リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Studies on preparation and characterization of zinc oxide/TEMPO-oxidized cellulose nanofiber composite films」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Studies on preparation and characterization of zinc oxide/TEMPO-oxidized cellulose nanofiber composite films

寧, 芮之 東京大学 DOI:10.15083/0002003290

2022.03.09

概要

Chapter 1. Introduction
 I prepared composite films consisting of ZnO nanoparticles and TEMPO-oxidized cellulose nanofibers (TOCNs) using simple mixing procedures of the two components followed by casting and drying, in which different amounts or morphologies of ZnO nanoparticles were used. The relationships between the preparation conditions and properties of the composite films were investigated. Multiple functions of the as-prepared nanocomposite films such as optical, mechanical, thermal, hydrophilic, anti-microbial properties as well as photocatalytic activities and oxygen permeabilities were investigated based on the preparation conditions and nanostructures of the composite films. Moreover, UV-induced degradation and cellular compatibility of TOCNs in aqueous dispersions were investigated in terms of contents and counter-ions of surface carboxylate groups of TOCNs, respectively.

Chapter 2. Preparation of ZnO/TOCN nanocomposite films and property investigation of the films with different ZnO contents
 ZnO/TOCN composite films with 0–50% ZnO contents were prepared by mixing ZnO/water and TOCN/ water dispersions at various weight ratios under the same stirring, sonicating, and subsequent casting and drying conditions. Fundamental, optical, thermal, surface wetting, mechanical, and antimicrobial properties were investigated in terms of ZnO contents. The ZnO/TOCN composite films showed characteristic UV-shielding properties with high light transparencies, depending on ZnO contents (Fig. 1). The composite films had low CTEs (<10 ppm/K), although the CTE value increased with increasing ZnO content probably because film porosities increased with ZnO content. In the case of composite films with high porosities, the films consisted of stiff TOCNs and ZnO particles and soft air components, the tensile strength and strain-to-failure decreased slightly with increasing ZnO content from 0 to 10%. The 50% ZnO-containing film had explicitly ductile properties because of its high porosity. Even though both TOCNs and ZnO particles are hydrophilic, the composite films exhibited various surface wettabilities, depending on the ZnO content (Fig. 2). This behavior is explainable in terms of the surface roughness of the composite film or the presence of small air fractions on the film surface, according to Cassie’s law. The ZnO/TOCN composite films displayed effective antibacterial activity, especially towards Gram-negative bacterium Escherichia coli. Any distinct improvement of thermal degradation point (Td) was not observed for the composite films; their weight decreases started at ~200 ℃ in N2 atmosphere irrespective of the ZnO content.

Chapter 3. Influence of the morphology of ZnO nanoparticles on films properties of ZnO/TOCN composites
 TOCNs and ZnO nanoparticles with different morphologies, i.e., spheres, rods, and needles, were mixed in water. The ZnO/TOCN mixtures were then cast and dried to prepare ZnO/TOCN (1:9 w/w) composite films to investigate the influence of ZnO nanoparticle morphology on composite film properties. The film densities varied from 1.25 to 1.63 g/cm3 and porosities ranged from 5.4 vol% to 22 vol% depending on the morphology of ZnO nanoparticles. The (100) plane of the rod- and needle-like wurtzite ZnO particles were preferentially oriented to the composite film surface. The Young's modulus and tensile strength of the composite films were similar regardless of nanoparticle morphology, whereas the ZnO/TOCN films with higher porosities had greater elongations at break and works of fracture. The composite films consisting of rod- and needle-like ZnO particles had low oxygen permeability at 50% relative humidity (Fig. 3). All the ZnO/TOCN composite films screened UV light, and the film containing spherical ZnO nanoparticle had the highest visible-light transmittance. The ZnO/TOCN composite films and their components showed photoluminescence when exited by UV light with the highest intensity at 370-nm UV light. The UV-induced ZnO-catalyzed degradation of methylene blue (MB) in water was restricted in the presence of TOCN (Fig. 4), which may be caused by electrostatic interactions (or aggregation) between anionic TOCN elements and cationic MB molecules.

Chapter 4. UV irradiation-induced degradation of TOCNs
 In the previous section, it was found that TOCN is degraded by UV irradiation. In this section, therefore, UV-degradation behavior of TOCN was investigated in detail. A softwood bleached kraft pulp was oxidized by the TEMPO/NaBr/NaClO system under different oxidation conditions to prepare TOCNs with various carboxylate contents. Water dispersions of these TOCNs were homogeneously subjected to UV irradiation experiment using a photochemical reactor equipped with a high pressure mercury lamp at the main wavelength of 365 nm. Changes in light transmittance and viscosity of the TOCN/dispersion and those in nanofiber morphology, functional groups, crystal structure, and molecular weight of the TOCNs were investigated in terms of UV-irradiation time and carboxylate content of TOCNs. Aqueous TOCN dispersions showed interesting changes in light transmittance and viscosity under different UV-irradiation time (Fig. 5). As the UV-irradiation time was increased, the pH values of the dispersion decreased, showing some acid groups are formed from TOCN during UV irradiation.
 The weight recovery raitos of UV-treated TOCNs decreased with the UV-irradiation time, when the TOCNs were recovered as gels after addition of methanol to the UV-treated aqueous TOCN dispersion. Moreover, the average lengths and carboxylate contents of UV-treated TOCNs decreased with UV-irradiation time. Because the pH values decreased for the UV-treated TOCN dispersions, some carboxylate groups were detached from TOCNs and simultaneously some new acid groups were formed as water/methanol-soluble low-molecular-weight compounds. The length of TOCN decreased to ~150 nm, which corresponds to the lengths of cellulose nanocrystals prepared by acid hydrolysis of plant celluloses. Molecular weights and molecular weight distributions of UV-treated TOCNs were analyzed by size-exclusion chromatography attached with multi-angle laser-light scattering (SEC-MALLS). The results showed that molecular weight of the original TOCN significantly decreased with UV-irradiation time; UV-induced depolymerization of TOCN molecules as well as shortening of TOCN length was achieved in this study. X-ray diffraction analysis of the UV-treated TOCNs showed that no significant decreases in crystallinity index or crystal width of celluloses I was observed.

