リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「線虫の介在神経の化学走性回路における役割は、感覚シグナルの統合を調節するEGL-4/PKGにより決定される」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

線虫の介在神経の化学走性回路における役割は、感覚シグナルの統合を調節するEGL-4/PKGにより決定される

日野, 喬央 HINO, Takahiro ヒノ, タカヒロ 九州大学

2021.06.30

概要

Interneurons, innervated by multiple sensory neurons, need to integrate information from these sensory neurons and respond to sensory stimuli adequately. Mechanisms how sensory information is integrated to form responses of interneurons are not fully understood. In Caenorhabditis elegans, loss-of-function mutations of egl-4, which encodes a cGMP-dependent protein kinase (PKG), cause a defect in chemotaxis to odorants. My genetic and imaging analyses revealed that the response property of AIY interneuron to an odorant is reversed in the egl-4 mutant, while the responses of two upstream olfactory neurons, AWA and AWC, are largely unchanged. Cell-ablation experiments show that AIY in the egl-4 mutant functions to suppress chemotaxis. Furthermore, the reversal of AIY response occurs only in the presence of sensory signals from both AWA and AWC. These results suggest that sensory signals are inadequately integrated in the egl-4 mutant. I also show that egl-4 expression in AWA and another sensory neuron prevents the reversed AIY response and restores chemotaxis in the egl-4 mutants. I propose that EGL-4/PKG, by suppressing aberrant integration of signals from olfactory neurons, converts the response property of an interneuron to olfactory stimuli and maintains the role of the interneuron in the circuit to execute chemotactic behavior.

参考文献

Altun ZF, Chen B, Wang ZW, Hall DH. 2009. High resolution map of Caenorhabditis elegans gap junction proteins. Dev Dyn 238:1936–1950. doi:10.1002/dvdy.22025

Bacaj T, Shaham S. 2007. Temporal control of cell-specific transgene expression in Caenorhabditis elegans. Genetics 176:2651–2655. doi:10.1534/genetics.107.074369

Bargmann CI, Hartwieg E, Horvitz HR. 1993. Odorant-selective genes and neurons mediate olfaction in C. elegans. Cell 74:515–527. doi:10.1016/0092-8674(93)80053-H

Bargmann CI, Horvitz HR. 1991. Control of larval development by chemosensory neurons in Caenorhabditis elegans. Science (80- ) 251:1243– 1246. doi:10.1126/science.2006412

Barnhart EL, Wang IE, Wei H, Desplan C, Clandinin TR. 2018. Sequential Nonlinear Filtering of Local Motion Cues by Global Motion Circuits. Neuron 100:229-243.e3. doi:10.1016/j.neuron.2018.08.022

Calhoun AJ, Tong A, Pokala N, Fitzpatrick JAJ, Sharpee TO, Chalasani SH. 2015. Neural mechanisms for evaluating environmental variability in caenorhabditis elegans. Neuron 86:428–441. doi:10.1016/j.neuron.2015.03.026

Chalasani SH, Chronis N, Tsunozaki M, Gray JM, Ramot D, Goodman MB, Bargmann CI. 2007. Dissecting a circuit for olfactory behaviour in Caenorhabditis elegans. Nature 450:63–70. doi:10.1038/nature06292 Chalasani SH, Kato S, Albrecht DR, Nakagawa T, Abbott LF, Bargmann CI. 2010. Neuropeptide feedback modifies odor-evoked dynamics in Caenorhabditis elegans olfactory neurons. Nat Neurosci 13:615–621. doi:10.1038/nn.2526

Chelur DS, Chalfie M. 2007. Targeted cell killing by reconstituted caspases. Proc Natl Acad Sci U S A 104:2283–2288. doi:10.1073/pnas.0610877104

Cho SW, Choi KY, Park CS. 2004. A new putative cyclic nucleotide-gated channel gene, cng-3, is critical for thermotolerance in Caenorhabditis elegans. Biochem Biophys Res Commun 325:525–531. doi:10.1016/j.bbrc.2004.10.060

Chou JH, Bargmann CI, Sengupta P. 2001. The Caenorhabditis elegans odr-2 gene encodes a novel Ly-6-related protein required for olfaction. Genetics 157:211–224.

