リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Studies on TEMPO-oxidized Cellulose Nanocrystals」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Studies on TEMPO-oxidized Cellulose Nanocrystals

周, 衙欣 東京大学 DOI:10.15083/0002004946

2022.06.22

概要

第1章 序論
再生産可能な木質バイオマスを材料とエネルギーに用いることによる持続型社会基盤の構築が求められている。国産の間伐材のような未利用材を適正に伐採-利用-植林-育林循環のサイクルが進めば、大気中の二酸化炭素の固定化物を材料として汎用、先端材料に用いることで、地球温暖化防止や化石資源の利用量の削減につながる可能性がある。従来の木質バイオマスの利用分野であった住宅・建材、紙・板紙は、人口減少傾向や紙メディアから電子メディアへの転換により、使用量が減少している。したがって、従来型の木質バイオマス利用だけでは、上記循環が進まず、日本の国土の66%を占める森林の未利用状態は放置されてしまう。一方、最近では木質バイオマスから調製されるセルロースナノファイバー(CNF)が、再生産可能な新規バイオ系ナノ素材として注目されている。既に国内で10社以上が独自のCNFを大量生産あるいはパイロット生産している。

当研究室で見出されたTEMPO酸化CNFは、幅約3nmで長さが500~数μmの新規ナノ素材で、既に国内で2社、海外で1公的機関、1社でパイロット生産されている。CNFの特徴としてアスペクト比(長さ/幅の比率)が150以上と大きいため、高分子基材と複合化した場合には力学物性の補強効果が大きい。一方、水分散液の固形分濃度が0.5%以下と小さく、99.5%以上が水であり、運搬コストや乾燥によるエネルギー消費量が大きいことが課題であった。1990年代にカナダでは、木材セルロースを64%硫酸で加熱処理することで、アスペクト比が50以下のセルロースナノクリスタル(CNC)の調製方法を確立し、既にベンチャー企業がパイロット生産している。しかし、従来法によるCNC調製では、装置の腐食の原因となる高濃度の硫酸を使用しなければならない点、CNCの収率が40%程度に減少してしまうことなど課題であった。そこで本研究では、TEMPO酸化CNFからTEMPO酸化CNCを調製する方法を確立し、その特性解析すると共に、分散液の物性を解析した。

第2章 TEMPO酸化セルロースナノクリスタルの調製と特性
製紙用の針葉樹漂白クラフトパルプ(SBKP)、木材由来の溶解パルプから希酸加水分解処理によって調製した微結晶セルロース粉末(MCC)について、図1に示すスキームにしたがって、①条件を変えたTEMPO触媒酸化を行い、②得られたTEMPO酸化セルロースの収率、カルボキシ基量、重合度、X線回折パターン、水中でのζ電位等を測定した。③続いて、条件を変えて調製したTEMPO酸化セルロースを水に分散させ、処理時間を変えて超音波処理を行った。④得られ超音波処理TEMPO酸化物について、原子間力顕微鏡による形状観察と平均長さ、平均幅測定、サイズ排除クロマトグラフ-多角度光散乱装置(SEC/MALLS)を用いた分子量、分子量分布測定、X線回折パターンおよび固体13C-NMRによる固体構造解析、結晶サイズ、結晶構造解析を行った。

SBKPから得られたTEMPO-CNCの詳細な調製プロセスと、水中超音波処理時間120分後のTEMPO-CNCのAFM画像を図2に示す。また、元のSBKPとMCC、およびそれらのTEMPO酸化物、120分水中で超音波処理した生成物の重量回収率、カルボキシ基量、ζ電位、X線による結晶化度、SEC/MALLSによる重合度、AFM画像から測定した平均長さ、平均幅を表1に示す。

SBKPを用いた場合の方がMCCよりも、回収率、カルボキシ基量の観点から優れていた。しかし、水中で120分間超音波処理後の平均長さは共に約200nmのナノクリスタルサイズになっており、両出発試料で一致した値となった。しかし、平均幅については、SBKP由来では約3.4nmであるのに対し、MCC由来では5.1nmと大きくなった。この結果から、MCC調製段階での希酸加水分解処理で元々3nmのミクロフィブリル幅方向に不可逆的な水素結合による凝集が生じていることが示された。一方、SBKPでは、TEMPO触媒酸化反応と、水中での超音波処理により、フィブリル間の水素結合および疎水結合が切断され、植物が生合成する最小単位幅である約3nmにまで完全に分離分散でき、さらに水中超音波処理を長時間行うことで、短繊維化が進み、TEMPO酸化CNCが高収率で得られることが明らかになった。従来の64%硫酸を用いるCNCに比べて、収率、幅の均一性、針状の形状(硫酸法CNCは紡錘形)、水中での分散安定性を支配する表面荷電量(硫酸法CNCは0.3mmol/g程度)の観点からも優れていた。

第3章 超音波処理によるTEMPO酸化セルロースナノファイバーの短繊維化機構
セルロースのグルコース環1個分は約0.5nmであるので、超音波処理時間を変えて調製したTEMPO酸化CNFあるいはCNCの平均長さと、SEC/MALLS測定で得られた重合度の関係を図3に示す。

この図より、TEMPO酸化MCCでは、水中超音波処理時間によりフィブリル長さは300nmから160nmまで半分ほどまでに短繊維化されるが、重合度はほとんど変化しなかった。また、重合度の値からフィブリル長さの方が常に重合度よりも大きく、フィブリル内にセルロース分子が長さ以上に縦に配列している部分が存在することを示していた。

一方、TEMPO酸化SBKPでは、超音波処理時間によって長さが徐々に減少したが、やはりフィブリル長さの方が1本のセルロース分子の長さよりも大きく、1本のフィブリル内にセルロース分子が縦にフィブリルの長さ以上に配列していることを示していた。一方、SBKP由来のTEMPO酸化CNF、CNC中の折れ曲がり部分までの長さ(AMF画像から測定)は、その重合度の値に一致していた。したがって、1本のTEMPO酸化CNFの折れ曲がりまでの表面分子の長さは重合度に対応して切断されている。一方、フィブリルの芯の部分はAFM画像では折れ曲がっていてもセルロース分子としては切断されていないことを示している。

これらの結果およびAFM画像から求めたフィブリル長さ、折れ曲がり間での長さ、折れ曲がり点の1本のフィブリル内での平均数等のデータから数値解析によって超音波処理によるTEMPO酸化CNFのフィブリルの長さ方向の切断機構を解析した。その結果、超音波処理初期ではTEMPO酸化CNF表面分子が切断されて折れ曲がり点が形成し、その後折れ曲がり点からのフィブリルの切断が進むことが明らかになった。

第4章 TEMPO酸化セルロースナノクリスタル/水分散液の濃度依存性挙動解析
SBKPあるいはMCCから調製したTEMPO酸化CNCは、従来の64%硫酸法で調製されるCNCに比べて優れた特性が得られた。硫酸法CNCでは、高濃度化によって二層に分離し、下層ではコレステリック状の液晶構造を形成することが知られており、その液晶構造をテンプレートとして様々な光学材料などが試作されている。また、TEMPO酸化CNFでは、高アスペクト比のためにその最大固形分濃度は通常は0.5%以下であり、アスペクト比が50以下のTEMPO酸化CNCにより、高固形分濃度化が可能となり、さらに硫酸法CNC同様、高濃度化によりコレステリック状の液晶構造を形成する可能性もある。そこで、TEMPO酸化CNC/水分散液をエバポレーターで濃縮し、その分散液の動的光散乱挙動からゲル化(架橋点形成)濃度を測定した。まず、動的光散乱の緩和時間(t)を因子に相対散乱強度比とゲル化濃度の関係を調べると、ゲル化点で明瞭な差異が得られた(図4)。その結果、TEMPO-CNFを水中超音波処理によって短繊維化してTEMPO-CNCにすることにより、アスペクト比は約半分に低下すると、ゲル化点は4倍の1.7%にまで高濃度化することができた。