Chapter 5. Cellular biocompatibility of TOCNs with different counter-ions
 Cellular biocompatibility of TOCNs with different counter-ions was investigated in terms of overall cell viability, all/dead cell population analysis, and intracellular changes of reactive oxygen species and mitochondrial mass and potential. TOCNs showed good cellular biocompatibility. When TOCNs with low carboxylate contents were used, the number of dead cells slightly increased. However, TOCNs with high carboxylate contents exhibited dead cell proportion at normal level. Counter-ions of TOCNs had some influences on biocompatibility. In particular, potassium counter-ion resulted in lower cellular biocompatibility than others.

この論文で使われている画像

参考文献

Chapter 1

[1] J.H. Kim, B.S. Shim, H.S. Kim, Y.J. Lee, S.K. Min, D. Jang, Z. Abas, J. Kim, Review of nanocellulose for sustainable future materials, Int. J. Precis. Eng. Manuf. - Green Technol. 2 (2015) 197–213.

[2] A. Isogai, Wood nanocelluloses: fundamentals and applications as new bio-based nanomaterials, J. Wood Sci. 59 (2013) 449–459.

[3] A. Isogai, T. Saito, H. Fukuzumi, TEMPO-oxidized cellulose nanofibers, Nanoscale. 3 (2011) 71–85.

[4] M.S. Doblin, I. Kurek, D. Jacob-Wilk, D.P. Delmer, Cellulose biosynthesis in plants: From genes to rosettes, Plant Cell Physiol. 43 (2002) 1407–1420.

[5] E. Slabaugh, J.K. Davis, C.H. Haigler, Y.G. Yingling, J. Zimmer, Cellulose synthases: New insights from crystallography and modeling, Trends Plant Sci. 19 (2014) 99–106.

[6] N.G. Taylor, Cellulose biosynthesis and deposition in higher plants, New Phytol. 178 (2008) 239–252.

[7] A. Ishikawa, T. Okano, J. Sugiyama, Fine structure and tensile properties of ramie fibres in the crystalline form of cellulose I, II, IIIIand IVI, Polymer (Guildf). 38 (1997) 463–468.

[8] T. Nishino, K. Takano, K. Nakamae, Elastic modulus of the crystalline regions of cellulose polymorphs, J. Polym. Sci. Part B Polym. Phys. 33 (1995) 1647–1651.

[9] K.H. Gardivert, J. Blackwell, The structure of native Cellulose, Biopolymers. 13 (2001) 1975–2001.

[10] Y. Nishiyama, Structure and properties of the cellulose microfibril, J. Wood Sci. 55 (2009) 241–249.

[11] S. Iwamoto, W. Kai, A. Isogai, T. Iwata, Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy, Biomacromolecules. 10 (2009) 2571–2576.

[12] T. Saito, R. Kuramae, J. Wohlert, L.A. Berglund, A. Isogai, An ultrastrong nanofibrillar biomaterial: The strength of single cellulose nanofibrils revealed via sonication-induced fragmentation, Biomacromolecules. 14 (2013) 248–253.

[13] I. Sakurada, Y. Nukushina, T. Ito, Experimental determination of the elastic modulus of crystalline regions in oriented polymers, J. Polym. Sci. 57 (1962) 651–660.

[14] S. Masaoka, T. Ohe, N. Sakota, Production of cellulose from glucose by Acetobacter xylinum, J. Ferment. Bioeng. 75 (1993) 18–22.

[15] M. Iguchi, S. Yamanaka, A. Budhiono, Bacterial cellulose-a masterpiece of nature’s arts, J. Mater. Sci. 35 (2000) 261–270.

[16] D. Klemm, B. Heublein, H.P. Fink, A. Bohn, Cellulose: Fascinating biopolymer and sustainable raw material, Angew. Chem. Int. Ed. 44 (2005) 3358–3393.

[17] D. Klemm, D. Schumann, U. Udhardt, S. Marsch, Bacterial synthesized cellulose—artificial blood vessels for microsurgery, Prog. Polym. Sci. 26 (2001) 1561–1603.

[18] M. Martínez-Sanz, A. Lopez-Rubio, J.M. Lagaron, Optimization of the nanofabrication by acid hydrolysis of bacterial cellulose nanowhiskers, Carbohydr. Polym. 85 (2011) 228–236.

[19] S. Yamanaka, M. Ishihara, J. Sugiyama, Structural modification of bacterial cellulose, Cellulose. 7 (2000) 213–225.

[20] I. Siró, D. Plackett, Microfibrillated cellulose and new nanocomposite materials: A review, Cellulose. 17 (2010) 459–494.

[21] W. Czaja, D. Romanovicz, R. malcolm Brown, Structural investigations of microbial cellulose produced in stationary and agitated culture, Cellulose. 11 (2004) 403–411.

[22] S. Park, J.O. Baker, M.E. Himmel, P.A. Parilla, D.K. Johnson, Cellulose crystallinity index: Measurement techniques and their impact on interpreting cellulase performance, Biotechnol. Biofuels. 3 (2010) 1–10.

[23] D.N.S. Hon, Cellulose: a random walk along its historical path, Cellulose. 1 (1994) 1–25.

[24] K. Wickholm, P.T. Larsson, T. Iversen, Assignment of non-crystalline forms in cellulose I by CP/MAS 13C NMR spectroscopy, Carbohydr. Res. 312 (1998) 123–129.

[25] H. Zhao, J.H. Kwak, Z. Conrad Zhang, H.M. Brown, B.W. Arey, J.E. Holladay, Studying cellulose fiber structure by SEM, XRD, NMR and acid hydrolysis, Carbohydr. Polym. 68 (2007) 235–241.

[26] Y. Nishiyama, U.J. Kim, D.Y. Kim, K.S. Katsumata, R.P. May, P. Langan, Periodic disorder along ramie cellulose microfibrils, Biomacromolecules. 4 (2003) 1013–1017.

[27] B.B. Hallac, A.J. Ragauskas, Analyzing cellulose degree of polymerization and its relevancy to cellulosic ethanol, Biofuels, Bioprod. Biorefining. 5 (2011) 215–225. doi:10.1002/bbb.

[28] O.A. Battista, Hydrolysis and crystallization of cellulose, Ind. Eng. Chem. 42 (1950) 502–507.

[29] X.M. Dong, J.F. Revol, D.G. Gray, Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose, Cellulose. 5 (1998) 19–32.

