リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Experimental study on suffusion under multiple seepages and its impact on undrained mechanical responses of gap-graded soil」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Experimental study on suffusion under multiple seepages and its impact on undrained mechanical responses of gap-graded soil

Prasomsri Jitrakon 高橋 章浩 Jitrakon Prasomsri Akihiro Takahashi 東京工業大学 DOI:https://doi.org/10.1016/j.sandf.2021.10.003

2021.12.01

概要

An experimental investigation of multiple seepage-induced suffusion and its impact on the mechanical responses of internally unstable gap-graded soil, with a fines content of 25%, is presented in this paper. Using a modified triaxial erosion apparatus, with a redesigned seepage control system, erosion tests under multiple seepage conditions, as well as undrained monotonic and cyclic compression tests, are performed. It is found that multiple seepages cause an eroded mass without a marked change in volume and with a change in hydraulic conductivity as the number of seepage cycles increases. The monotonic compression tests show that eroded soil presents a smaller peak strength, residual strength, and a greater contractive response than non-eroded soil. The peak strength and stiffness of eroded soil are seen to decrease considerably as the number of seepage cycles increases. Multiple seepage-induced suffusion may create a collapsible soil structure in eroded soil, as shown by sudden decreases in deviator stress and stiffness, coupled by sharp increases in pore water pressure at small strain levels. As eroded soil might already be unstable, cyclic loading causes it to collapse, revealing a sudden increase in the generation of cyclic pore water pressure and a decrease in liquefaction resistance. The results highlight the importance of conducting laboratory tests to determine the impact of internal erosion on the strength and liquefaction resistance.

この論文で使われている画像

参考文献

ASTM D2487-11, 2012. Standard practice for classification of soils for engineering purposes (Unified Soil Classification System). Annual Book of ASTM Standards. ASTM International, West Con- shohocken, PA.

Bendahmane, F., Marot, D., Alexis, A., 2008. Experimental parametric study of suffusion and backward erosion. J. Geotech. Geoenviron. Engng. 134 (1), 57–67.

Bouferra, R., Benseddiq, N., Shahrour, I., 2007. Saturation and preloading effects on the cyclic behavior of sand. Int. J. Geomech. 7 (5), 396–401.

Chang, D.S., Zhang, L.M., 2011. A stress-controlled erosion apparatus for studying internal erosion in soils. Geotech. Testing J. 34 (6), 579–589.

Chu, J., Leong, W.K., 2004. Effect of fines on instability behaviour of loose sand. Ge´otechnique 52 (10), 751–755.

Fannin, R.J., Slangen, P., 2014. On the distinct phenomena of suffusion and suffosion. Ge´otechnique Lett. 4 (4), 289–294.

Hicher, P.-Y., 2013. Modelling the impact of particle removal on granular material behaviour. Ge´otechnique 63 (2), 118–128.

Ishihara, K., 1993. Liquefaction and flow failure during earthquakes. Ge´otechnique 43 (3), 351–451.

Ishihara, K., Okada, S., 1982. Effects of large preshearing on cyclic behavior of sand. Soils Found. 22 (3), 109–125.

Ishihara, K., Tatsuoka, F., Yasuda, S., 1975. Undrained deformation and liquefaction of sand under cyclic stresses. Soils Found. 15 (1), 29–44. Jiang, M.J., Konrad, J.M., Leroueil, S., 2003. An efficient technique for generating homogeneous specimens for DEM studies. Comput. Geotech. 30 (7), 579–597.

Jiang, N.-J., Soga, K., 2017. The applicability of microbially induced calcite precipitation (MICP) for internal erosion control in gravel–sand mixtures. Ge´otechnique 67 (1), 42–55.

Ke, L., Takahashi, A., 2012. Strength reduction of cohesionless soil due to internal erosion induced by one-dimensional upward seepage flow. Soils Found. 52 (4), 698–711.

Ke, L., Takahashi, A., 2014a. Triaxial erosion test for evaluation of mechanical consequences of internal erosion. Geotech. Testing J. 37 (2), 20130049. https://doi.org/10.1520/GTJ20130049.

Ke, L., Takahashi, A., 2014b. Experimental investigations on suffusion characteristics and its mechanical consequences on saturated cohe- sionless soil. Soils Found. 54 (4), 713–730.

Ke, L., Takahashi, A., 2015. Drained monotonic responses of suffusional cohesionless soils. J. Geotech. Geoenviron. Engng 141 (8), 04015033. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001327.

Kenney, T.C., Lau, D., 1985. Internal stability of granular filters. Can. Geotech. J. 22 (2), 215–225.

Kenney, T.C., Lau, D., 1986. Internal stability of granular filters: Reply. Can. Geotech. J. 23 (3), 420–423.