第5章 結論
硫酸法によって調製されるCNCに比べ、収率、カルボキシ基量に優れたTEMPO-CNCを調製することができた。また、出発試料としてはSBKPの方がMCCよりも、均一幅、針状形状などの点からも優位性がある。さらに、CNCはゲル化点を上げることができるので高濃度化による運搬コストを削減し、高分子と複合化後の紡糸工程において高配向補強効果の発現が期待できる。硫酸法で調製したCNCのパイロット生産、実用化が進む中で、本研究からTEMPO-CNCの多くの優位性を確認することができた。したがって、今後はTEMPO-CNFだけではなくTEMPO-CNCも含めて新規バイオ系ナノ材料としての汎用、先端材料への利用と、関連する基礎研究が進むものと期待される。本研究はそれらのための先駆けとなる研究成果を得ることができた。

参考文献

Chapter1

1 Limited, W. P. Natural fibre composites(materilas,process and properties); 2014.

2 Zhu, H.; Luo, W.; Ciesielski, P. N.; Fang, Z.; Zhu, J. Y.; Henriksson, G.; Himmel, M. E.; Hu, L. Chem. Rev. 2016, 72 (16), ·

3 Moon, R. J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. Cellulose nanomaterials review: structure, properties and nanocomposites; 2011; Vol. 40.

4 Ek, M.; Gellerstedt, G.; Henriksson, G. Pulp and Paper Chemistry and Technology Volume1 (Wood Chemistry and Biotechnology); Deutsche Nationalbibliothek, 2009; Vol. 1.

5 Limited, W. P. Natural fibre composites(materilas,process and properties); 2014.

6 Stevanic Srndovic J. Ultrastructure of the Primary Cell Wall of Soft wood Fibres Studied Using Dynamic FT-IR Spectros copy : KTH, Stockholm (2008).

7 Bergander A and Salm é n L. Variations in transverse fi bre wall properties: relations between elastic properties and structure. Holzforschung . (2000); 54 : 654–660

8 Bergander A, Br ä ndstr ö m J, Daniel G and Sahnen L. Fibril angle variability in earlywood of Norway spruce using soft rot cavities and polarization confocal microscopy. Journal of Wood Science . (2002); 48 : 255–263.

9 Bardage S, Donaldson LA, Tokoh C and Daniel G. Ultrastructure of the cell wall of unbeaten Norway spruce pulp fi bre surfaces: implication for pulp and paper properties. Nordic Pulp and Paper Research Journal . (2003); 19 : 448–452.

10 Ek, M.; Gellerstedt, G.; Henriksson, G. Pulp and Paper Chemistry and Technology Volume1 (Wood Chemistry and Biotechnology); Deutsche Nationalbibliothek, 2009; Vol. 1.

11 Ek, M.; Gellerstedt, G.; Henriksson, G. Pulp and Paper Chemistry and Technology Volume1 (Wood Chemistry and Biotechnology); Deutsche Nationalbibliothek, 2009; Vol. 1.

12 Zhu, H.; Luo, W.; Ciesielski, P. N.; Fang, Z.; Zhu, J. Y.; Henriksson, G.; Himmel, M. E.; Hu, L. Chem. Rev. 2016, 72 (16), ·

13 Isogai, A.; Saito, T.; Fukuzumi, H. Nanoscale 2011, 3 (1), 71–85.

14 Pakzad, A.; Simonsen, J.; Heiden, P. A.; Yassar, R. S. J. Mater. Res. 2012, 27 (03), 528–536.

15 Ding SY, Himmel ME: The maize primary cell wall microfibril: a new model derived from direct visualization. J Agric Food Chem 2006, 54:597-606.

16 Agarwal, U.; Ralph, S.; Reiner, R.; Baez, C. Probing Crystallinity of Never-Dried Wood Cellulose with Raman Spectroscopy. Cellulose 2016, 23, 125−144.

17 Payen, A. (1839) Compt. Rend. 8, 51.

18 Payen, A. (1842) Quatrieme Memoire sur les Developements des Vegetaux, Extrait des Memoires de l'Academie royale des Sciences. Tome VIII des savants etrangers. Paris: Imprimerie Royale.

19 Dufresne, A. Nanocellulose; Walter de Gruyter GmbH, Berlin/Boston, 2012.

20 Sjoström, E. (1981). Wood chemistry fundamentals and applications (Academic Press Inc., New York)

21 Hon, D. N. S. Cellulose 1994, 1 (1), 1–25.

22 Nishiyama, Y.; Langan, P.; Chanzy, H. Crystal Structure and Hydrogen-Bonding System in Cellulose Iβ from Synchrotron X-ray and Neutron Fiber Diffraction. J. Am. Chem. Soc. 2002, 124, 9074− 9082

23 Dufresne, A. Nanocellulose; Walter de Gruyter GmbH, Berlin/Boston, 2012.

24 Dufresne, A. Nanocellulose; Walter de Gruyter GmbH, Berlin/Boston, 2012.

25 Li, Q.; Renneckar, S. Biomacromolecules 2011, 12 (3), 650–659.

26 Moon, R. J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. Cellulose nanomaterials review: structure, properties and nanocomposites; 2011; Vol. 40.

27 Hori, R.; Wada, M. Cellulose 2005, 12 (5), 479–484.

28 Fink, H. P.; Hofmann, D.; Philipp, B. Cellulose 1995, 2 (1), 51–70.

29 Li, Q.; Renneckar, S. Biomacromolecules 2011, 12 (3), 650–659.

30 Zhu, H.; Luo, W.; Ciesielski, P. N.; Fang, Z.; Zhu, J. Y.; Henriksson, G.; Himmel, M. E.; Hu, L. Chem. Rev. 2016, 72 (16), ·

31 Kargarzadeh, H.; Ahmad, I.; Thomas, S.; Dufresne, A. Handbook of Nanocellulose and Cellulose Nanocomposites; Wiley Online Library.

32 Halle, E. (1934) KoUoid-Zt. 69,324.

33 Trogus, C. and Hess, K. (1931) Z. Phys. Chem. (Leipzig) B14,387.

34 Marchessault, R. H. and Sarko, A. (1967) Advances in Carbohydrate Chemistry 22,421.

35 Blackwell, J. and Marchessault, R. H. (1971) Infrared Spectroscopy of Cellulose. In Cellulose and Cellulose Derivatives (N. Bikales and L. E. Segal, eds.). New York: Wiley-lnterscience.

36 Blackwell, J. (1982) The Macromolecular Organization of Cellulose and Chitin. In Cellulose and Other Natural Polymer Systems (Brown, R. M., Jr., ed.). New York: Plenum Press.

37 D. Klemm, B. Heublein, H. P. Fink and A. Bohn, Angew. Chem., Int. Ed., 2005, 44, 3358–3393.

38 Hon, D. N. S. Cellulose 1994, 1 (1), 1–25.

39 A. Ishikawa, T. Okano and J. Sugiyama, Polymer, 1997, 38, 463–468.

40 Gardner, K. H. and Blackwell, J. (1974a) Biopolymers 13, 1975

41 Gardner, K. H. and Blackwell, J. (1974b) Biochim. Biophys. Acta 343,232.

42 Atalla, R. H. (1987) The Structure of Cellulose. Characterization of the Solid States. ACS Symposium Series 340, American Chemical Society, Washington, D.C.

43 Moon, R. J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. Cellulose nanomaterials review: structure, properties and nanocomposites; 2011; Vol. 40.