[30] B. Sun, M. Zhang, Q. Hou, R. Liu, T. Wu, C. Si, Further characterization of cellulose nanocrystal (CNC) preparation from sulfuric acid hydrolysis of cotton fibers, Cellulose. 23 (2016) 439–450.

[31] R.J. Moon, A. Martini, J. Nairn, J. Simonsen, J. Youngblood, Cellulose nanomaterials review: Structure, properties and nanocomposites, Chem. Soc. Rev. 40 (2011) 3941-3994.

[32] J. Araki, M. Wada, S. Kuga, T. Okano, Influence of surface charge on viscosity behavior of cellulose microcrystal suspension, J. Wood Sci. 45 (1999) 258–261.

[33] L. Chen, Q. Wang, K. Hirth, C. Baez, U.P. Agarwal, J.Y. Zhu, Tailoring the yield and characteristics of wood cellulose nanocrystals (CNC) using concentrated acid hydrolysis, Cellulose. 22 (2015) 1753–1762.

[34] Q. Wang, X. Zhao, J.Y. Zhu, Kinetics of strong acid hydrolysis of a bleached kraft pulp for producing cellulose nanocrystals (CNCs), Ind. Eng. Chem. Res. 53 (2014) 11007–11014.

[35] S. Elazzouzi-Hafraoui, Y. Nishiyama, J.L. Putaux, L. Heux, F. Dubreuil, C. Rochas, The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose, Biomacromolecules. 9 (2008) 57–65.

[36] P. Lu, Y. Lo Hsieh, Preparation and characterization of cellulose nanocrystals from rice straw, Carbohydr. Polym. 87 (2012) 564–573.

[37] O. van der Berg, J.R. Capadona, C. Weder, Preparation of homogeneous dispersions of tunicate cellulose whiskers in organic solvents, Biomacromolecules. 8 (2007) 1353–1357.

[38] S. Camarero Espinosa, T. Kuhnt, E.J. Foster, C. Weder, Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis, Biomacromolecules. 14 (2013) 1223–1230.

[39] N. Mahfoudhi, S. Boufi, Nanocellulose as a novel nanostructured adsorbent for environmental remediation: a review, Cellulose. 24 (2017) 1171–1197.

[40] H.P.S.A. Khalil, A.H. Bhat, A.F.I. Yusra, Green composites from sustainable cellulose nanofibrils: A review, Carbohydr. Polym. 87 (2012) 963–979.

[41] A.F. Turbak, F.W. Snyder, K.R. Sandberg, Microfibrillated cellulose, a new cellulose product: Properties, uses, and commercial potential, J. Appl. Polym. Sci. Appl. Polym. Symp. 37 (1983) 815–827.

[42] F.W. Herrick, R.L. Casebier, J.K. Hamilton, K.R. Sandberg, Microfibrillated cellulose: Morphology and accessibility, J. Appl. Polym. Sci. Appl. Polym. Symp. 37 (1983) 797–813.

[43] W. Stelte, A.R. Sanadi, Preparation and characterization of cellulose nanofibers from two commercial hardwood and softwood pulps, Ind. Eng. Chem. Res. 48 (2009) 11211–11219.

[44] S. Iwamoto, K. Abe, H. Yano, The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber network characteristics, Biomacromolecules. 9 (2008) 1022–1026.

[45] T. Zimmermann, N. Bordeanu, E. Strub, Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential, Carbohydr. Polym. 79 (2010) 1086–1093.

[46] Ø. Eriksen, K. Syverud, Ø. Gregersen, The use of microfibrillated cellulose produced from kraft pulp as strength enhancer in TMP paper, Nord. Pulp Pap. Res. J. 23 (2008) 299–304.

[47] M. Ankerfors, T. Lindström, On the manufacture and use of nanocellulose, in: 9th Int. Conf. Wood Biofiber Plast. Compos., May. 2007.

[48] M. Pääkko, M. Ankerfors, H. Kosonen, A. Nykänen, S. Ahola, M. Österberg, J. Ruokolainen, J. Laine, P.T. Larsson, O. Ikkala, T. Lindström, Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels, Biomacromolecules. 8 (2007) 1934–1941.

[49] M. Henriksson, G. Henriksson, L.A. Berglund, T. Lindström, An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers, Eur. Polym. J. 43 (2007) 3434–3441.

[50] N. Hayashi, T. Kondo, M. Ishihara, Enzymatically produced nano-ordered short elements containing cellulose Iβ crystalline domains, Carbohydr. Polym. 61 (2005) 191–197.

[51] H. Liimatainen, M. Visanko, J.A. Sirviö, O.E.O. Hormi, J. Niinimaki, Enhancement of the nanofibrillation of wood cellulose through sequential periodate-chlorite oxidation, Biomacromolecules. 13 (2012) 1592–1597.

[52] T. Saito, Y. Nishiyama, J.L. Putaux, M. Vignon, A. Isogai, Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose, Biomacromolecules. 7 (2006) 1687–1691.

[53] A.E.J. de Nooy, A.C. Besemer, H. van Bekkum, Highly selective nitroxyl radical-mediated oxidation of primary alcohol groups in water-soluble glucans, Carbohydr. Res. 269 (1995) 89–98.

[54] T. Isogai, M. Yanagisawa, A. Isogai, Degrees of polymerization (DP) and DP distribution of cellouronic acids prepared from alkali-treated celluloses and ball-milled native celluloses by TEMPO-mediated oxidation, Cellulose. 16 (2009) 117–127.

[55] T. Saito, A. Isogai, Introduction of aldehyde groups on surfaces of native cellulose fibers by TEMPO-mediated oxidation, Colloids Surfaces A Physicochem. Eng. Asp. 289 (2006) 219–225.

[56] W.F. Bailey, J.M. Bobbitt, K.B. Wiberg, Mechanism of the oxidation of alcohols by oxoammonium cations, J. Org. Chem. 72 (2007) 4504–4509.

[57] S. Goldstein, A. Samuni, Kinetics and mechanism of peroxyl radical reactions with nitroxides, J. Phys. Chem. A. 111 (2007) 1066–1072.

[58] T. Saito, A. Isogai, TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions, Biomacromolecules. 5 (2004) 1983–1989.

[59] T. Saito, S. Kimura, Y. Nishiyama, A. Isogai, Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose, Biomacromolecules. 8 (2007) 2485–2491.

