リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「ヒト化ウサギ由来T細胞受容体様抗体を用いたキメラ抗原受容体の作製および評価」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

ヒト化ウサギ由来T細胞受容体様抗体を用いたキメラ抗原受容体の作製および評価

下川 友子 富山大学

2022.03.23

概要

〔⽬的〕
 近年、がん免疫療法は急速に発達し、がん治療における第4の治療として期待されている。その中でもB細胞性腫瘍のCD19を標的としたキメラ抗原受容体(Chimeric AntigenReceptor:CAR)T細胞療法(CAR-T療法)や、⼆重特異性T細胞活性化抗体(bispecific T cell engager:BiTE)療法は既に臨床応⽤され、⾼い治療効果が注⽬されている。しかしそれらの作⽤機序により、標的が細胞表⾯の抗原に限定さるため、がん細胞で発現する95%近くの細胞内のがん抗原を標的にすることができなかった。細胞内のがん抗原は、がんペプチド/MHC(p/MHC)として細胞表⾯上に提⽰され、T細胞受容体(T-cell receptor:TCR)によって認識される。近年、TCRと同様にp/MHCを認識するTCR様抗体が開発され、TCR様抗体を⽤いたCAR-T細胞療法やBiTE抗体療法の開発が注⽬されている。しかしながら、迅速かつ効率的なTCR様抗体の作製は困難なため、TCR様抗体を⽤いたCAR-T細胞療法やBiTE抗体療法への応⽤は限定的であった。

 富⼭⼤学免疫学教室では、これらの問題解決に取り組み、ウサギ由来TCR様抗体の迅速かつ効率的な作製法の開発に成功した。そして、作製したEBウイルス由来抗原であるBRLF1p/MHCに対するTCR様抗体をBiTEに改変したところ、in vitroにおいて細胞傷害活性が認められたことから、TCR様抗体を⽤いたがん免疫療法に、新たな突破⼝が開かれた。

 しかし実際の臨床応⽤には、ウサギ由来TCR様抗体による免疫原性のリスクを減らす⽬的で、抗体のヒト化が必要である。そこで本研究は、ウサギ由来TCR様抗体の臨床応⽤に向けた第⼀歩の検証として、先に作製したBRLF1p/MHCに対するTCR様抗体をモデルに、このTCR様抗体をヒトしてCAR-T細胞を作製し、腫瘍モデルを⽤いてin vitroおよびin vivoにおける抗腫瘍効果を評価した。

〔⽅法並びに成績〕
1. ウサギ由来TCR様抗体のヒト化とその特異性、親和性の評価
 先に作製したBRLF1p/MHCに対する4種類のウサギ由来TCR様抗体を、相補性決定領域グラフト技術により、ヒト化した。ヒト化TCR様抗体の抗原特異性をフローサイトメトリーにより評価した。その結果、BRLF1をペプチドパルスしたT2-A24細胞に対して、ヒト化した全てのTCR様抗体が抗原特異的に結合することが認められた。BRLF1p/MHCに対するヒト化TCR様抗体の抗体結合親和性を、ELISAとスキャッチャードプロット解析により測定した。3種類のヒト化TCR様抗体は、親和性は維持されていたが、残りの1種類のヒト化抗体は、親和性が減少していた。

2. ヒト化BRLF1p/MHCTCR様CARを導⼊したT細胞の作製
 抗原特異性と結合⼒が維持されていた3種類のヒト化TCR様抗体⽤いて、第⼆世代のCARを作製した。これらのCARをヒト末梢⾎単核細胞にレトロウイルス法で導⼊し、TCR様CAR-T細胞を作製した。TCR様CAR-T細胞の抗原特異性をp/MHCとの結合性をフローサイトメーターにより検証したところ、いずれも、抗原特異性が認められた。

3. ヒト化BRLF1p/MHCTCR様CAR-T細胞のinvitroでの検証
 TCR様CAR-T細胞の標的細胞に対する細胞傷害活性をin vitroで解析した。標的細胞として、ペプチドパルスしたルシフェラーゼを恒常的に発現するT2-A24細胞と、抗原ペプチド/HLA-A24とルシフェラーゼを恒常的に発現するK562細胞を使⽤した。これら標的細胞とTCR様CAR-T細胞を共培養した。24時間後、ルシフェラーゼの活性を指標に⽣存する標的細胞を検出したところ、1種類のTCR様CAR-T細胞は抗原特異的に細胞傷害活性が認められたが、残りの2種類のTCR様抗体では、抗原⾮依存的な細胞傷害活性が認められた。次に,TCR様CAR-T細胞が抗原刺激で起こる活性化を評価した。TCR様CAR-T細胞と標的細胞と共培養し、TCR様CAR-T細胞の活性化をインターフェロン(IFN)-γの分泌と、T細胞の活性化マーカーの1つであるCD69の発現により評価した。その結果、抗原特異的に細胞傷害活性が認められた1種類のTCR様抗体CAR-T細胞は、抗原特異的にIFN-γの分泌と、CD69の発現上昇が認められた。これらのin vitro結果から、最も抗原特異性が⾼かったこのCAR-T細胞を、in vivoでの解析に⽤いた。