Ke´zdi, A., 1979. Soil Physics: Selected Topics. Elsevier Scientific Publish- ing Co., Amsterdam.

Ladd, R.S., 1978. Preparing test specimens using undercompaction. Geotech. Test. J. 1 (1), 16. https://doi.org/10.1520/GTJ10364J.

Lade, P.V., 1993. Initiation of static instability in the submarine Nerlerk berm. Can. Geotech. J. 30 (6), 895–904.

Lade, P.V., Liggio, C.D., Yamamuro, J.A., 1998. Effects of non-plastic fines on minimum and maximum void ratios of sand. Geotech. Testing J. 21 (4), 336. https://doi.org/10.1520/GTJ11373J.

Lafleur, J., Mlynarek, J., Rollin, A.L., 1989. Filtration of broadly graded cohesionless soils. J. Geotech. Geoenviron. Engng 115 (12), 1747–1768.

Li, S., Russell, A.R., Muir Wood, D., 2020. Influence of particle-size distribution homogeneity on shearing of soils subjected to internal erosion. Can. Geotech. J. 57 (11), 1684–1694.

Luo, Y.-L., Qiao, L., Liu, X.-X., Zhan, M.-L., Sheng, J.-C., 2013. Hydro-mechanical experiments on suffusion under long-term large hydraulic heads. Nat. Hazards 65 (3), 1361–1377.

Hu, Z., Zhang, Y., Yang, Z., 2020. Suffusion-induced evolution of mechanical and microstructural properties of gap-graded soils using CFD-DEM. J. Geotech. Geoenviron. Engng 146 (5), 04020024. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002245.

Marot, D., Bendahmane, F., Rosquoet, F., Alexis, A., 2009. Internal flow effects on isotropic confined sand-clay mixtures. Soil Sediment Contam. 18 (3), 294–306.

Marot, D., Rochim, A., Nguyen, H.-H., Bendahmane, F., Sibille, L., 2016. Assessing the susceptibility of gap-graded soils to internal erosion: proposition of a new experimental methodology. Nat. Hazards 83 (1), 365–388.

Mehdizadeh, A., Disfani, M.M., Evans, R., Arulrajah, A., Ong, D.E.L., 2017a. Mechanical consequences of suffusion on undrained behaviour of a gap-graded cohesionless soil-an experimental approach. Geotech. Testing J. 40 (6), 20160145. https://doi.org/10.1520/GTJ1711- EB10.1520/GTJ20160145.

Mehdizadeh, A., Disfani, M.M., Evans, R., Arulrajah, A., 2017b. Progressive internal erosion in a gap-graded internally unstable soil: mechanical and geometrical effects. Int. J. Geomech. 18 (3), 04017160. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001085.

Mehdizadeh, A., Disfani, M.M., Evans, R., Arulrajah, A., 2019. Impact of suffusion on the cyclic and post-cyclic behaviour of an internally unstable soil. Ge´otechnique Lett. 9 (3), 218–224.

Mitchell, J.K., Soga, K., 2005. In: Fundamentals of Soil Behavior, Vol. 3. John Wiley and Sons, Hoboken, NJ.

Moffat, R.A., Fannin, R.J., 2006. A large permeameter for study of internal stability in cohesionless soils. Geotech. Testing J. 29 (4), 273– 279.

Moffat, R., Fannin, R.J., Garner, S.J., 2011. Spatial and temporal progression of internal erosion in cohesionless soil. Can. Geotech. J. 48 (3), 399–412.

Muir Wood, D., Maeda, K., Nukudani, E., 2010. Modelling mechanical consequences of erosion. Ge´otechnique 60 (6), 447–457.

Nguyen, C.D., Benahmed, N., Ando`, E., Sibille, L., Philippe, P., 2019. Experimental investigation of microstructural changes in soils eroded by suffusion using X-ray tomography. Acta Geotechnica 14 (3), 749– 765.

Ouyang, M., Takahashi, A., 2015. Influence of initial fines content on microstructure of soils subjected to internal erosion. Can. Geotech. J. 53, 299–313.

Prasomsri, J., Takahashi, A., 2020. The role of fines on internal instability and its impact on undrained mechanical response of gap-graded soils. Soils Found. 60 (6), 1468–1488.

Reddi, L.N., Lee, I.M., Bonala, M.V., 2000. Comparison of internal and surface erosion using flow pump tests on a sand-kaolinite mixture. Geotech. Testing J. 23 (1), 116–122.

Richards, K.S., Reddy, K.R., 2008. Experimental investigation of piping potential in earthen structures. Geocongress 2008: geosustainability and geohazard mitigation, pp. 367–376.