[60] T. Saito, M. Hirota, N. Tamura, S. Kimura, H. Fukuzumi, L. Heux, A. Isogai, Individualization of nano-sized plant cellulose fibrils achieved by direct surface carboxylation using TEMPO catalyst, (2009) 1992–1996.

[61] K. Freudenberg, The relationship of cellulose to lignin in wood, J. Chem. Educ. 9 (1932) 1171–1180.

[62] K.Y. Lee, Y. Aitomäki, L.A. Berglund, K. Oksman, A. Bismarck, On the use of nanocellulose as reinforcement in polymer matrix composites, Compos. Sci. Technol. 105 (2014) 15–27.

[63] H. Fukuzumi, T. Saito, T. Wata, Y. Kumamoto, A. Isogai, Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation, Biomacromolecules. 10 (2009) 162–165.

[64] T. Saito, T. Uematsu, S. Kimura, T. Enomae, A. Isogai, Self-aligned integration of native cellulose nanofibrils towards producing diverse bulk materials, Soft Matter. 7 (2011) 8804–8809.

[65] Y. Kobayashi, T. Saito, A. Isogai, Aerogels with 3D ordered nanofiber skeletons of liquid-crystalline nanocellulose derivatives as tough and transparent insulators, Angew. Chem. Int. Ed. Engl. 53 (2014) 10394–10397.

[66] P. Munier, K. Gordeyeva, L. Bergström, A.B. Fall, Directional freezing of nanocellulose dispersions aligns the rod-like particles and produces low-density and bobust particle networks, Biomacromolecules. 17 (2016) 1875–1881.

[67] M. Ioelovich, Cellulose as a nanostructured polymer: A short review, BioResources. 3 (2008) 1403–1418.

[68] M. Matsuo, C. Sawatari, Y. Iwai, F. Ozaki, Effect of orientation distribution and crystallinity on the measurement by x-ray diffraction of the crystal lattice moduli of celluloseⅠ and Ⅱ, Macromolecules. 23 (1990) 3266–3275.

[69] A. Šturcová, G.R. Davies, S.J. Eichhorn, Elastic modulus and stress-transfer properties of tunicate cellulose whiskers, Biomacromolecules. 6 (2005) 1055–1061.

[70] H. Soeta, S. Fujisawa, T. Saito, L. Berglund, A. Isogai, Low-birefringent and highly tough nanocellulose-reinforced cellulose triacetate, ACS Appl. Mater. Interfaces. 7 (2015) 11041–11046.

[71] S. Fujisawa, T. Saito, S. Kimura, T. Iwata, A. Isogai, Comparison of mechanical reinforcement effects of surface-modified cellulose nanofibrils and carbon nanotubes in PLLA composites, Compos. Sci. Technol. 90 (2014) 96–101.

[72] V. Favier, H. Chanzy, J.Y. Cavaillé, Polymer Nanocomposites Reinforced by Cellulose Whiskers, Macromolecules. 28 (1995) 6365–6367.

[73] V. Favier, G.R. Canova, J.Y. Cavaillé, H. Chanzy, A. Dufresne, C. Gauthier, Nanocomposite materials form latex and cellulose whiskers, Polym. Adv. Technol. 6 (1995) 351–355.

[74] A. Boldizar, C. Klason, J. Kubát, P. Näslund, P. Sáha, Prehydrolyzed cellulose as reinforcing filler for thermoplastics, Int. J. Polym. Mater. Polym. Biomater. 11 (1987) 229–262.

[75] M. Jonoobi, J. Harun, A.P. Mathew, K. Oksman, Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion, Compos. Sci. Technol. 70 (2010) 1742–1747.

[76] T. Pullawan, A.N. Wilkinson, S.J. Eichhorn, Discrimination of matrix-fibre interactions in all-cellulose nanocomposites, Compos. Sci. Technol. 70 (2010) 2325–2330.

[77] K.S. Mikkonen, L. Pitkänen, V. Liljeström, E. Mabasa Bergström, R. Serimaa, L. Salmén, M. Tenkanen, Arabinoxylan structure affects the reinforcement of films by microfibrillated cellulose, Cellulose. 19 (2012) 467–480.

[78] J. Lu, T. Wang, L.T. Drzal, Preparation and properties of microfibrillated cellulose polyvinyl alcohol composite materials, Compos. Part A Appl. Sci. Manuf. 39 (2008) 738–746.

[79] J.W. Gilman, Flammability and thermal stability studies of polymer layered-silicate (clay) nanocomposites, Appl. Clay Sci. 15 (1999) 31–49.

[80] W. Tang, M.H. Santare, S.G. Advani, Melt processing and mechanical property characterization of multi-walled carbon nanotube/high density polyethylene (MWNT/HDPE) composite films, Carbon. 41 (2003) 2779–2785.

[81] X. Ma, P.R. Chang, J. Yang, J. Yu, Preparation and properties of glycerol plasticized-pea starch/zinc oxide-starch bionanocomposites, Carbohydr. Polym. 75 (2009) 472–478.

[82] C.N. Wu, T. Saito, S. Fujisawa, H. Fukuzumi, A. Isogai, Ultrastrong and high gas-barrier nanocellulose/clay-layered composites, Biomacromolecules. 13 (2012) 1927–1932.

[83] H. Koga, T. Saito, T. Kitaoka, M. Nogi, K. Suganuma, A. Isogai, Transparent, conductive, and printable composites consisting of TEMPO-oxidized nanocellulose and carbon nanotube, Biomacromolecules. 14 (2013) 1160–1165. doi:10.1021/bm400075f.

[84] R. Ning, M. Takeuchi, J.M. Lin, T. Saito, A. Isogai, Influence of the morphology of zinc oxide nanoparticles on the properties of zinc oxide/nanocellulose composite films, React. Funct. Polym. 131 (2018) 293–298.

[85] R. Ning, C.N. Wu, M. Takeuchi, T. Saito, A. Isogai, Preparation and characterization of zinc oxide/TEMPO-oxidized cellulose nanofibril composite films, Cellulose. 24 (2017) 4861–4870.

[86] H. Xiong, Y. Xu, Q. Ren, Y. Xia, Stable aqueous ZnO polymer core-shell nanoparticles with tunable photoluminescence and their application in cell imaging, J. Am. Chem. Soc. 130 (2008) 7522–7523.