4. ヒト化BRLF1p/MHCTCR様CAR-T細胞のin vivoにおける細胞傷害活性
 最後に,TCR様CAR-T細胞のin vivoにおける抗腫瘍活性を評価した。NSGマウスに腫瘍細胞として、先のin vitroにおける細胞傷害試験で⽤いたBRLF1p/HLA-A24とルシフェラーゼを恒常的に発現するK562細胞を移植して、坦がんマウスを作製した。この坦がんマウスにTCR様CAR-T細胞を投与し、経時的に腫瘍の拡⼤をin vivoイメージングにより評価した。その結果、TCR様CAR-T細胞投与群では、コントロールCAR-T細胞投与群および腫瘍のみ群と⽐較して、腫瘍の増殖が抑制されることが認められた。

〔総括〕
 以上の結果より、ウサギ由来のヒト化TCR様抗体CAR-T細胞は,in vitroおよびin vivoにおいて、抗原特異的な細胞傷害活性が認められた。今までは、TCR様抗体の作製が困難なためその応⽤が限定的であったが、本研究と、及び以前の研究で確⽴したウサギ由来TCR様抗体の迅速かつ効率的な作製の成果を併せることで、ウサギよりTCR様抗体を効率的に作製して、得られた抗体をヒト化してCAR-T細胞を作製し、in vitroおよびin vivoにおける抗腫瘍効果評価する⼀連の⼯程を確⽴するに⾄った。本⼀連の⼯程を、様々ながん抗原p/MHCに応⽤することで、細胞内タンパク質を標的としたCAR-T細胞療法やBiTE抗体療法の開発に貢献することが期待される。

参考文献

1. Yang Y. Cancer immunotherapy: harnessing the immune system to battle cancer. J Clin Invest. 2015;125(9):3335-3337.

2. Oiseth SJ, Aziz MS. Cancer immunotherapy: a brief review of the history, possibilities, and challenges ahead. J Cancer Metastasis Treat. 2017;3(10):250.

3. Waldman AD, Fritz JM, Lenardo MJ. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat Rev Immunol. 2020;20(11):651-668.

4. Rock KL, York IA, Goldberg AL. Post-proteasomal antigen processing for major histocompatibility complex class I presentation. Nat Immunol. 2004;5(7):670-677.

5. Abbas AK, Lichtman AHH, Pillai S. Cellular and Molecular Immunology. 9th ed. Elsevier - Health Sciences Division; 2017.

6. Wang RF, Rosenberg SA. Human tumor antigens for cancer vaccine development. Immunol Rev. 1999;170:85-100.

7. Ishida Y, Agata Y, Shibahara K, Honjo T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J. 1992;11(11):3887-3895.

8. Iwai Y, Ishida M, Tanaka Y, Okazaki T, Honjo T, Minato N. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci U S A. 2002;99(19):12293-12297.

9. Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366(26):2443-2454.

10. Rosenberg SA, Dudley ME. Adoptive cell therapy for the treatment of patients with metastatic melanoma. Curr Opin Immunol. 2009;21(2):233-240.

11. Morgan RA, Dudley ME, Wunderlich JR, et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science. 2006;314(5796):126-129.

12. Wang Z, Wu Z, Liu Y, Han W. New development in CAR-T cell therapy. J Hematol Oncol. 2017;10(1):53.

13. Huang R, Li X, He Y, et al. Recent advances in CAR-T cell engineering. J Hematol Oncol. 2020;13(1):86.

14. Hong M, Clubb JD, Chen YY. Engineering CAR-T Cells for Next-Generation Cancer Therapy. Cancer Cell. 2020;38(4):473-488.

15. Goebeler M-E, Bargou RC. T cell-engaging therapies - BiTEs and beyond. Nat Rev Clin Oncol. 2020;17(7):418-434.

16. Molina JC, Shah NN. CAR T cells better than BiTEs. Blood Adv. 2021;5(2):602- 606.

17. Anagnostou T, Riaz IB, Hashmi SK, Murad MH, Kenderian SS. Anti-CD19 chimeric antigen receptor T-cell therapy in acute lymphocytic leukaemia: a systematic review and meta-analysis. Lancet Haematol. 2020;7(11):e816-e826.

18. Blanco B, Domínguez-Alonso C, Alvarez-Vallina L. Bispecific immunomodulatory antibodies for cancer immunotherapy. Clin Cancer Res. 2021;27(20):5457-5464.