44 Y. Nishiyama, J. Sugiyama, H. Chanzy and P. Langan, J. Am. Chem. Soc., 2003, 125, 14300– 14306.

45 J. Sugiyama, R. Vuong and H. Chanzy, Macromolecules, 1991, 24, 4168–4175.

46 P. S. Belton, S. F. Tanner, N. Cartier and H. Chanzy, Macromolecules, 1989, 22, 1615–1617.

47 Y. Horikawa and J. Sugiyama, Biomacromolecules, 2009, 10, 2235–2239.

48 Herth W (1983) Arrays of plasma-membrane “rosettes” involved in cellu- lose microfibril formation of Spirogyra.Planta 159: 347–356

49 Herth W (1983) Arrays of plasma-membrane “rosettes” involved in cellu- lose microfibril formation of Spirogyra.Planta 159: 347–356

50 Mazeau K (2005) Structural micro-heterogeneities of crystalline Ib-cellulose. Cellulose 12: 339– 349

51 Matthews JF, Skopec CE, Mason PE, Zuccato P, Torget RW, Sugiyama J, Himmel ME, Brady JW (2006) Computer simulation studies of micro- crystalline cellulose Ib.Carbohydr Res 341: 138–152

52 Ding SY, Himmel ME (2006) The maize primary cell wall microfibril: a new model derived from Direct visualization. J Agric Food Chem 54: 597–606

53 ZhangQ,BuloneV,Ågren H, Tu Y (2011) A molecular dynamics study of the thermal response of crystalline cellulose Ib. Cellulose 18: 207–221

54 Fernandes AN, Thomas LH, Altaner CM, Callow P, Forsyth VT, Apperley DC,Kennedy CJ,JarvisMC (2011) Nanostructure of cellulose microfi- brils in spruce wood. Proc Natl Acad Sci USA 108: E1195–E1203

55 Busse-Wicher M, Gomes TCF, Tryfona T, Nikolovski N, Stott K, Grantham NJ, Bolam DN, Skaf MS, Dupree P (2014) The pattern of xylan acetylation suggests xylan may interact with cellulose microfibrils as a twofold helical screw in the secondary plant cell wall of Arabidopsis thaliana. Plant J 79: 492–506

56 Oehme, D. P.; Downton, M. T.; Doblin, M. S.; Wagner, J.; Gidley, M. J.; Bacic, A. Plant Physiol. 2015, 168 (1), 3–17.

57 Moon, R. J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. Cellulose nanomaterials review: structure, properties and nanocomposites; 2011; Vol. 40.

58 Kargarzadeh, H.; Ahmad, I.; Thomas, S.; Dufresne, A. Handbook of Nanocellulose and Cellulose Nanocomposites; Wiley Online Library.

59 Moon, R. J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. Cellulose nanomaterials review: structure, properties and nanocomposites; 2011; Vol. 40.

60 Zhu, H.; Luo, W.; Ciesielski, P. N.; Fang, Z.; Zhu, J. Y.; Henriksson, G.; Himmel, M. E.; Hu, L. Chem. Rev. 2016, 72 (16), ·

61 Moon, R. J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. Cellulose nanomaterials review: structure, properties and nanocomposites; 2011; Vol. 40.

62 Limited, W. P. Natural fibre composites(materilas,process and properties); 2014.

63 Abe K, Nakatsubo F, Yano H (2009) High-strength nanocom- posite based on fibrillated chemithermomechanical pulp. Compos Sci Technol 69:2434

64 Isogai, A.; Saito, T.; Fukuzumi, H. Nanoscale 2011, 71–85.

65 S. R. Levis and P. B. Deasy, Int. J. Pharm., 2001, 213, 13–24.

66 Kargarzadeh, H.; Ahmad, I.; Thomas, S.; Dufresne, A. Handbook of Nanocellulose and Cellulose Nanocomposites; Wiley Online Library.

67 Turbak, A.F., Snyder, F.W., and Sandberg, K.R. Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. United States: N. p., 1983. Web.

68 Zhu, H.; Luo, W.; Ciesielski, P. N.; Fang, Z.; Zhu, J. Y.; Henriksson, G.; Himmel, M. E.; Hu, L. Chem. Rev. 2016, 72 (16), ·

69 Kalia, S., Dufresne, A., Cherian, B.M., Kaith, B.S., Avérous, L., Njuguna, J., and Nassiopoulos, E. (2011) Cellulose-based bio-and nanocomposites: a review. Int. J. Polym. Sci., 2011, 1–35.

70 Kalia, S., Boufi, S., Celli, A., and Kango, S. (2014) Nanofibrillated cellulose: surface modification and potential applications. Colloid. Polym. Sci., 292 (1), 5–31.

71 Wang, Q.; Zhu, J.; Gleisner, R.; Kuster, T.; Baxa, U.; McNeil, S. Morphological Development of Cellulose Fibrils of a Bleached Eucalyptus Pulp by Mechanical Fibrillation. Cellulose 2012, 19, 1631− 1643

72 Nechyporchuk, O.; Belgacem, M. N.; Pignon, F. Biomacromolecules 2016, 17 (7), 2311–2320.

73 T. Kitaoka, A. Isogai and F. Onabe, Nord. Pulp Pap. Res. J., 1999, 14, 274–279

74 Xu, X.; Wang, H.; Jiang, L.; Wang, X.; Payne, S. A.; Zhu, J. Y.; Li, R. Comparison between Cellulose Nanocrystal and Cellulose Nanofibril Reinforced Poly(ethylene oxide) Nanofibers and Their Novel Shish- Kebab-Like Crystalline Structures. Macromolecules 2014, 47, 3409− 3416

75 T. Taniguchi and K. Okamura, Polym. Int., 1998, 47, 291–294.

76 S. Iwamoto, A. N. Nakagaito, H. Yano and M. Nogi, Appl. Phys. A: Mater. Sci. Process., 2005, 81, 1109–1112.

77 Saito, T.; Kimura, S.; Nishiyama, Y.; Isogai, A. Biomacromolecules 2007, 8 (8), 2485–2491.

78 Lourenço, A. F.; Godinho, D.; Gamelas, J. A. F.; Sarmento, P.; Ferreira, P. J. T. Cellulose 2019, 26 (5), 3489–3502.

79 P. Lepoutre, S. H. Hui and A. A. Robertson, J. Macromol. Sci., Part A: Pure Appl. Chem., 1976, A10, 681–693.

80 Wang, R.; Chen, L.; Zhu, J. Y.; Yang, R. ChemNanoMat 2017, 3 (5), 328–335.,

81 Isogai, A.; Saito, T.; Fukuzumi, H. Nanoscale 2011, 71–85.

82 Hayashi, N.; Kondo, T.; Ishihara, M. Enzymatically Produced Nano-Ordered Short Elements Containing Cellulose Iβ Crystalline Domains. Carbohydr. Polym. 2005, 61, 191−197.

83 Henriksson, M.; Henriksson, G.; Berglund, L.; Lindström, T. An Environmentally Friendly Method for Enzyme-Assisted Preparation of Microfibrillated Cellulose (MFC) Nanofibers. Eur. Polym. J. 2007, 43, 3434−3441.

84 Wang, W.; Mozuch, M. D.; Sabo, R. C.; Kersten, P.; Zhu, J.; Jin, Y. Production ofCellulose Nanofibrils from Bleached Eucalyptus Fibers by Hyperthermostable Endoglucanase Treatment and Subsequent Microfluidization. Cellulose 2015, 22, 351−361.

85 Zhu, H.; Luo, W.; Ciesielski, P. N.; Fang, Z.; Zhu, J. Y.; Henriksson, G.; Himmel, M. E.; Hu, L. Chem. Rev. 2016, 72 (16), ·

86 Battista, O. A. Hydrolysis and Crystallization of Cellulose. Ind. Eng. Chem. 1950, 42, 502−507.

87 Battista, O. A.; Coppick, S.; Howsmon, J. A.; Morehead, F. F.; Sisson, W. A. Level-offDegree ofPolymerization: Relation to Polyphase Structure of Cellulose Fibers. Ind. Eng. Chem. 1956, 48, 333−335.