[87] Q. Yang, Y. Liu, C. Pan, J. Chen, X. Wen, Z.L. Wang, Largely enhanced efficiency in ZnO nanowire/p-polymer hybridized inorganic/organic ultraviolet light-emitting diode by piezo-phototronic effect, Nano Lett. 13 (2013) 607–613.

[88] O.M. El-Feky, E.A. Hassan, S.M. Fadel, M.L. Hassan, Use of ZnO nanoparticles for protecting oil paintings on paper support against dirt, fungal attack, and UV aging, J. Cult. Herit. 15 (2014) 165–172.

[89] Y.Q. Li, S.Y. Fu, Y.W. Mai, Preparation and characterization of transparent ZnO/epoxy nanocomposites with high-UV shielding efficiency, Polymer (Guildf). 47 (2006) 2127–2132.

[90] M.M.A. El-Hady, A. Farouk, S. Sharaf, Flame retardancy and UV protection of cotton based fabrics using nano ZnO and polycarboxylic acids, Carbohydr. Polym. 92 (2013) 400–406.

[91] D. Chen, Z. Wang, T. Ren, H. Ding, W. Yao, R. Zong, Y. Zhu, Influence of defects on the photocatalytic activity of ZnO, J. Phys. Chem. C. 118 (2014) 15300–15307.

[92] S. Shankar, J.P. Reddy, J.W. Rhim, H.Y. Kim, Preparation, characterization, and antimicrobial activity of chitin nanofibrils reinforced carrageenan nanocomposite films, Carbohydr. Polym. 117 (2015) 468–475.

[93] M. Yadollahi, I. Gholamali, H. Namazi, M. Aghazadeh, Synthesis and characterization of antibacterial carboxymethyl cellulose/ZnO nanocomposite hydrogels, Int. J. Biol. Macromol. 74 (2015) 136–141.

[94] A. John, H.U. Ko, D.G. Kim, J. Kim, Preparation of cellulose-ZnO hybrid films by a wet chemical method and their characterization, Cellulose. 18 (2011) 675–680.

[95] H.Y. Yu, G.Y. Chen, Y.B. Wang, J.M. Yao, A facile one-pot route for preparing cellulose nanocrystal/zinc oxide nanohybrids with high antibacterial and photocatalytic activity, Cellulose. 22 (2015) 261–273.

[96] E. Lizundia, A. Urruchi, J.L. Vilas, L.M. Leon, Increased functional properties and thermal stability of flexible cellulose nanocrystal/ZnO films, Carbohydr. Polym. 136 (2016) 250–258.

[97] N.C.T. Martins, R. Freire, Carmen S, C.P. Neto, A.J.D. Silvestre, J. Causio, G. Baldi, P. Sadocco, T. Trindade, Antibacterial paper based on composite coatings of nanofibrillated cellulose and ZnO, Colloids Surfaces A Physicochem. Eng. Asp. 417 (2013) 111–119.

[98] S. Azizi, M. Ahmad, M. Mahdavi, S. Abdolmohammadi, Preparation, characterization, and antimicrobial activities of ZnO nanoparticles/cellulose nanocrystal nanocomposites, BioResources. 8 (2013) 1841–1851.

[99] T. Tsuzuki, X. Wang, Nanoparticle coatings for UV protective textiles, Res. J. Text. Appar. 14 (2010) 9 – 21.

[100] F. Grüneberger, T. Künniger, A. Huch, T. Zimmermann, M. Arnold, Nanofibrillated cellulose in wood coatings: Dispersion and stabilization of ZnO as UV absorber, Prog. Org. Coatings. 87 (2015) 112–121.

[101] A. Becheri, M. Dürr, P. Lo Nostro, P. Baglioni, Synthesis and characterization of zinc oxide nanoparticles: Application to textiles as UV-absorbers, J. Nanoparticle Res. 10 (2008) 679–689.

[102] Y. Li, Y. Zou, Y. Hou, Fabrication and UV-blocking property of nano-ZnO assembled cotton fibers via a two-step hydrothermal method, Cellulose. 18 (2011) 1643–1649.

[103] K.R. Raghupathi, R.T. Koodali, A.C. Manna, Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles, Langmuir. 27 (2011) 4020–4028.

[104] A. Sirelkhatim, S. Mahmud, A. Seeni, N.H.M. Kaus, L.C. Ann, S.K.M. Bakhori, H. Hasan, D. Mohamad, Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism, Nano-Micro Lett. 7 (2015) 219–242.

[105] K. Lefatshe, C.M. Muiva, L.P. Kebaabetswe, Extraction of nanocellulose and in-situ casting of ZnO/cellulose nanocomposite with enhanced photocatalytic and antibacterial activity, Carbohydr. Polym. 164 (2017) 301–308.

[106] Y. Zheng, C. Chen, Y. Zhan, X. Lin, Q. Zheng, K. Wei, J. Zhu, Y. Zhu, Luminescence and photocatalytic activity of ZnO nanocrystals: Correlation between structure and property, Inorg. Chem. 46 (2007) 6675–6682. doi:10.1021/ic062394m.

[107] L. Jing, Y. Qu, B. Wang, S. Li, B. Jiang, L. Yang, W. Fu, H. Fu, J. Sun, Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity, Sol. Energy Mater. Sol. Cells. 90 (2006) 1773–1787.

[108] A. McLaren, T. Valdes-Solis, G. Li, C.T. Shik, Shape and size effects of ZnO nanocrystals on photocatalytic activity, J. Am. Chem. Soc. 131 (2009) 12540–12541.

[109] J. Wang, Z. Wang, B. Huang, Y. Ma, Y. Liu, X. Qin, X. Zhang, Y. Dai, Oxygen vacancy induced band-gap narrowing and enhanced visible light photocatalytic activity of ZnO, ACS Appl. Mater. Interfaces. 4 (2012) 4024–4030.

[110] E.S. Jang, J.H. Won, S.J. Hwang, J.H. Choy, Fine tuning of the face orientation of ZnO crystals to optimize their photocatalytic activity, Adv. Mater. 18 (2006) 3309–3312.

[111] C. Luo, Y. Ma, H. Li, F. Chen, K. Uchiyama, J.M. Lin, Generation of picoliter droplets of liquid for electrospray ionization with piezoelectric inkjet, J. Mass Spectrom. 48 (2013) 321–328.