19. Novellino L, Castelli C, Parmiani G. A listing of human tumor antigens recognized by T cells: March 2004 update. Cancer Immunol Immunother. 2005;54(3):187-207.

20. van der Merwe PA, Davis SJ. Molecular interactions mediating T cell antigen recognition. Annu Rev Immunol. 2003;21(1):659-684.

21. Boulter JM, Glick M, Todorov PT, et al. Stable, soluble T-cell receptor molecules for crystallization and therapeutics. Protein Eng. 2003;16(9):707-711.

22. Dahan R, Reiter Y. T-cell-receptor-like antibodies - generation, function and applications. Expert Rev Mol Med. 2012;14:e6.

23. Cohen M, Reiter Y. T-Cell Receptor-Like Antibodies: Targeting the Intracellular Proteome Therapeutic Potential and Clinical Applications. Antibodies. 2013;2(3):517-534.

24. He Q, Liu Z, Liu Z, Lai Y, Zhou X, Weng J. TCR-like antibodies in cancer immunotherapy. J Hematol Oncol. 2019;12(1):99.

25. Akatsuka Y. TCR-Like CAR-T Cells Targeting MHC-Bound Minor Histocompatibility Antigens. Front Immunol. 2020;11:257.

26. Zhu L, Yang X, Zhong D, et al. Single-Domain Antibody-Based TCR-Like CAR-T: A Potential Cancer Therapy. J Immunol Res. 2020;2020:2454907.

27. Høydahl LS, Frick R, Sandlie I, Løset GÅ. Targeting the MHC ligandome by use of TCR-like antibodies. Antibodies (Basel). 2019;8(2):32.

28. Santich BH, Liu H, Liu C, Cheung N-KV. Generation of TCR-Like Antibodies Using Phage Display. Methods Mol Biol. 2015;1348:191-204.

29. Ozawa T, Kobayashi E, Hamana H, et al. Rapid and efficient generation of T-cell receptor-like antibodies using chip-based single-cell analysis. Eur J Immunol. 2021;51(7):1850-1853.

30. Lyu F, Ozawa T, Hamana H, Kobayashi E, Muraguchi A, Kishi H. A novel and simple method to produce large amounts of recombinant soluble peptide/major histocompatibility complex monomers for analysis of antigen-specific human T cell receptors. N Biotechnol. 2019;49:169-177.

31. Hansen TH, Connolly JM, Gould KG, Fremont DH. Basic and translational applications of engineered MHC class I proteins. Trends Immunol. 2010;31(10):363- 369.

32. Ozawa T, Piao X, Kobayashi E, et al. A novel rabbit immunospot array assay on a chip allows for the rapid generation of rabbit monoclonal antibodies with high affinity. PLoS One. 2012;7(12):e52383.

33. Kurosawa N, Wakata Y, Ida K, Midorikawa A, Isobe M. High throughput development of TCR-mimic antibody that targets survivin-2B80-88/HLA-A*A24 and its application in a bispecific T-cell engager. Sci Rep. 2019;9(1):9827.

34. Kurosawa N, Midorikawa A, Ida K, Fudaba YW, Isobe M. Development of a T-cell receptor mimic antibody targeting a novel Wilms tumor 1-derived peptide and analysis of its specificity. Cancer Sci. 2020;111(10):3516-3526.

35. Hwang WYK, Foote J. Immunogenicity of engineered antibodies. Methods. 2005;36(1):3-10.

36. Weber J, Peng H, Rader C. From rabbit antibody repertoires to rabbit monoclonal antibodies. Exp Mol Med. 2017;49(3):e305.

37. Jafarzadeh L, Masoumi E, Fallah-Mehrjardi K, Mirzaei HR, Hadjati J. Prolonged Persistence of Chimeric Antigen Receptor (CAR) T Cell in Adoptive Cancer Immunotherapy: Challenges and Ways Forward. Front Immunol. 2020;11:702.

38. Hucks GE, Barrett D, Rheingold SR, et al. Humanized chimeric antigen receptor (CAR)-modified T cells targeting CD19 induce remissions in children and young adults with relapsed/refractory lymphoblastic leukemia/lymphoma. Cytotherapy. 2017;19(5):S9-S10.

39. Yang F, Zhang J, Zhang X, et al. Delayed remission following sequential infusion of humanized CD19- and CD22-modified CAR-T cells in a patient with relapsed/refractory acute lymphoblastic leukemia and prior exposure to murine- derived CD19-directed CAR-T cells. Onco Targets Ther. 2019;12:2187-2191.