88 Nishiyama, Y.; Kim, U. J.; Kim, D. Y.; Katsumata, K. S.; May, R. P.; Langan, P. Periodic Disorder Along Ramie Cellulose Microfibrils. Biomacromolecules 2003, 4, 1013−1017.

89 Nickerson, R. F.; Habrle, J. A. Cellulose Intercrystalline Structure. Ind. Eng. Chem. 1947, 39, 1507−1512.

90 Rånby, B. G. The Colloidal Properties of Cellulose Micelles. Discuss. Faraday Soc. 1951, 11, 158−164.

91 Mukherjee, S. M.; Woods, H. J. X-Ray and Electron Microscope Studies of the Degradation of Cellulose by Sulphuric Acid. Biochim. Biophys. Acta 1953, 10, 499−511.

92 Araki, J.; Wada, M.; Kuga, S.; Okano, T. Flow Properties of Microcrystalline Cellulose Suspension Prepared by Acid Treatment of Native Cellulose. Colloids Surf., A 1998, 142,75−82.

93 Yu, H.; Qin, Z.; Liang, B.; Liu, N.; Zhou, Z.; Chen, L. Facile Extraction ofThermally Stable Cellulose Nanocrystals with a High Yield of 93% through Hydrochloric Acid Hydrolysis under Hydrothermal Conditions. J. Mater. Chem. A 2013, 1, 3938−3944.

94 Rånby, B. G. Acta Chem. Scand. 1949, 3, 649.

95 Rånby, B. G.; Ribi, E. Experimentia 1950, 6, 12

96 Camarero Espinosa, S.; Kuhnt, T.; Foster, E. J.; Weder, C. Isolation of Thermally Stable Cellulose Nanocrystals by Phosphoric Acid Hydrolysis. Biomacromolecules 2013, 14, 1223−1230

97 Zhu, H.; Luo, W.; Ciesielski, P. N.; Fang, Z.; Zhu, J. Y.; Henriksson, G.; Himmel, M. E.; Hu, L. Chem. Rev. 2016, 72 (16), ·.

98 Reid, M. S.; Villalobos, M.; Cranston, E. D. Langmuir 2017, 33 (7), 1583–1598.

99 Beck, S.; Bouchard, J.; Berry, R. Biomacromolecules 2012, 13 (5), 1486–1494.

100 Lahiji, R. R.; Xu, X.; Reifenberger, R.; Raman, A.; Rudie, A.; Moon, R. J. Langmuir 2010, 26 (6), 4480–4488.

101 Ardanuy, M., Claramunt, J., Arévalo, R., et al., BioResources 7(3): 3883(2012).

102 Gray, D. G.; Mu, X. Materials (Basel). 2015, 8 (11), 7873–7888.

103 Mu, X.; Gray, D. G. Langmuir 2014, 30 (31), 9256–9260.

104 Bondeson, D.; Matthew, A.; Oksman, K. Optimization of the Isolation of Nanocrystals from Microcrystalline Cellulose by Acid Hydrolysis. Cellulose 2006, 13, 171−180

105 Hamad, W. Y.; Hu, T. Q. Structure−Process−Yield Interrelations in Nanocrystalline Cellulose Extraction. Can. J. Chem. Eng. 2010, 88, 392−402

106 Wang, Q.; Zhao, X.; Zhu, J. Y. Kinetics ofStrong Acid Hydrolysis of a Bleached Kraft Pulp for Producing Cellulose Nanocrystals (CNCs). Ind. Eng. Chem. Res. 2014, 53, 11007−11014

107 Bondeson, D.; Matthew, A.; Oksman, K. Optimization of the Isolation of Nanocrystals from Microcrystalline Cellulose by Acid Hydrolysis. Cellulose 2006, 13, 171−180.

108 Dong, S.; Bortner, M. J.; Roman, M. Analysis of the Sulfuric Acid Hydrolysis of Wood Pulp for cellulose Nanocrystal Production: A Central Composite Design Study. Ind. Crops Prod. 2016

109 Hamad, W. Y.; Hu, T. Q. Structure−Process−Yield Interrelations in Nanocrystalline Cellulose Extraction. Can. J. Chem. Eng. 2010, 88, 392−402

110 Zhu, H.; Luo, W.; Ciesielski, P. N.; Fang, Z.; Zhu, J. Y.; Henriksson, G.; Himmel, M. E.; Hu, L. Chem. Rev. 2016, 72 (16),

111 Reid, M. S.; Villalobos, M.; Cranston, E. D. Langmuir 2017, 33 (7), 1583–1598.

112 Kargarzadeh, H.; Ahmad, I.; Thomas, S.; Dufresne, A. Handbook of Nanocellulose and Cellulose Nanocomposites; Wiley Online Library.

113 Chen, L.; Zhu, J. Y.; Baez, C.; Kitin, P.; Elder, T. Highly Thermal- Stable and Functional Cellulose Nanocrystals and Nanofibrils Produced Using Fully Recyclable Organic Acids. Green Chem. 2016, 18, 3835− 3843.

114 Zhu, H.; Luo, W.; Ciesielski, P. N.; Fang, Z.; Zhu, J. Y.; Henriksson, G.; Himmel, M. E.; Hu, L. Chem. Rev. 2016, 72 (16), ·.

115 Liu, Y., Wang, H., Yu, G., Yu, Q., Li, B., and Mu, X. (2014) A novel approach for the preparation of nanocrystalline cellulose by using phosphotungstic acid. Carbohydr. Polym., 110, 415–422.

116 Kontturi, E., Meriluoto, A., and Nuopponen, M. (2012) Process for preparing micro-and nanocrystalline cellulose. US Patent 14/006,477, filed Mar. 21, 2012.

117 Zhang, Y., Li, Q., Su, J., Lin, Y., Huang, Z., Lu, Y., Sun, G., Yang, M., Huang, A., and Hu, H. (2015) A green and efficient technology for the degradation of cellulosic materials: structure changes and enhanced enzymatic hydrol- ysis of natural cellulose pretreated by synergistic interaction of mechanical activation and metal salt. Bioresour. Technol., 177, 176–181.

118 Moon, R. J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. Cellulose nanomaterials review: structure, properties and nanocomposites; 2011; Vol. 40.

119 Elazzouzi-hafraoui, S.; Nishiyama, Y.; Heux, L.; Dubreuil, F.; Rochas, C.; Putaux, J. 2008, 57– 65.

120 Kargarzadeh, H.; Ahmad, I.; Thomas, S.; Dufresne, A. Handbook of Nanocellulose and Cellulose Nanocomposites; Wiley Online Library.

121 Kalia, S., Boufi, S., Celli, A., and Kango, S. (2014) Nanofibrillated cellulose: surface modification and potential applications. Colloid. Polym. Sci., 292 (1), 5–31.

122 Wang, Q.Q., Zhu, J.Y., Gleisner, R., Kuster, T.A., Baxa, U., and McNeil, S.E. (2012) Morphological development of cellulose fibrils of a bleached eucalyptus pulp by mechanical fibrillation. Cellulose, 19, 1631–1643.

123 Hassan, M.L., Mathew, A.P., Hassan, E.A., El-Wakil, N.A., and Oksman, K. (2012) Nanofibers from bagasse and rice straw: process optimization and properties. Wood Sci. Technol., 46, 193–205.

124 Iwamoto, S., Nakagaito, A.N., Yano, H., and Nogi, M. (2005) Optically trans- parent composites reinforced with plant fiber-based nanofibers. Appl. Phys. A, 81 (6), 1109–1112.

125 Müller, R., Jacobs, C., and Kayser, O. (2001) Nanosuspensions as particulate drug formulations in therapy: rationale for development and what we can expect for the future. Adv. Drug Delivery Rev., 47 (1), 3–19.

126 Kalia, S., Boufi, S., Celli, A., and Kango, S. (2014) Nanofibrillated cellulose: surface modification and potential applications. Colloid. Polym. Sci., 292 (1), 5–31.