[112] Q. He, C. Ma, X. Hu, H. Chen, Method for fabrication of paper-based microfluidic devices by alkylsilane self-assembling and UV/O3-patterning, Anal. Chem. 85 (2013) 1327–1331.

[113] S. Azizi, M.B. Ahmad, M.Z. Hussein, N.A. Ibrahim, Synthesis, antibacterial and thermal studies of cellulose nanocrystal stabilized ZnO-Ag heterostructure nanoparticles, Molecules. 18 (2013) 6269–6280.

[114] S.W. Zhao, C.R. Guo, Y.Z. Hu, Y.R. Guo, Q.J. Pan, The preparation and antibacterial activity cellulose/ZnO composite : a review, Open Chem. 16 (2018) 9-20.

[115] D. Qin, Y. Xia, G.M. Whitesides, Soft lithography for micro- and nanoscale patterning., Nat. Protoc. 5 (2010) 491–502. doi:10.1038/nprot.2009.234.

[116] M.B. Byrne, M.T. Lesile, H.R. Gaskins, P.J.A. Kenis, Methods to study the tumor microenvironment under controlled oxygen conditions, Trends Biotechnol. 32 (2014) 556–563.

[117] Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doǧan, V. Avrutin, S.J. Cho, H. Morko̧ , A comprehensive review of ZnO materials and devices, J. Appl. Phys. 98 (2005) 1–103.

[118] Z.L. Wang, J. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays, Science. 312 (2006) 242–246.

[119] H. Gullapalli, V.S.M. Vemuru, A. Kumar, A. Botello-Mendez, R. Vajtai, M. Terrones, S. Nagarajaiah, P.M. Ajayan, Flexible piezoelectric zno-paper nanocomposite strain sensor, Small. 6 (2010) 1641–1646.

[120] A. Kumar, H. Gullapalli, K. Balakrishnan, A. Botello-Mendez, R. Vajtai, M. Terrones, P.M. Ajayan, Flexible ZnO-cellulose nanocomposite for multisource energy conversion, Small. 7 (2011) 2173–2178.

[121] C. Moreau, A. Villares, I. Capron, B. Cathala, Tuning supramolecular interactions of cellulose nanocrystals to design innovative functional materials, Ind. Crops Prod. 93 (2016) 96–107.

[122] I. Capron, O.J. Rojas, R. Bordes, Behavior of nanocelluloses at interfaces, Curr. Opin. Colloid Interface Sci. 29 (2017) 83–95.

[123] V.A. Ganesh, H.K. Raut, A.S. Nair, S. Ramakrishna, A review on self-cleaning coatings, J. Mater. Chem. 21 (2011) 16304–16322.

[124] H. Teisala, M. Tuominen, J. Kuusipalo, Superhydrophobic Coatings on Cellulose-Based Materials: Fabrication, Properties, and Applications, Adv. Mater. Interfaces. 1 (2014) 1–20.

[125] M. Zhang, D. Zang, J. Shi, Z. Gao, C. Wang, J. Li, Superhydrophobic cotton textile with robust composite film and flame retardancy, RSC Adv. 5 (2015) 67780–67786.

[126] R.H.A. Ras, X. Tian, I.S. Bayer, Superhydrophobic and Superoleophobic Nanostructured Cellulose and Cellulose Composites. Handbook of Nanocellulose and Cellulose Nanocomposites 2 (2017): 731-760.

[127] M. Kaushik, A. Moores, Review: Nanocelluloses as versatile supports for metal nanoparticles and their applications in catalysis, Green Chem. 18 (2016) 622–637.

[128] S.N. Das, J.H. Choi, J.P. Kar, J.M. Myoung, Tunable and reversible surface wettability transition of vertically aligned ZnO nanorod arrays, Appl. Surf. Sci. 255 (2009) 7319–7322.

Chapter 2

[1] X. Ma, P.R. Chang, J. Yang, J. Yu, Preparation and properties of glycerol plasticized-pea starch/zinc oxide-starch bionanocomposites, Carbohydr. Polym. 75 (2009) 472–478.

[2] W. Tang, M.H. Santare, S.G. Advani, Melt processing and mechanical property characterization of multi-walled carbon nanotube/high density polyethylene (MWNT/HDPE) composite films, Carbon. 41 (2003) 2779–2785.

[3] J.W. Gilman, Flammability and thermal stability studies of polymer layered-silicate (clay) nanocomposites, Appl. Clay Sci. 15 (1999) 31–49.

[4] H.M. Xiong, Y. Xu, Q.G. Ren, Y.Y. Xia, Stable aqueous ZnO@polymer core-shell nanoparticles with tunable photoluminescence and their application in cell imaging, J. Am. Chem. Soc. 130 (2008) 7522–7523.

[5] Q. Yang, Y. Liu, C. Pan, J. Chen, X. Wen, Z.L. Wang, Largely enhanced efficiency in ZnO nanowire/p-polymer hybridized inorganic/organic ultraviolet light-emitting diode by piezo-phototronic effect, Nano Lett. 13 (2013) 607–613.

[6] M.M.A. El-Hady, A. Farouk, S. Sharaf, Flame retardancy and UV protection of cotton based fabrics using nano ZnO and polycarboxylic acids, Carbohydr. Polym. 92 (2013) 400–406.

[7] O.M. El-Feky, E.A. Hassan, S.M. Fadel, M.L. Hassan, Use of ZnO nanoparticles for protecting oil paintings on paper support against dirt, fungal attack, and UV aging, J. Cult. Herit. 15 (2014) 165–172.

[8] Y.Q. Li, S.Y. Fu, Y.W. Mai, Preparation and characterization of transparent ZnO/epoxy nanocomposites with high-UV shielding efficiency, Polymer. 47 (2006) 2127–2132.

[9] D. Chen, Z. Wang, T. Ren, H. Ding, W. Yao, R. Zong, Y. Zhu, Influence of defects on the photocatalytic activity of ZnO, J. Phys. Chem. C. 118 (2014) 15300–15307.

[10] S. Shankar, J.P. Reddy, J.W. Rhim, H.Y. Kim, Preparation, characterization, and antimicrobial activity of chitin nanofibrils reinforced carrageenan nanocomposite films, Carbohydr. Polym. 117 (2015) 468–475. doi:10.1016/j.carbpol.2014.10.010.