Chronis N, Zimmer M, Bargmann CI. 2007. Microfluidics for in vivo imaging of neuronal and behavioral activity in Caenorhabditis elegans. Nat Methods 4:727–731. doi:10.1038/nmeth1075

Coburn CM, Bargmann CI. 1996. A putative cyclic nucleotide-gated channel is required for sensory development and function in C. elegans. Neuron 17:695–706. doi:10.1016/S0896-6273(00)80201-9

Colosimo ME, Brown A, Mukhopadhyay S, Gabel C, Lanjuin AE, Samuel ADT, Sengupta P. 2004. Identification of Thermosensory and Olfactory Neuron-Specific Genes via Expression Profiling of Single Neuron Types. Curr Biol 14:2245–2251. doi:10.1016/j.cub.2004.12.030

Daniels SA, Ailion M, Thomas JH, Sengupta P. 2000. egl-4 Acts through a transforming growth factor-β/SMAD pathway in Caenorhabditis elegans to regulate multiple neuronal circuits in response to sensory cues. Genetics 156:123–141.

Drider D, Bekal S, Prévost H. 2004. Genetic organization and expression of citrate permease in lactic acid bacteria. Genet Mol Res. 3 (2): 273-281

Ferkey DM, Hyde R, Haspel G, Dionne HM, Hess HA, Suzuki H, Schafer WR, Koelle MR, Hart AC. 2007. C. elegans G Protein Regulator RGS-3 Controls Sensitivity to Sensory Stimuli. Neuron 53:39–52. doi:10.1016/j.neuron.2006.11.015

Fujiwara M, Aoyama I, Hino T, Teramoto T, Ishihara T. 2016. Gonadal Maturation Changes Chemotaxis Behavior and Neural Processing in the Olfactory Circuit of Caenorhabditis elegans. Curr Biol 26:1522–1531. doi:10.1016/j.cub.2016.04.058

Fujiwara M, Sengupta P, McIntire SL. 2002. Regulation of body size and behavioral state of C. elegans by sensory perception and the egl-4 cGMP-dependent protein kinase. Neuron 36:1091–1102. doi:10.1016/S0896-6273(02)01093-0

Gordus A, Pokala N, Levy S, Flavell SW, Bargmann CI. 2015. Feedback from network states generates variability in a probabilistic olfactory circuit. Cell 161:215–227. doi:10.1016/j.cell.2015.02.018

Gray JM, Hill JJ, Bargmann CI. 2005. A circuit for navigation in Caenorhabditis elegans. Proc Natl Acad Sci U S A 102:3184–3191. doi:10.1073/pnas.0409009101

Guillermin ML, Carrillo MA, Hallem EA. 2017. A Single Set of Interneurons Drives Opposite Behaviors in C. elegans. Curr Biol 27:2630-2639.e6. doi:10.1016/j.cub.2017.07.023

Hawk JD, Calvo AC, Liu P, Almoril-Porras A, Aljobeh A, Torruella-Suárez ML, Ren I, Cook N, Greenwood J, Luo L, Wang ZW, Samuel ADT, Colón-Ramos DA. 2018. Integration of Plasticity Mechanisms within a Single Sensory Neuron of C. elegans Actuates a Memory. Neuron 97:356-367.e4. doi:10.1016/j.neuron.2017.12.027

Hobert O, Mori I, Yamashita Y, Honda H, Ohshima Y, Liu Y, Ruvkun G. 1997. Regulation of interneuron function in the C. elegans thermoregulatory pathway by the ttx-3 LIM homeobox gene. Neuron 19:345–357. doi:10.1016/S0896-6273(00)80944-7

Itskovits E, Ruach R, Zaslaver A. 2018. Concerted pulsatile and graded neural dynamics enables efficient chemotaxis in C. elegans. Nat Commun 9. 2866. doi:10.1038/s41467-018-05151-2

Jin H, Fishman ZH, Ye M, Wang L, Zuker CS. 2021. Top-Down Control of Sweet and Bitter Taste in the Mammalian Brain. Cell 184:257-271.e16. doi:10.1016/j.cell.2020.12.014

Juang BT, Gu C, Starnes L, Palladino F, Goga A, Kennedy S, L’Etoile ND. 2013. Endogenous nuclear RNAi mediates behavioral adaptation to odor. Cell 154:1010–1022. doi:10.1016/j.cell.2013.08.006

Kim K, Colosimo ME, Yeung H, Sengupta P. 2005. The UNC-3 Olf/EBF protein represses alternate neuronal programs to specify chemosensory neuron identity. Dev Biol 286:136–148. doi:10.1016/j.ydbio.2005.07.024

Kocabas A, Shen CH, Guo Z V., Ramanathan S. 2012. Controlling interneuron activity in Caenorhabditis elegans to evoke chemotactic behaviour. Nature 490:273–277. doi:10.1038/nature11431