127 Jonoobi, M., Harun, J., Mathew, A.P., Hussein, M.Z.B., and Oksman, K. (2010) Preparation of cellulose nanofibers with hydrophobic surface charac- teristics. Cellulose, 17 (2), 299–307.

128 Jonoobi, M., Harun, J., Shakeri, A., Misra, M., and Oksman, K. (2009) Chemical composition, crystallinity, and thermal degradation of bleached and unbleached kenaf bast (Hibiscus cannabinus) pulp and nanofibres. Bioresources, 4 (2), 626–639.

129 Zimmermann, T., Bordeanu, N., and Strub, E. (2010) Properties of nanofib- rillated cellulose from different raw materials and its reinforcement potential. Carbohydr. Polym., 79, 1086–1093.

130 Rebouillat, S. and Pla, F. (2013) State of art manufacturing and engineer- ing of nanocellulose: a review of available data and industrial application. J. Biomater. Nanobiotechnol., 4, 165–188.

131 Lavoine, N., Desloges, I., Dufresne, A., and Bras, J. (2012) Microfibrillated cellulose–its barrier properties and applications in cellulosic materials: a review. Carbohydr. Polym., 90 (2), 735–764.

132 Lee, S.Y., Chun, S.J., Kang, I.A., and Park, J.Y.D. (2009) Preparation of cellu- lose nanofibers by high-pressure homogenizer and cellulose-based composite films. J. Indian Eng. Chem., 15, 50–55.

133 Frone, A.N., Panaitescu, D.M., and Donescu, D. (2011) Some aspects con- cerning the isolation of cellulose micro-and nano-fibers. UPBSci.Bull.,Ser. B: Chem. Mater. Sci., 73 (2), 133–152.

134 Wang, B. and Sain, M. (2007) Isolation of nanofibers from soybean source and their reinforcing capability on synthetic polymers. Compos. Sci. Technol., 67, 2521–2527.

135 Lu, P. and Hsieh, Y.L. (2010) Preparation and properties of cellulose nanocrystals: rods, spheres, and network. Carbohydr. Polym., 82 (5), 329–336.

136 Wang, Q.; Zhao, X.; Zhu, J. Y. Ind. Eng. Chem. Res. 2014, 53 (27), 11007–11014.

137 de Nooy, A. E. J.; Besemer, A. C.; van Bekkum, H. Tetrahedron 1995, 51 (29), 8023–8032.

138 de Nooy, A. E. J.; Besemer, A. C.; van Bekkum, H. In Synthesis (Stuttgart); 1996; pp 1153–1174.

139 de Nooy, A. E. J.; Besemer, A. C.; van Bekkum, H. Carbohydr. Res. 1995, 269 (1), 89–98.

140 de Nooy, A. E. J.; Besemer, A. C.; van Bekkum, H. In Synthesis (Stuttgart); 1996; pp 1153–1174.

141 Isogai, A.; Saito, T.; Fukuzumi, H. Nanoscale 2011, 3 (1), 71–85.

142 I. Shibata and A. Isogai, Cellulose, 2003, 10, 151–158.

143 A. E. J. de Nooy, A. C. Besemer, H. van Bekkum, J. A. P. P. van Dijk and J. A. M. Smit, Macromolecules, 1996, 29, 6541–6547.

144 A. Potthast, T. Rosenau and P. Kosma, Adv. Polym. Sci., 2006, 205, 1–48

145 Takaichi, S.; Saito, T.; Tanaka, R.; Isogai, A. Cellulose 2014, 21 (6), 4093–4103.

146 Tanaka, R.; Saito, T.; Isogai, A. Int. J. Biol. Macromol. 2012, 51 (3), 228–234.

147 Hondo, H.; Saito, T.; Isogai, A. Cellulose 2019, 26 (5), 3021–3030.

148 Nickerson, R. F.; Habrle, J. a. Cellulose Intercrystalline Structure. Ind. Eng. Chem. 1947, 39 (11), 1507−1512.

149 Reid, M. S.; Villalobos, M.; Cranston, E. D. Langmuir 2017, 33 (7), 1583–1598.

150 J Miller, Nanocellulose Producers, Products, and Applications: A Guide for End Users, TAPPI press, 2017; U.S. EPA Toxic Substances Control Act (TSCA) [FRN 2017-00052]

151 Beck, S., Bouchard, J., and Berry, R. (2012) Dispersibility in water of dried nanocrystalline cellulose. Biomacromolecules, 13, 1486–1494.

152 Hotel, F.; Davis, C. S.; Moon, R. J.; Ireland, S.; Foster, E. J.; Johnston, L.; Shatkin, A.; Nelson, K.; Forster, A. M.; Postek, M. T.; Vlad, E.; Gilman, W.; Hotel, F.; Davis, C. S.; Gilman, J. W.; Ireland, S. 2015, No. June, 1–42.

153 Mukherjee, S.M. and Woods, H.J. (1953) X-ray and electron microscope studies of the degradation of cellulose by sulfuric acid. Biochim. Biophys. Acta, 10, 499–511.

154 Reiner, R.S. and Rudie, A.W. (2013) in Production and Applications of Cellulose Nanomaterials (eds M.T. Postek, R.J. Moon, A.W. Rudie, and M.A. Bilodeau), TAPPI Press, Atlanta, pp. 21–24.

155 Lipnizki, F.; Boelsmand, J.; Madsen, R. F. Desalination 2002, 144 (1–3), 179–184.

156 Kargarzadeh, H.; Ahmad, I.; Thomas, S.; Dufresne, A. Handbook of Nanocellulose and Cellulose Nanocomposites; Wiley Online Library.

157 Carbon Steel Data from Zehbour et al. (2012) Corros. Sci., 58, 1–11. Cost factor, Personal Communication, the Harris Group, April 2015.

158 Siro, I. and Plackett, D. (2010) Microfibrillated cellulose and new nanocom- posite materials: a review. Cellulose, 17, 459–494.

159 Kargarzadeh, H.; Ahmad, I.; Thomas, S.; Dufresne, A. Handbook of Nanocellulose and Cellulose Nanocomposites; Wiley Online Library.

160 Osong, S. H.; Norgren, S.; Engstrand, P. Cellulose 2016, 23 (1), 93–123.

161 Ateş, S.; Durmaz, E.; Hamad, A. Kastamonu Üniversitesi Orman Fakültesi Derg. 2016, 16 (2), 383–400.

162 Pitkänen, M. 2014, No. January.

163 O´Connor B. 2009. Ensuring the Safety of Manufactured Nanocrystalline Cellulose. OECD Conference Paris, July 15–17

164 O´Connor, B. 2011. Ensuring the Safety of Manufactured Nanocrystalline Celulose: A Risk Assessment under Canada’s New Substances Notification Regulations. 2011 TAPPI Intl Conference on Nanotechnology for Renewable Materials, June 6.

165 Kovacs, T., Naish, V., O´Connor, B., Blaise, C., Gagne, F., Hall, L., Trudeau, V., and Martel, P. 2010. An ecotoxicological characterization of nanocrystalline cellulose (NCC). Nanotoxicology, 4(1–4): 255–270.

166 Vartiainen, J., Pöhler, T., Sirola, K., Pylkkänen, L., Alenius, H., Hokkinen, J., Tapper, U., Lahtinen, P., Kapanen, A., Putkisto, K., Hiekkataipale, P., Eronen, P., Ruokolainen and Laukkanen, A. 2011. Health and environmental safety aspects of friction grinding and spray drying of microfibrillated cellulose. Cellulose, 18(3): 775–786

167 Pitkänen, M., Honkalampi, U., von Wright, A., Sneck, A., Hentze, H.-P., Sievänen, J., Hellén, E. K. O. 2010. Nanofibrillar cellulose – in vitro study of cytotoxic and genotoxic properties. Presentation in TAPPI – International Conference on Nanotechnology for the Forest Products Industry. September 27–29, Otaniemi, Espoo, Finland. Available at: http://www.tappi.org/content/events/10nano/papers/5.4.pdf (Accessed on 13th of April 2012).