[11] D. Klemm, F. Kramer, S. Moritz, T. Lindström, M. Ankerfors, D. Gray, A. Dorris, Nanocelluloses: a new family of nature-based materials, Angew. Chemie. 50 (2011) 5438–5466.

[12] R.J. Moon, A. Martini, J. Nairn, J. Simonsen, J. Youngblood, Cellulose nanomaterials review: structure, properties and nanocomposites, Chem. Soc. Rev. 40 (2011) 3941–3994.

[13] A. Isogai, T. Saito, H. Fukuzumi, TEMPO-oxidized cellulose nanofiber, Nanoscale. 3 (2011) 71–85.

[14] A. Isogai, Wood nanocelluloses: fundamentals and applications as new bio-based nanomaterials, J. Wood Sci. 59 (2013) 449–459.

[15] Y. Habibi, L.A. Lucia, O.J. Rojas, Cellulose nanocrystals: chemistry, self-assembly, and applications, Chem. Rev. 110 (2010) 3479–3500.

[16] H.Y. Yu, G.Y. Chen, Y.B. Wang, J.M. Yao, A facile one-pot route for preparing cellulose nanocrystal/zinc oxide nanohybrids with high antibacterial and photocatalytic activity, Cellulose. 22 (2015) 261–273.

[17] M. Yadollahi, I. Gholamali, H. Namazi, M. Aghazadeh, Synthesis and characterization of antibacterial carboxymethyl cellulose/ZnO nanocomposite hydrogels, Int. J. Biol. Macromol. 74 (2015) 136–141.

[18] N.C.T. Martins, R. Freire, Carmen S, C.P. Neto, A.J.D. Silvestre, J. Causio, G. Baldi, P. Sadocco, T. Trindade, Antibacterial paper based on composite coatings of nanofibrillated cellulose and ZnO, Colloids Surfaces A Physicochem. Eng. Asp. 417 (2013) 111–119.

[19] E. Lizundia, A. Urruchi, J.L. Vilas, L.M. Leon, Increased functional properties and thermal stability of flexible cellulose nanocrystal/ZnO films, Carbohydr. Polym. 136 (2016) 250–258.

[20] A. John, H.U. Ko, D.G. Kim, J. Kim, Preparation of cellulose-ZnO hybrid films by a wet chemical method and their characterization, Cellulose. 18 (2011) 675–680.

[21] T. Saito, Y. Nishiyama, J. Putaux, M. Vignon, A. Isogai, Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose, Biomacromolecules. 7 (2006) 1687–1691.

[22] T. Saito, S. Kimura, Y. Nishiyama, A. Isogai, Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose, Biomacromolecules. 8 (2007) 2485–2491.

[23] H. Fukuzumi, T. Saito, T. Iwata, Y. Kumamoto, A. Isogai, Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation, Biomacromolecules. 10 (2009) 162–165.

[24] R. Shinoda, T. Saito, Y. Okita, A. Isogai, Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils, Biomacromolecules. 13 (2012) 842–849.

[25] T. Saito, T. Uematsu, S. Kimura, T. Enomae, A. Isogai, Self-aligned integration of native cellulose nanofibrils towards producing diverse bulk materials, Soft Matter. 7 (2011) 8804–8809.

[26] Y. Okita, T. Saito, A. Isogai, Entire surface oxidation of various cellulose microfibrils by TEMPO-mediated oxidation, Biomacromolecules. 11 (2010) 1696–1700.

[27] I. Sakurada, Y. Nukushina, T. Ito, Experimental determination of the elastic modulus of crystalline regions in oriented polymers, J. Polym. Sci. 57 (1962) 651–660.

[28] C.N. Wu, T. Saito, S. Fujisawa, H. Fukuzumi, A. Isogai, Ultrastrong and high gas-barrier nanocellulose/clay-layered composites, Biomacromolecules. 13 (2012) 1927–1932.

[29] C.N. Wu, Q. Yang, M. Takeuchi, T. Saito, A. Isogai, Highly tough and transparent layered composites of nanocellulose and synthetic silicate, 6 (2014) 392–399.

[30] M. Bagheri, S. Rabieh, Preparation and characterization of cellulose-ZnO nanocomposite based on ionic liquid ([C4mim]Cl ), Cellulose. 20 (2013) 699–705.

[31] R.P. Sinha, D.P. Häder, UV-induced DNA damage and repair : a review, Photochem. Photobiol. Sci. 1 (2002) 225–236.

[32] M. Singh, M. Singh, Thermal expansion in zinc oxide nanomaterials, Nanosci Nanotechnol Res. 1 (2013) 27–29.

[33] L.C. Sim, S.R. Ramanan, H. Ismail, K.N. Seetharamu, T.J. Goh, Thermal characterization of Al2O3 and ZnO reinforced silicone rubber as thermal pads for heat dissipation purposes, Thermochim. Acta. 430 (2005) 155–165.

[34] B. Yates, R.F. Cooper, Low-temperature thermal expansion of zinc oxide. Vibrations in zinc oxide and sphalerite zinc sulfide, Phys. Rev. B. 4 (1971) 1314–1323.

[35] D.P. Norton, Y.W. Heo, M.P. Ivill, K. Ip, S.J. Pearton, M.F. Chisholm, T. Steiner, ZnO: growth, doping & processing, Materialstoday. 7 (2004) 34–40.

[36] A.B.D. Cassie, S. Baxter, Wettability of porous surfaces, Trans. Faraday Soc. 40 (1944) 546–551.

[37] E. Hosono, S. Fujihara, I. Honma, H. Zhou, Superhydrophobic perpendicular nanopin film by the bottom-up process, JACS. 127 (2005) 13458–13459.

[38] C.N. Wu, T. Saito, Q. Yang, H. Fukuzumi, A. Isogai, Increase in the water contact angle of composite film surfaces caused by the assembly of hydrophilic nanocellulose fibrils and nanoclay platelets, ACS Appl. Mater. Interfaces. 6 (2014) 12707–12712.

[39] M. Henriksson, L.A. Berglund, P. Isaksson, T. Lindström, T. Nishino, Cellulose nanopaper structures of high toughness, Biomacromolecules. 9 (2008) 1579–1585.

[40] W.C.J. Zuiderduin, C. Westzaan, J. Huétink, R.J. Gaymans, Toughening of polypropylene with calcium carbonate particles, Polymer. 44 (2003) 261–275.

