in public transport systems: effects on users, opera- tion and implications for the estimation of demand. Transp. Res. Part A 53, 36–52 (2013)

Trozzi, V., Gentile, G., Bell, M.G.H., Kaparias, I.: Dynamic user equilibrium in public transport net- works with passenger congestion and hyperpaths. Transp. Res. Part B 57, 266–285 (2013)

Van Breusegem, V., Campion, G., Bastin, G.: Traffic modeling and state feedback control for metro lines. IEEE Trans. Autom. Control 36(7), 770–784 (1991)

Vuchic, V.R.: Urban Transit: Operations, Planning, and Economics. Wiley, New York (2005)

Wada, K., Kil, S., Akamatsu, T., Osawa, M.: A control strategy to prevent delay propagation in high-fre- quency railway systems. Journal of Japan Society of Civil Engineers, Ser. D3 (Infrastructure Planning and Management) 68(5), I_1025–I_1034 (2012), (in Japanese; extended abstract in English was pre- sented at the 1st European Symposium on Quantitative Methods in Transportation Systems and avail- able at https://www.researchgate.net/publication/281823577)

Zhang, J., Wada, K.: Fundamental diagram of urban rail transit: An empirical investigation by Boston’s subway data. In: hEART 2019: 8th Symposium of the European Association for Research in Transpor- tation (2019)

Zhang, J., Wada, K., Oguchi, T.: Morning commute in congested urban rail transit system: A macroscopic model for equilibrium distribution of passenger arrivals. arXiv preprint arXiv:2102.13454 (2021)

参考文献をもっと見る