168 Shatkin, J. A.; Kim, B. Environ. Sci. Nano 2015, 2 (5), 477–499.

169 Lin, N.; Dufresne, A. Eur. Polym. J. 2014, 59, 302–325.

170 Pitkänen, M. 2014, No. January.

171 Vartiainen, J.; Pöhler, T.; Sirola, K.; Pylkkänen, L.; Alenius, H.; Hokkinen, J.; Tapper, U.; Lahtinen, P.; Kapanen, A.; Putkisto, K.; Hiekkataipale, P.; Eronen, P.; Ruokolainen, J.; Laukkanen, A. Cellulose 2011, 18 (3), 775–786.

172 Hotel, F.; Davis, C. S.; Moon, R. J.; Ireland, S.; Foster, E. J.; Johnston, L.; Shatkin, A.; Nelson, K.; Forster, A. M.; Postek, M. T.; Vlad, E.; Gilman, W.; Hotel, F.; Davis, C. S.; Gilman, J. W.; Ireland, S. 2015, No. June, 1–42.

Chapter2

1 Habibi, Y.; Lucia, L.; Rojas, O. J. Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications. Chem. Rev. 2010, 110, 3479−3500.

2 Siró, I.; Plackett, D. Microfibrillated Cellulose and New Nanocomposite Materials: a review. Cellulose 2010, 17, 459−494.

3 Isogai, A.; Saito, T.; Fukuzumi, H. TEMPO-Oxidized Cellulose Nanofibers. Nanoscale 2011, 3,71−85.

4 Klemm, D.; Kramer, F.; Moritz, S.; Lindström, T.; Ankerfors, M.; Gray, D.; Dorris, A. Nanocelluloses: A New Family of Nature-Based Materials. Angew. Chem., Int. Ed. 2011, 50, 5438−5466.

5 Moon, R. J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. Cellulose Nanomaterials Review: Structure, Properties and Nano- composites. Chem. Soc. Rev. 2011, 40, 3941−3994.

6 Isogai, A. Wood Nanocelluloses: Fundamentals and Applications as New Bio-Based Nanomaterials. J. Wood Sci. 2013, 59, 449−459.

7 Isogai, A.; Saito, T.; Fukuzumi, H. TEMPO-Oxidized Cellulose Nanofibers. Nanoscale 2011, 3,71−85.

8 Saito, T.; Kimura, S.; Nishiyama, Y.; Isogai, A. Cellulose Nanofibers Prepared by TEMPOMediated Oxidation of Native Cellulose. Biomacromolecules 2007, 8, 2485−2491.

9 Shinoda, R.; Saito, T.; Okita, Y.; Isogai, A. Relationship between Length and Degree of Polymerization of TEMPO-Oxidized Cellulose Nanofibrils. Biomacromolecules 2012, 13, 842−849.

10 Noguchi, Y.; Homma, I.; Matsubara, Y. Complete Nano- fibrillation of Cellulose Prepared by Phosphorylation. Cellulose 2017, 24, 1295−1305

11 Usov, I.; Nyström, G.; Adamcik, J.; Handschin, S.; Schütz, C.; Fall, A.; Bergström, L.; Mezzenga, R. Understanding Nanocellulose Chirality and Structure−Properties Relationship at the Single Fibril Level. Nat. Commun. 2015, 6, 7564.

12 Habibi, Y.; Lucia, L.; Rojas, O. J. Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications. Chem. Rev. 2010, 110, 3479−3500.

13 Klemm, D.; Kramer, F.; Moritz, S.; Lindström, T.; Ankerfors, M.; Gray, D.; Dorris, A. Nanocelluloses: A New Family of Nature-Based Materials. Angew. Chem., Int. Ed. 2011, 50, 5438−5466.

14 Moon, R. J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. Cellulose Nanomaterials Review: Structure, Properties and Nano- composites. Chem. Soc. Rev. 2011, 40, 3941−3994.

15 Revol, J.-F.; Bradford, H.; Giasson, J.; Marchessault, R. H.; Gray, D. G. Helicoidal Self-Ordering of Cellulose Microfibrils in Aqueous Suspension. Int. J. Biol. Macromol. 1992, 14, 170−172.

16 Dong, X. M.; Revol, J.-F.; Gray, D. G. Effect of Microcrystallite Preparation Conditions on the Formation of Colloid Crystals of Cellulose. Cellulose 1998, 5,19−32.

17 Beck-Candanedo, S.; Roman, M.; Gray, D. G. Effect of Reaction Conditions on the Properties and Behavior of Wood Cellulose Nanocrystal Suspensions. Biomacromolecules 2005, 6, 1048−1054.

18 Isogai, A.; Saito, T.; Fukuzumi, H. TEMPO-Oxidized Cellulose Nanofibers. Nanoscale 2011, 3,71−85.

19 Saito, T.; Kimura, S.; Nishiyama, Y.; Isogai, A. Cellulose Nanofibers Prepared by TEMPOMediated Oxidation of Native Cellulose. Biomacromolecules 2007, 8, 2485−2491.

20 Shinoda, R.; Saito, T.; Okita, Y.; Isogai, A. Relationship between Length and Degree of Polymerization of TEMPO-Oxidized Cellulose Nanofibrils. Biomacromolecules 2012, 13, 842−849.

21 Tanaka, R.; Saito, T.; Hondo, H.; Isogai, A. Influence of Flexibility and Dimensions of Nanocelluloses on the Flow Properties of Their Aqueous Dispersions. Biomacromolecules 2015, 16, 2127− 2131.

22 Tanaka, R.; Saito, T.; Hondo, H.; Isogai, A. Influence of Flexibility and Dimensions of Nanocelluloses on the Flow Properties of Their Aqueous Dispersions. Biomacromolecules 2015, 16, 2127− 2131.

23 Montanari, S.; Roumani, M.; Heux, L.; Vignon, M. R. Topochemistry of Carboxylated Cellulose Nanocrystals Resulting from TEMPO-Mediated Oxidation. Macromolecules 2005, 38, 1665− 1671.

24 Habibi, Y.; Chanzy, H.; Vignon, M. R. TEMPO-Mediated Surface Oxidation of Cellulose Whiskers. Cellulose 2006, 13, 679−687.

25 Rattaz, A.; Mishra, S. P.; Chabot, B.; Daneault, C. Cellulose Nanofibers by SonocatalyzedTEMPO-Oxidation. Cellulose 2011, 18, 585−593.

26 Qin, Z.-Y.; Tong, G.-L.; Frank Chin, Y. C.; Zhou, J.-C. Preparation of Ultrasonic-Assisted High Carboxylate Content Cellulose Nanocrystals by TEMPO Oxidation. BioResources 2011, 6, 1136−1146.

27 Mishra, S. P.; Manent, A.-S.; Chabot, B.; Daneault, C. Production of Nanocellulose from Native Cellulose: Various Options Utilizing Ultrasound. BioResources 2012, 7, 422−436.

28 Paquin, M.; Loranger, É.; Hannaux, V.; Chabot, B.; Daneault, C. The Use of Weissler Method for Scale-Up a Kraft Pulp Oxidation by TEMPO-Mediated System from a Batch Mode to a Continuous Flow- Through Sonoreactor. Ultrason. Sonochem. 2013, 20, 103−108.

29 Rohaizu, R.; Wanrosli, W. D. Sono-Assisted TEMPO Oxidation of Oil Palm Lignocellulosic Biomass for Isolation of Nanocrystalline Cellulose. Ultrason. Sonochem. 2017, 34, 631−639.