[41] A. Mardilovich, E. Kokkoli, Patterned biomimetic membranes : effect of concentration and pH, Langmuir. 21 (2005) 7468–7475.

[42] M. Harris, G. Appel, H. Ade, Surface morphology of annealed polystyrene and poly(methyl methacrylate) thin film blends and bilayers, Macromolecules. 36 (2003) 3307–3314.

Chapter 3

[1] Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doǧan, V. Avrutin, S.J. Cho, H. Morko̧ , A comprehensive review of ZnO materials and devices, J. Appl. Phys. 98 (2005) 1–103.

[2] A. Kolodziejczak-Radzimska, T. Jesionowski, Zinc oxide-From synthesis to application: a review, Materials. 7 (2014) 2833–2881.

[3] M. Tisza, Z. Lukacs, G. Gál, Integrated process simulation and die-design in sheet metal forming, Int. J. Mater. Form. 1 (2008) 185–188.

[4] E. Tang, G. Cheng, X. Ma, Preparation of nano-ZnO/PMMA composite particles via grafting of the copolymer onto the surface of zinc oxide nanoparticles, Powder Technol. 161 (2006) 209–214.

[5] E. Lizundia, A. Urruchi, J.L. Vilas, L.M. León, Increased functional properties and thermal stability of flexible cellulose nanocrystal/ZnO films, Carbohydr. Polym. 136 (2016) 250–258.

[6] S. Takaichi, T. Saito, R. Tanaka, A. Isogai, Improvement of nanodispersibility of oven-dried TEMPO-oxidized celluloses in water, Cellulose. 21 (2014) 4093–4103.

[7] R. Shinoda, T. Saito, Y. Okita, A. Isogai, Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils, Biomacromolecules. 13 (2012) 842–849.

[8] I. Sakurada, Y. Nukushina, T. Ito, Experimental determination of the elastic modulus of crystalline regions in oriented polymers, J. Polym. Sci. 57 (1962) 651–660.

[9] D.P. Norton, Y.W. Heo, M.P. Ivill, K. Ip, S.J. Pearton, M.F. Chisholm, T. Steiner, ZnO: growth, doping & processing, Materialstoday. 7 (2004) 34–40.

[10] A.K. Zak, W.H.A. Majid, M.E. Abrishami, R. Yousefi, X-ray analysis of ZnO nanoparticles by Williamson-Hall and size-strain plot methods, Solid State Sci. 13 (2011) 251–256.

[11] H. Fukuzumi, T. Saito, Y. Okita, A. Isogai, Thermal stabilization of TEMPO-oxidized cellulose, Polym. Degrad. Stab. 95 (2010) 1502–1508.

[12] S. Wacharawichanant, S. Thongyai, A. Phutthaphan, C. Eiamsam-ang, Effect of particle sizes of zinc oxide on mechanical, thermal and morphological properties of polyoxymethylene/zinc oxide nanocomposites, Polym. Test. 27 (2008) 971–976.

[13] R. Ning, C.N. Wu, M. Takeuchi, T. Saito, A. Isogai, Preparation and characterization of zinc oxide/TEMPO- oxidized cellulose nanofibril composite films, Cellulose. 24 (2017) 4861–4870.

[14] W.C.J. Zuiderduin, C. Westzaan, J. Huétink, R.J. Gaymans, Toughening of polypropylene with calcium carbonate particles, Polymer. 44 (2003) 261–275.

[15] M. Henriksson, L.A. Berglund, P. Isaksson, T. Lindström, T. Nishino, Cellulose nanopaper structures of high toughness, Biomacromolecules. 9 (2008) 1579–1585.

[16] H. Fukuzumi, T. Saito, T. Iwata, Y. Kumamoto, A. Isogai, Transparent and high gas barrier flms of cellulose nanofibers prepared by TEMPO-mediated oxidation, Biomacromolecules. 10 (2009) 162–165.

[17] T.C. Merkel, B.D. Freeman, R.J. Spontak, Z. He, I. Pinnau, P. Meakin, A.J. Hill, Ultrapermeable, reverse-selective nanocomposite membranes, Science. 296 (2002) 519–522.

[18] S. Hess, M.M. Demir, V. Yakutkin, S. Baluschev, G. Wegner, Investigation of oxygen permeation through composites of PMMA and surface-modified ZnO nanoparticles, Macromol. Rapid Commun. 30 (2009) 394–401.

[19] D. Liu, Y. Lv, M. Zhang, Y. Liu, Y. Zhu, R. Zong, Y. Zhu, Defect-related photoluminescence and photocatalytic properties of porous ZnO nanosheets, J. Mater. Chem. A. 2 (2014) 15377–15388.

[20] F. Liu, Y.H. Leung, A.B. Djurišić, A.M.C. Ng, W.K. Chan, Native defects in ZnO : effect on dye adsorption and photocatalytic degradation, J. Phys. Chem. C. 117 (2013) 12218–12228.

[21] D. Chen, Z. Wang, T. Ren, H. Ding, W. Yao, R. Zong, Y. Zhu, Influence of defects on the photocatalytic activity of ZnO, J. Phys. Chem. C. 118 (2014) 15300-15307.

[22] S.C. Lyu, Y. Zhang, H. Ruh, H.J. Lee, H.W. Shim, E.K. Suh, C.J. Lee, Low temperature growth and photoluminescence of well-aligned zinc oxide nanowires, Chem. Phys. Lett. 363 (2002) 134–138.

[23] K.K. Pandey, Study of the effect of photo-irradiation on the surface chemistry of wood, Polym. Degrad. Stab. 90 (2005) 9–20.

[24] J.A. Olmstead, D.G. Gray, Fluorescence emission from mechanical pulp sheets, J. Photochem. Photobiol. A: Chem. 73 (1993) 59–65.

[25] H. Tylli, I. Forsskåhl, C. Olkkonen, The effect of heat and IR radiation on the fluorescence of cellulose, Cellulose. 7 (2000) 133–146.

[26] J. Cenens, R.A. Schoonheydt, Visible spectroscopy of methylene blue on hectorite, laponite B, and barasym in aqueous suspension, Clays Clay Miner. 36 (1988) 214–224.

[27] K. Bergmann, C.T. O’Konski, A spectroscopic study of methylene blue monomer, dimer, and complexes with montmorillonite, J. Phys. Chem. 67 (1963) 2169–2177.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る