Koga M, Ohshima Y. 2004. The C. elegans ceh-36 Gene Encodes a Putative Homemodomain Transcription Factor Involved in Chemosensory Functions of ASE and AWC Neurons. J Mol Biol 336:579–587. doi:10.1016/j.jmb.2003.12.037

Komatsu H, Mori I, Rhee JS, Akaike N, Ohshima Y. 1996. Mutations in a cyclic nucleotide-gated channel lead to abnormal thermosensation and chemosensation in C. elegans. Neuron 17:707–718. doi:10.1016/S0896-6273(00)80202-0

Krzyzanowski MC, Brueggemann C, Ezak MJ, Wood JF, Michaels KL, Jackson CA, Juang BT, Collins KD, Yu MC, L’Etoile ND, Ferkey DM. 2013. The C. elegans cGMP-Dependent Protein Kinase EGL-4 Regulates Nociceptive Behavioral Sensitivity. PLoS Genet 9. doi:10.1371/journal.pgen.1003619

L’Etoile ND, Coburn CM, Eastham J, Kistler A, Gallegos G, Bargmann CI. 2002. The cyclic GMP-dependent protein kinase EGL-4 regulates olfactory adaptation in C. elegans. Neuron 36:1079–1089. doi:10.1016/S0896-6273(02)01066-8

Lanjuin A, VanHoven MK, Bargmann CI, Thompson JK, Sengupta P. 2003. Otx/otd homeobox genes specify distinct sensory neuron identities in C. elegans. Dev Cell 5:621–633. doi:10.1016/S1534-5807(03)00293-4

Larsch J, Flavell SW, Liu Q, Gordus A, Albrecht DR, Bargmann CI. 2015. A Circuit for Gradient Climbing in C. elegans Chemotaxis. Cell Rep 12:1748– 1760. doi:10.1016/j.celrep.2015.08.032

Larsch J, Ventimiglia D, Bargmann CI, Albrecht DR. 2013. High-throughput imaging of neuronal activity in Caenorhabditis elegans. Proc Natl Acad Sci U S A 110. doi:10.1073/pnas.1318325110

Lee JI, O’Halloran DM, Eastham-Anderson J, Juang BT, Kaye JA, Hamilton OS, Lesch B, Goga A, L’Etoile ND. 2010. Nuclear entry of a cGMP-dependent kinase converts transient into long-lasting olfactory adaptation. Proc Natl Acad Sci U S A 107:6016–6021. doi:10.1073/pnas.1000866107

Lesch BJ, Bargmann CI. 2010. The homeodomain protein hmbx-1 maintains asymmetric gene expression in adult C. elegans olfactory neurons. Genes Dev 24:1802–1815. doi:10.1101/gad.1932610

Li Z, Liu J, Zheng M, Xu XZS. 2014. Encoding of both analog- and digital-like behavioral outputs by one C. Elegans interneuron. Cell 159:751–765. doi:10.1016/j.cell.2014.09.056

Mok CA, Healey MP, Shekhar T, Leroux MR, Héon E, Zhen M. 2011. Mutations in a guanylate cyclase GCY-35/GCY-36 modify bardet-biedl syndrome-associated phenotypes in Caenorhabditis elegans. PLoS Genet 7:31–32. doi:10.1371/journal.pgen.1002335

Nagai T, Yamada S, Tominaga T, Ichikawa M, Miyawaki A. 2004. Expanded dynamic range of fluorescent indicators for Ca2+ by circularly permuted yellow fluorescent proteins. Proc Natl Acad Sci U S A 101:10554–10559. doi:10.1073/pnas.0400417101

Nakano S, Ikeda M, Tsukada Y, Fei X, Suzuki T, Niino Y, Ahluwalia R, Sano A, Kondo R, Ihara K, Miyawaki A, Hashimoto K, Higashiyama T, Mori I. 2020. Presynaptic MAST kinase controls opposing postsynaptic responses to convey stimulus valence in Caenorhabditis elegans. Proc Natl Acad Sci U S A 117:1638–1647. doi:10.1073/pnas.1909240117

O’Halloran DM, Altshuler-Keylin S, Zhang XD, He C, Morales-Phan C, Yu Y, Kaye JA, Brueggemann C, Chen TY, L’Etoile ND. 2017. Contribution of the cyclic nucleotide gated channel subunit, CNG-3, to olfactory plasticity in Caenorhabditis elegans. Sci Rep 7:1–13. doi:10.1038/s41598-017-00126-7

Oda S, Tomioka M, Iino Y. 2011. Neuronal plasticity regulated by the insulin-like signaling pathway underlies salt chemotaxis learning in Caenorhabditis elegans. J Neurophysiol 106:301–308. doi:10.1152/jn.01029.2010