40. Wang J, Mou N, Yang Z, et al. Efficacy and safety of humanized anti-CD19-CAR-T therapy following intensive lymphodepleting chemotherapy for refractory/relapsed B acute lymphoblastic leukaemia. Br J Haematol. 2020;191(2):212-222.

41. Berger C, Sommermeyer D, Hudecek M, et al. Safety of targeting ROR1 in primates with chimeric antigen receptor-modified T cells. Cancer Immunol Res. 2015;3(2):206-216.

42. Zhang Y-F, Ho M. Humanization of rabbit monoclonal antibodies via grafting combined Kabat/IMGT/Paratome complementarity-determining regions: Rationale and examples. MAbs. 2017;9(3):419-429.

43. Yano T, Takeda H, Uematsu A, et al. AGIA Tag System Based on a High Affinity Rabbit Monoclonal Antibody against Human Dopamine Receptor D1 for Protein Analysis. PLoS One. 2016;11(6):e0156716.44. Friguet B, Chaffotte AF, Djavadi-Ohaniance L, Goldberg ME. Measurements of the true affinity constant in solution of antigen-antibody complexes by enzyme-linked immunosorbent assay. J Immunol Methods. 1985;77(2):305-319.

45. Ozawa T, Masaki H, Takasaki T, et al. Human monoclonal antibodies against West Nile virus from Japanese encephalitis-vaccinated volunteers. Antiviral Res. 2018;154:58-65.

46. Kobayashi E, Kishi H, Ozawa T, et al. A chimeric antigen receptor for TRAIL- receptor 1 induces apoptosis in various types of tumor cells. Biochem Biophys Res Commun. 2014;453(4):798-803.

47. Lozzio CB, Lozzio BB. Human chronic myelogenous leukemia cell-line with positive Philadelphia chromosome. Blood. 1975;45(3):321-334.

48. Burns WR, Zhao Y, Frankel TL, et al. A high molecular weight melanoma-associated antigen-specific chimeric antigen receptor redirects lymphocytes to target human melanomas. Cancer Res. 2010;70(8):3027-3033.

49. Sommermeyer D, Hill T, Shamah SM, et al. Fully human CD19-specific chimeric antigen receptors for T-cell therapy. Leukemia. 2017;31(10):2191-2199.

50. Curtsinger JM, Mescher MF. Inflammatory cytokines as a third signal for T cell activation. Curr Opin Immunol. 2010;22(3):333-340.

51. Ziegler SF, Ramsdell F, Alderson MR. The activation antigen CD69. Stem Cells. 1994;12(5):456-465.

52. Mojic M, Shitaoka K, Ohshima C, et al. NKG2D defines tumor-reacting effector CD8+ T cells within tumor microenvironment. Cancer Sci. 2021;112(9):3484-3490.

53. Mage RG, Esteves PJ, Rader C. Rabbit models of human diseases for diagnostics and therapeutics development. Dev Comp Immunol. 2019;92:99-104.

54. Tadayoni R, Sararols L, Weissgerber G, Verma R, Clemens A, Holz FG. Brolucizumab: A Newly Developed Anti-VEGF Molecule for the Treatment of Neovascular Age-Related Macular Degeneration. Ophthalmologica. 2021;244(2):93-101.

55. Specht JM, Lee S, Turtle C, et al. Phase I study of immunotherapy for advanced ROR1+ malignancies with autologous ROR1-specific chimeric antigen receptor- modified (CAR)-T cells. J Clin Oncol. 2018;36(5_suppl):TPS79-TPS79.

56. Goydel RS, Weber J, Peng H, et al. Affinity maturation, humanization, and co- crystallization of a rabbit anti-human ROR2 monoclonal antibody for therapeutic applications. J Biol Chem. 2020;295(18):5995-6006.

57. Zhang Z, Liu H, Guan Q, Wang L, Yuan H. Advances in the Isolation of Specific Monoclonal Rabbit Antibodies. Front Immunol. 2017;8:494.

58. Ataie N, Xiang J, Cheng N, et al. Structure of a TCR-Mimic Antibody with Target Predicts Pharmacogenetics. J Mol Biol. 2016;428(1):194-205.

59. Gejman RS, Jones HF, Klatt MG, et al. Identification of the Targets of T-cell Receptor Therapeutic Agents and Cells by Use of a High-Throughput Genetic Platform. Cancer Immunol Res. 2020;8(5):672-684.

60. Park S, Shevlin E, Vedvyas Y, et al. Micromolar affinity CAR T cells to ICAM-1 achieves rapid tumor elimination while avoiding systemic toxicity. Sci Rep. 2017;7(1):14366.

61. Ghorashian S, Kramer AM, Onuoha S, et al. Enhanced CAR T cell expansion and prolonged persistence in pediatric patients with ALL treated with a low-affinity CD19 CAR. Nat Med. 2019;25(9):1408-1414.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る