30 Qin, Z.-Y.; Tong, G.-L.; Frank Chin, Y. C.; Zhou, J.-C. Preparation of Ultrasonic-Assisted High Carboxylate Content Cellulose Nanocrystals by TEMPO Oxidation. BioResources 2011, 6, 1136−1146

31 Rohaizu, R.; Wanrosli, W. D. Sono-Assisted TEMPO Oxidation of Oil Palm Lignocellulosic Biomass for Isolation of Nanocrystalline Cellulose. Ultrason. Sonochem. 2017, 34, 631−639.

32 Okita, Y., Saito, T., & Isogai, A. (2010). Entire surface oxidation of various cellulose microfibrils by TEMPO-mediated oxidation. Biomacromolecules, 11(6), 1696–1700. https://doi.org/10.1021/bm100214b

33 Takaichi, S.; Saito, T.; Tanaka, R.; Isogai, A. Improvement of Nanodispersibility of Oven-Dried TEMPO-Oxidized Celluloses in Water. Cellulose 2014, 21, 4093−4103.

34 Cranston, E. D.; Gray, D. G. Morphological and Optical Characterization of Polyelectrolyte Multilayers Incorporating Nano- crystalline Cellulose. Biomacromolecules 2006, 7 (9), 2522−2530.

35 Brinkmann, A.; Chen, M.; Couillard, M.; Jakubek, Z. J.; Leng, T.; Johnston, L. J. Langmuir 2016, 32 (24), 6105–6114.

36 Segal, L., Creely, J. J., Martin, A. E., & Conrad, C. M. (1959). An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer. Textile Research Journal, 29(10), 786–794.

37 French, A. D., & Santiago Cintrón, M. (2013). Cellulose polymorphy, crystallite size, and the Segal Crystallinity Index. Cellulose, 20(1), 583–588.

38 Hiraoki, R., Ono, Y., Saito, T., & Isogai, A. (2015). Molecular mass and molecular-mass distribution of TEMPO-oxidized celluloses and TEMPO-oxidized cellulose nanofibrils. Biomacromolecules, 16(2), 675–681.

39 Hiraoki, R.; Ono, Y.; Saito, T.; Isogai, A. Biomacromolecules 2015, 16 (2), 675–681.

40 Oberlerchner, J. T.; Rosenau, T.; Potthast, A. Molecules 2015, 20 (6), 10313–10341.

41 Isogai, A.; Saito, T.; Fukuzumi, H. Nanoscale 2011, 71–85.

42 Okita, Y., Saito, T., & Isogai, A. (2010). Entire surface oxidation of various cellulose microfibrils by TEMPO-mediated oxidation. Biomacromolecules, 11(6), 1696–1700.

43 Okita, Y., Saito, T., & Isogai, A. (2010). Entire surface oxidation of various cellulose microfibrils by TEMPO-mediated oxidation. Biomacromolecules, 11(6), 1696–1700.

44 Wickholm, K.; Larsson, P. T.; Iversen, T. Carbohydr. Res. 1998, 312, 123–129.

45 Larsson, P. T.; Hult, E.; Wickholm, K.; Pettersson, E.; Iversen, T. Solid State Nucl. Magn. Reson. 1999, 15, 31–40.

46 Okita, Y.; Saito, T.; Isogai, A. Entire Surface Oxidation of Various Cellulose Microfibrils by TEMPO-Mediated Oxidation. Biomacromolecules 2010, 11, 1696−1700

47 Usov, I.; Nyström, G.; Adamcik, J.; Handschin, S.; Schütz, C.; Fall, A.; Bergström, L.; Mezzenga, R. Nat. Commun. 2015, 6 (May), 7564.

48 Elazzouzi-hafraoui, S.; Nishiyama, Y.; Heux, L.; Dubreuil, F.; Rochas, C.; Putaux, J. 2008, 57–65.

49 Allen, T. (Ed.), 1997. Particle Size Measurement: Powder sampling and particle size measurement. Chapman & Hall, London. chapter 2.13. Rosin Rammler, Benet-Sperling formula. fifth edition. ISBN: 0-412-72950-4.

50 Alderliesten, M. (2013). Mean particle diameters. Part VII. the Rosin-Rammler size distribution: Physical and mathematical properties and relationships to Moment-Ratio defined mean particle diameters. Particle and Particle Systems Characterization, 30(3), 244–257.

51 Brezani, I., & Zelenak, F. 2010. Improving the effectivity of work with Rosin-Rammler diagram by using MATLAB (R) GUI tool. Acta Montanistica Slovaca, 15(2), 152–57

52 Hiraoki, R.; Ono, Y.; Saito, T.; Isogai, A. Biomacromolecules 2015, 16 (2), 675–681.

53 Hiraoki, R., Ono, Y., Saito, T., & Isogai, A. (2015). Molecular mass and molecular-mass distribution of TEMPO-oxidized celluloses and TEMPO-oxidized cellulose nanofibrils. Biomacromolecules, 16(2), 675–681.

54 Kes, M.; Christensen, B. E. A re-investigation of the Mark-Houwink-Sakurada parameters for cellulose in Cuen: a study based on size-exclusion chromatography combined with multi-angle light scattering and viscometry. J. Chromatogr. A 2013, 1281,32−37.

55 Hiraoki, R., Ono, Y., Saito, T., & Isogai, A. (2015). Molecular mass and molecular-mass distribution of TEMPO-oxidized celluloses and TEMPO-oxidized cellulose nanofibrils. Biomacromolecules, 16(2), 675–681.

56 Oberlerchner, J. T.; Rosenau, T.; Potthast, A. Molecules 2015, 20 (6), 10313–10341.

57 Oberlerchner, J. T.; Rosenau, T.; Potthast, A. Molecules 2015, 20 (6), 10313–10341.

58 Kes, M.; Christensen, B. E. J. Chromatogr. A 2013, 1281, 32–37.

59 Oberlerchner, J. T.; Rosenau, T.; Potthast, A. Molecules 2015, 20 (6), 10313–10341.

60 Kes, M.; Christensen, B. E. J. Chromatogr. A 2013, 1281, 32–37.

61 Hiraoki, R., Ono, Y., Saito, T., & Isogai, A. (2015). Molecular mass and molecular-mass distribution of TEMPO-oxidized celluloses and TEMPO-oxidized cellulose nanofibrils. Biomacromolecules, 16(2), 675–681.

62 Łojewski, T.; Zieba, K.; Łojewska, J. Size exclusion chromatography and viscometry in paper degradation studies. New Mark-Houwink coefficients for cellulose in cupri-ethylenediamine. J. Chromatogr. A 2010, 1217, 6462–6468.

63 Foston, M. Curr. Opin. Biotechnol. 2014, 27, 176–184.

64 Yang, H.; Wang, T.; Oehme, D.; Petridis, L.; Hong, M.; Kubicki, J. D. Cellulose 2018, 25 (1), 23– 36.

65 Wang T, Yang H, Kubicki JD, Hong M (2016b) Cellulose structural polymorphism in plant primary cell walls investigated by high-field 2D solid-state NMR spectroscopy and Density Functional Theory calculations. Biomacromolecules 17:2210–2222

66 Yang, H.; Wang, T.; Oehme, D.; Petridis, L.; Hong, M.; Kubicki, J. D. Cellulose 2018, 25 (1), 23– 36.

67 Usov, I.; Nyström, G.; Adamcik, J.; Handschin, S.; Schütz, C.; Fall, A.; Bergström, L.; Mezzenga, R. Understanding Nanocellulose Chirality and Structure−Properties Relationship at the Single Fibril Level. Nat. Commun. 2015, 6, 7564.

68 Revol, J.-F.; Bradford, H.; Giasson, J.; Marchessault, R. H.; Gray, D. G. Helicoidal Self-Ordering of Cellulose Microfibrils in Aqueous Suspension. Int. J. Biol. Macromol. 1992, 14, 170−172.

69 Dong, X. M.; Revol, J.-F.; Gray, D. G. Effect of Microcrystallite Preparation Conditions on the Formation of Colloid Crystals of Cellulose. Cellulose 1998, 5,19−32.