Ohno H, Sakai N, Adachi T, Iino Y. 2017. Dynamics of Presynaptic Diacylglycerol in a Sensory Neuron Encode Differences between Past and Current Stimulus Intensity. Cell Rep 20:2294–2303. doi:10.1016/j.celrep.2017.08.038

Ren P, Lim CS, Johnsen R, Albert PS, Pilgrim D, Riddle DL. 1996. Control of C. elegans larval development by neuronal expression of a TGF-β homolog. Science (80- ) 274:1389–1391. doi:10.1126/science.274.5291.1389

Roayaie K, Crump JG, Sagasti A, Bargmann CI. 1998. The Gα protein ODR-3 mediates olfactory and nociceptive function and controls cilium morphogenesis in C. elegans olfactory neurons. Neuron 20:55–67. doi:10.1016/S0896-6273(00)80434-1

Schackwitz WS, Inoue T, Thomas JH. 1996. Chemosensory neurons function in parallel to mediate a pheromone response in C. elegans. Neuron 17:719–728. doi:10.1016/S0896-6273(00)80203-2

Sengupta P, Chou JH, Bargmann CI. 1996. odr-10 Encodes a seven transmembrane domain olfactory receptor required for responses to the odorant diacetyl. Cell 84:899–909. doi:10.1016/S0092-8674(00)81068-5

Sengupta P, Colbert HA, Bargmann CI. 1994. The C. elegans gene odr-7 encodes an olfactory-specific member of the nuclear receptor superfamily. Cell 79:971–980. doi:10.1016/0092-8674(94)90028-0

Shinkai Y, Yamamoto Y, Fujiwara M, Tabata T, Murayama T, Hirotsu T, Ikeda DD, Tsunozaki M, Iino Y, Bargmann CI, Katsura I, Ishihara T. 2011. Behavioral choice between conflicting alternatives is regulated by a receptor guanylyl cyclase, GCY-28, and a receptor tyrosine kinase, SCD-2, in AIA interneurons of Caenorhabditis elegans. J Neurosci 31:3007–3015. doi:10.1523/JNEUROSCI.4691-10.2011

Shioi G, Shoji M, Nakamura M, Ishihara T, Katsura I, Fujisawa H, Takagi S. 2001. Mutations affecting nerve attachment of Caenorhabditis elegans. Genetics April 1, 2001 vol. 157 no. 4 1611-1622

Stringham EG, Dixon DK, Jones D, Candido EPM. 1992. Temporal and spatial expression patterns of the small heat shock (hsp16) genes in transgenic Caenorhabditis elegans. Mol Biol Cell 3:221–233. doi:10.1091/mbc.3.2.221

Trent C, Tsuing N, Horvitz HR. 1983. Egg-laying defective mutants of the nematode Caenorhabditis elegans. Genetics 104:619–647.

Troemel ER, Sagasti A, Bargmann CI. 1999. Lateral signaling mediated by axon contact and calcium entry regulates asymmetric odorant receptor expression in C. elegans. Cell 99:387–398. doi:10.1016/S0092-8674(00)81525-1

Tsalik EL, Hobert O. 2003. Functional mapping of neurons that control locomotory behavior in Caenorhabditis elegans. J Neurobiol 56:178–197. doi:10.1002/neu.10245

Tsunozaki M, Chalasani SH, Bargmann CI. 2008. A Behavioral Switch: cGMP and PKC Signaling in Olfactory Neurons Reverses Odor Preference in C. elegans. Neuron 59:959–971. doi:10.1016/j.neuron.2008.07.038

Van Der Linden AM, Wiener S, You NJ, Kim K, Avery L, Sengupta P. 2008. The EGL-4 PKG acts with KIN-29 salt-inducible kinase and protein kinase A to regulate chemoreceptor gene expression and sensory behaviors in Caenorhabditis elegans. Genetics 180:1475–1491. doi:10.1534/genetics.108.094771

Ventimiglia D, Bargmann CI. 2017. Diverse modes of synaptic signaling, regulation, and plasticity distinguish two classes of C. elegans glutamatergic neurons. Elife 6:1–25. doi:10.7554/eLife.31234

White JG, Southgate E, Thomson JN BS. 1986. The Structure of the Nervous System of the Nematode Caenorhabditis elegans. Philos Trans R Soc London 314:1–340. doi:10.1098/rstb.1986.0056

Yu S, Avery L, Baude E, Garbers DL. 1997. Guanylyl cyclase expression in specific sensory neurons: A new family of chemosensory receptors. Proc Natl Acad Sci U S A 94:3384–3387. doi:10.1073/pnas.94.7.3384

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る