リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Characteristics of constrained turbulent transport in flux-driven toroidal plasmas」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Characteristics of constrained turbulent transport in flux-driven toroidal plasmas

Kishimoto, Y. Imadera, K. Ishizawa, A. Wang, W. Li, J. Q. 京都大学 DOI:10.1098/rsta.2021.0231

2023.02.20

概要

We study the dynamics of turbulence transport subject to a constraint on the profile formation and relaxation, dominated by the ion temperature gradient modes, within the framework of adiabatic electron response using a flux-driven global gyro-kinetic toroidal code, GKNET. We observe exponentially constrained profiles, with two different scale lengths, that are spatially constant in each region in higher input power regimes. The profiles are smoothly connected in the knee region located at 1/2−2/3 of the minor radius, outside which the gradient is steepened and shows a weak confinement improvement. Based on the probability density function analysis of heat flux eddies, the power law demonstrates a dependence on the eddy size S, as P∼S[−α], which distinguishes events into diffusive and non-diffusive parts including the validation of quasi-linear hypotheses. Radially localized avalanches and global bursts, which exhibit different spatial scales, play central roles in giving rise to constrained profiles on an equal footing. It is also found that the E×B shear layers are initiated by the global bursts, which evolve downward on a slow time scale across the knee region and play a role in adjusting the profile by increasing the gradient.

この論文で使われている画像

参考文献

1. Horton W. 1999 Drift waves and transport. Rev. Mod. Phys. 71, 735–778. (doi:10.1103/

RevModPhys.71.735)

2. Horton W. 2012 Turbulent transport in magnetized plasmas. Singapore: World Scientific.

3. Wesson J, Campbell DJ. 2004 Tokamaks, 3rd edn. New York, NY: Oxford University Press.

4. Coppy B. 1988 Transfer matrix method for a semi-infinite layered electron gas. Phys. Lett. A

128, 198–202. (doi:10.1016/0375-9601(88)90909-7)

5. Ryter F et al. 2001 Confinement and transport studies of conventional scenarios in ASDEX

Upgrade. Nucl. Fusion 41, 537–550. (doi:10.1088/0029-5515/41/5/307)

6. Gabert X et al. 2004 Profile stiffness and global confinement. Plasma Phys. Control Fusion 46,

1351. (doi:10.1088/0741-3335/46/9/002)

7. Dnestrovskij YN et al. 2010 Application of canonical profiles transport model to the H-mode

shots in tokamaks. Plasma, Phys. Rep. 36, 645–658. (doi:10.1134/S1063780X10080015)

8. Baiocchi B et al. 2012 Numerical analysis of the impact of the ion threshold, ion stiffness

and temperature pedestal on global confinement and fusion performance in JET and in ITER

plasmas. Plasma Phys. Controlled Fusion 54, 085020. (doi:10.1088/0741-3335/54/8/085020)

9. Urano H et al. 2013 Hydrogen isotope effects on ITG scale length, pedestal and confinement

in JT-60 H-mode plasmas. Nucl. Fusion 53, 083003. (doi:10.1088/0029-5515/53/8/083003)

10. Sauter O et al. 2014 On the non-stiffness of edge transport in L-mode tokamak plasmas. Phys.

Plasmas 21, 055906. (doi:10.1063/1.4876612)

11. Kim JY, Han HS, Terzolo L. 2017 Physics-based integrated modeling of the energy

confinement time scaling laws for the H- and L-modes in the KSTAR-type tokamak model.

Nucl. Fusion 57, 076012. (doi:10.1088/1741-4326/aa623b)

12. Kishimoto Y et al. 1996 Self-organized critical gradient transport and shear flow effects for

ion temperature gradient (ITG) mode in toroidal plasmas, Nuclear Fusion Supplement. In

Proc. of 15th Int. Conf. on Plasma Physics and Controlled Nuclear Fusion Research, Vol. 3, pp.

299–307. Vienna, Austria: IAEA.

13. Hasegawa A, Wakatani M. 1987 Self-organization of electrostatic turbulence in a cylindrical

plasma. Phys. Rev. Lett. 59, 1581–1584. (doi:10.1103/PhysRevLett.59.1581)

14. Chen L et al. 2000 Excitation of zonal flow by drift waves in toroidal plasmas. Phys. Plasmas 7,

3129–3132. (doi:10.1063/1.874222)

15. Diamond PH et al. 2005 Zonal flows in plasma—a review. Plasma Phys. Controlled Fusion 47,

R35.

16. Li JQ, Kishimoto Y. 2005 Role of magnetic shear in large-scale structure formation in electron

temperature gradient driven turbulence. Phys. Plasmas 12, 054505. (doi:10.1063/1.1897386)

17. Hallatschek K, Biskamp D. 2001 Transport control by coherent zonal flows in the core/edge

transitional regime. Phys. Rev. Lett. 86, 1223–1226. (doi:10.1103/PhysRevLett.86.1223)

...............................................................