70 Tanaka, R.; Saito, T.; Hondo, H.; Isogai, A. Influence of Flexibility and Dimensions of Nanocelluloses on the Flow Properties of Their Aqueous Dispersions. Biomacromolecules 2015, 16, 2127− 2131.

71 Kes, M.; Christensen, B. E. J. Chromatogr. A 2013, 1281, 32–37.

Chapter4

1 Nechyporchuk, O.; Belgacem, M. N.; Pignon, F. Current Progress in Rheology of Cellulose Nanofibril Suspensions. Bio- macromolecules 2016, 17, 2311−2320.

2 Tanaka, R.; Saito, T.; Ishii, D.; Isogai, A. Determination of Nanocellulose Fibril Lengths by Shear Viscosity Measurement. Cellulose 2014, 21, 1581−1589.

3 Tanaka, R.; Saito, T.; Hondo, H.; Isogai, A. Influence of Flexibility and Dimensions of Nanocelluloses on the Flow Properties of Their Aqueous Dispersions. Biomacromolecules 2015, 16, 2127− 2131.

4 Fukuzumi, H.; Tanaka, R.; Saito, T.; Isogai, A. Dispersion Stability and Aggregation Behavior of TEMPO-Oxidized Cellulose Nanofibrils in Water as a Function of Salt Addition. Cellulose 2014, 21, 1553−1559.

5 Nechyporchuk, O.; Belgacem, M. N.; Pignon, F. Current Progress in Rheology of Cellulose Nanofibril Suspensions. Bio- macromolecules 2016, 17, 2311−2320.

6 Martin, J.; Wilcoxon, J. Critical Dynamics of the Sol-Gel Transition. Phys. Rev. Lett. 1988, 61, 373−376.

7 Shibayama, M.; Yoshizawa, H.; Kurokawa, H.; Fujiwara, H.; Nomura, S. Sol-Gel Transition of Poly(vinyl alcohol)-Borate Complex. Polymer 1988, 29, 2066−2071.

8 Kroon, M.; Wegdam, G.; Sprik, R. Dynamic Light Scattering Studies on the Sol-Gel Transition of a Suspension of Anisotropic Colloidal Particles. Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 1996, 54, 6541−6550.

9 Shibayama, M. Universality and Specificity of Polymer Gels viewed by Scattering Methods. Bull. Chem. Soc. Jpn. 2006, 79, 1799− 1819.

10 Barretta, P.; Bordi, F.; Rinaldi, C.; Paradossi, G. A Dynamic Light Scattering Study of Hydrogels Based on Telechelic Poly (vinyl alcohol). J. Phys. Chem. B 2000, 104, 11019−11026.

11 Shibayama, M.; Norisuye, T. Gel Formation Analyses by Dynamic Light Scattering. Bull. Chem. Soc. Jpn. 2002, 75, 641−659

12 Djabourov, M.; Nishinari, K.; Ross-Murphy, S. B. Physical Gels from Biological and Synthetic Polymers; Cambridge University Press: Cambridge, 2013.

13 Celzard, A.; Fierro, V.; Kerekes, R. Flocculation of Cellulose Fibres: New Comparison of Crowding Factor with Percolation and Effective-Medium Theories. Cellulose 2009, 16, 983−987.

14 Varanasi, S.; He, R.; Batchelor, W. Estimation of Cellulose Nanofibre Aspect Ratio from Measurements of Fibre Suspension Gel Point. Cellulose 2013, 20, 1885−1896.

15 Geng, L.; Mittal, N.; Zhan, C.; Ansari, F.; Sharma, P. R.; Peng, X.; Hsiao, B. S.; Söderberg, L. D. Understanding the Mechanistic Behavior of Highly Charged Cellulose Nanofibers in Aqueous Systems. Macromolecules 2018, 51, 1498−1506.

16 Shibayama, M., & Norisuye, T. (2002). Gel Formation Analyses by Dynamic Light Scattering. Bull. Chem. Soc. Jpn.

17 Munch, J. P., Candau, S., Duplessix, R., Picot, C., Herz, J., & Benoit, H. (1976). Spectrum of Light Scattered From Viscoelastic Gels. J Polym Sci Part A-2 Polym Phys, 14(6), 1097–1109.

18 Provencher, S. W. A Constrained Regularization Method for Inverting Data Represented by Linear Algebraic or Integral Equations. Comput. Phys. Commun. 1982, 27, 213−227.

19 Provencher, S. W. CONTIN: A General Purpose Constrained Regularization Program for Inverting Noisy Linear Algebraic and Integral Equations. Comput. Phys. Commun. 1982, 27, 229−242.

20 Hassan, P. A., Rana, S., & Verma, G. (2015). Making sense of Brownian motion: Colloid characterization by dynamic light scattering. Langmuir, 31(1), 3–12.

21 Hassan, P. A.; Rana, S.; Verma, G. Langmuir 2015, 31 (1), 3–12.

22 Mao, Y.; Liu, K.; Zhan, C.; Geng, L.; Chu, B.; Hsiao, B. S. J. Phys. Chem. B 2017, 121 (6), 1340– 1351.

23 Tanaka, R., Tsuguyuki. S..,Isogai, A. Cellulose 2014, 21 (3), 1581–1589.

24 Mao, Y.; Liu, K.; Zhan, C.; Geng, L.; Chu, B.; Hsiao, B. S. J. Phys. Chem. B 2017, 121 (6), 1340– 1351.

25 Pekcan, Ö.; Kaya, D.; Okay, O. Eur. Polym. J. 1999, 35 (11), 2025–2029.

26 Mendoza, L.; Batchelor, W.; Tabor, R. F.; Garnier, G. J. Colloid Interface Sci. 2018, 509, 39–46.

27 Schantz Zackrisson, A.; Martinelli, A.; Matic, A.; Bergenholtz, J. J. Colloid Interface Sci. 2006, 301 (1), 137–144.

28 Djabourov, M.; Nishinari, K.; Ross-Murphy, S. B. Physical Gels from Biological and Synthetic Polymers; Cambridge University Press: Cambridge, 2013.

29 W. Prins, L. Rimai, and A. F. Chompff, Macromolecules, 5, 104 (1972)

30 T. Tanaka, L. O. Hocker, and G. B. Benedek, J. Chem. Phys., 59, 5151 (1973)

31 T. Tanaka, in “Dynamic Light Scattering,” edited by R. Pecora Plenum, NY (1985)

32 Shibayama, M.; Norisuye, T. Bull. Chem. Soc. Jpn. 2002.

33 Watanabe, N.; Li, X.; Shibayama, M. Macromolecules 2017, acs.macromol.7b02202.

34 Li, X.; Watanabe, N.; Sakai, T.; Shibayama, M. Macromolecules 2017, 50 (7), 2916–2922.

35 Hammersley I.M., Proc. Cambridge Phil. Soc. 53 (1957) 642-645.

36 Introduction Sol-Gel Processing.

37 Dufresne, A. “Nanocellulose: from nature to high performance tailored materials”, Walter de Gruyter, Berlin/Boston, 2017, pp. 324–425.

38 Kerekes, R. J.; Schell, C. J. J. pulp Pap. Sci. 1992, 18 (1), J32–J38.

39 Geng, L.; Mittal, N.; Zhan, C.; Ansari, F.; Sharma, P. R.; Peng, X.; Hsiao, B. S.; Söderberg, L. D. Macromolecules 2018, 51 (4), 1498–1506.

40 Geng, L.; Mittal, N.; Zhan, C.; Ansari, F.; Sharma, P. R.; Peng, X.; Hsiao, B. S.; Söderberg, L. D. Macromolecules 2018, 51 (4), 1498–1506.

41 Celzard, A.; Fierro, V.; Kerekes, R. Cellulose 2009, 16 (6), 983–987. 42 Celzard, A.; Fierro, V.; Pizzi, A. Cellulose 2008, 15 (6), 803–814

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る