Rochim, A., Marot, D., Sibille, L., Thao Le, V., 2017. Effects of hydraulic loading history on suffusion susceptibility of cohesionless soils. J. Geotech. Geoenviron. Engng 143 (7), 04017025. https://doi.org/ 10.1061/(ASCE)GT.1943-5606.0001673.

Sail, Y., Marot, D., Sibille, L., Alexis, A., 2011. Suffusion tests on cohesionless granular matter: experimental study. Eur. J. Environ. Civil Eng. 15 (5), 799–817.

Scholte`s, L., Hicher, P.-Y., Sibille, L., 2010. Multiscale approaches to describe mechanical responses induced by particle removal in granular materials. Comptes Rendus Me´canique 338 (10-11), 627–638.

Sherard, J.L., Dunnigan, L.P., Talbot, J.R., 1984. Basic properties of sand and gravel filters. J. Geotech. Engng ASCE 110 (6), 684–700.

Shire, T., O’Sullivan, C., 2016. Constriction size distributions of granular filters: a numerical study. Ge´otechnique. 66 (10), 826–839.

Shire, T., O’Sullivan, C., Hanley, K.J., Fannin, R.J., 2014. Microstructure and effective stress distribution in internally unstable soils. J. Geotech. Geoenviron. Engng 140 (12), 04014072.

Skempton, A.W., Brogan, J.M., 1994. Experiments on piping in sandy gravels. Ge´otechnique 44 (3), 449–460.

Slangen, P., Fannin, R.J., 2017. A flexible wall permeameter for investigating suffusion and suffosion. Geotech. Testing J. 40 (1), 1–14. Tanaka, T., Toyokuni, E., 1991. Seepage-failure experiments on multi- layered sand columns: effects of flow conditions and residual effective stress on seepage-failure phenomena. Soils Found. 31 (4), 13–36.

Thevanayagam, S., Mohan, S., 2000. Intergranular state variables and stress–strain behaviour of silty sands. Ge´otechnique 50 (1), 1–23.

Towhata, I., Ishihara, K., 1985. Undrained strength of sand undergoing cyclic rotation of principal stress axes. Soils Found. 25 (2), 135–147.

Wan, C.F., Fell, R., 2008. Assessing the potential of internal instability and suffusion in embankment dams and their foundations. J. Geotech. Geoenviron. Engng 134 (3), 401–407.

Xiao, M., Shwiyhat, N., 2012. Experimental investigation of the effects of suffusion on physical and geomechanic characteristics of sandy soils. Geotech. Testing J. 35 (6), 890–900.

Xiong, H., Wu, H., Bao, X., Fei, J., 2021a. Investigating effect of particle shape on suffusion by CFD-DEM modeling. Constr. Build. Mater. 289, 123043. https://doi.org/10.1016/j.conbuildmat.2021.123043.

Xiong, H., Yin, Z.-Y., Zhao, J., Yang, Y., 2021b. Investigating the effect of flow direction on suffusion and its impacts on gap-graded granular soils. Acta Geotech. 16 (2), 399–419.

Yang, J., Yin, Z.-Y., Laouafa, F., Hicher, P.-Y., 2019a. Analysis of suffusion in cohesionless soils with randomly distributed porosity and fines content. Comput. Geotech. 111, 157–171.

Yang, J., Yin, Z.-Y., Laouafa, F., Hicher, P.-Y., 2019b. Modeling coupled erosion and filtration of fine particles in granular media. Acta Geotech. 14 (6), 1615–1627.

Yang, J., Yin, Z.-Y., Laouafa, F., Hicher, P.-Y., 2020. Hydromechanical modeling of granular soils considering internal erosion. Can. Geotech. J. 57 (2), 157–172.

Yang, S.L., Sandven, R., Grande, L., 2006a. Steady-state lines of sand–silt mixtures. Can. Geotech. J. 43 (11), 1213–1219.

Yang, S., Lacasse, S., Sandven, R., 2006b. Determination of the transitional fines content of mixtures of sand and non-plastic fines. Geotech. Testing J. 29 (2), 14010. https://doi.org/10.1520/GTJ14010.

Yin, Z.-Y., Huang, H.-W., Hicher, P.-Y., 2016. Elastoplastic modeling of sand–silt mixtures. Soils Found. 56 (3), 520–532.

Yoshimine, M., Ishihara, K., 1998. Flow potential of sand during liquefaction. Soils Found. 38 (3), 189–198.

Zhong, C., Le, V.T., Bendahmane, F., Marot, D., Yin, Z.-Y., 2018. Investigation of spatial scale effects on suffusion susceptibility. J. Geotech. Geoenviron. Engng. 144 (9), 04018067. https://doi.org/ 10.1061/(ASCE)GT.1943-5606.0001935.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る