Data accessibility. This article has no additional data.

Authors’ contributions. Y.K.: project administration, writing—original draft and writing—review and editing; K.I.:

18

royalsocietypublishing.org/journal/rsta Phil. Trans. R. Soc. A 381: 20210231

the core temperature despite the stronger constraint in the core region. As the physical mechanism

to weaken the constraint in high input power regime, we considered the slower time scale

evolution of E × B shear layers downward, which transfers the density perturbation across the

knee to outer region and enhances the effective shearing rate there. The effect of input power

on the dynamics of E × B shear layers is of specific importance and more detailed study for how

micro-scale and/or meso-scale dynamics of E × B shear layers impact the global profile formation

and relaxation.

...............................................................

Downloaded from https://royalsocietypublishing.org/ on 04 June 2023

19

royalsocietypublishing.org/journal/rsta Phil. Trans. R. Soc. A 381: 20210231

18. Miyato N et al. 2004 Global structure of zonal flow and electromagnetic ion temperature

gradient driven turbulence in tokamak plasmas. Phys. Plasmas 11, 5557–5564. (doi:10.1063/

1.1811088)

19. Kim EJ, Diamond P. 2003 Mean shear flows, zonal flows, and generalized Kelvin–Helmholtz

modes in drift wave turbulence: a minimal model for L→H transition. Phys. Plasmas 10,

1698–1704. (doi:10.1063/1.1559006)

20. Hahm TS, Diamond PH. 2018 Mesoscopic transport events and the breakdown of Fick’s law

for turbulent fluxes. J. Korean Phys. Soc. 73, 747–792. (doi:10.3938/jkps.73.747)

21. Hahm TS, Diamond PH, Lin Z, Itoh K, Itoh SI. 2004 Turbulence spreading into the

linearly stable zone and transport scaling. Plasma Phys. Controlled Fusion 46, A323–A333.

(doi:10.1088/0741-3335/46/5A/036)

22. Lin Z, Ethier S, Hahm TS, Tang WM. 2002 Size scaling of turbulent transport in magnetically

confined plasmas. Phys. Rev. Lett. 88, 195004. (doi:10.1103/PhysRevLett.88.195004)

23. Yi S, Kwon JM, Diamond PH, Hahm TS. 2015 Turbulence spreading as a non-local mechanism

of global confinement degradation and ion temperature profile stiffness. Nucl. Fusion 55,

092002. (doi:10.1088/0029-5515/55/9/092002)

24. Carreras BA, Newman D, Lynch VE, Diamond PH. 1996 A model realization of self-organized

criticality for plasma confinement. Phys. Plasmas 3, 2903–2911. (doi:10.1063/1.871650)

25. Idomura Y, Urano H, Aiba N, Tokuda S. 2009 Study of ion turbulent transport and

profile formations using global gyrokinetic full-f Vlasov simulation. Nucl. Fusion 49, 065029.

(doi:10.1088/0029-5515/49/6/065029)

26. Sarazin Y et al. 2010 Large scale dynamics in flux driven gyrokinetic turbulence. Nucl. Fusion

50, 054004. (doi:10.1088/0029-5515/50/5/054004)

27. Pan O O et al. 2015 Evidence of enhanced self-organized criticality (SOC) dynamics during

the radially non-local transient transport in the HL-2A tokamak. Nucl. Fusion 55, 113010.

(doi:10.1088/0029-5515/55/11/113010)

28. Choi MJ et al. 2019 Experimental observation of the non-diffusive avalanche-like electron heat

transport events and their dynamical interaction with the shear flow structure. Nucl. Fusion

59, 086027. (doi:10.1088/1741-4326/ab247d)

29. Wang W, Kishimoto Y, Imadera K, Liu HR, Li JQ, Yagi M, Wang ZX. 2020 Statistical study

for ITG turbulent transport in flux-driven tokamak plasmas based on global gyro-kinetic

simulation. Nucl. Fusion 60, 066010. (doi:10.1088/1741-4326/ab7892)

30. Dif-Pradalier G et al. 2010 On the validity of the local diffusive paradigm in turbulent plasma

transport. Phys. Rev. E 82, 025401. (doi:10.1103/PhysRevE.82.025401)

31. Dif-Pradalier G et al. 2015 Finding the elusive: E×B staircase in magnetized plasmas. Phys.

Rev. Lett. 114, 085004. (doi:10.1103/PhysRevLett.114.085004)

32. Qi L, Choi MJ, Kwon JM, Hahm TS. 2021 Role of zonal flow staircase in electron

heat avalanches in KSTAR L-mode plasmas. Nucl. Fusion 61, 026010. (doi:10.1088/17414326/abc976)

33. Wang W, Kishimoto Y, Imadera K, Li JQ, Wang ZX. 2018 A mechanism for the formation

and sustainment of the self-organized global profile and<missing element: E×B staircase in

tokamak plasmas. Nucl. Fusion 58, 056005. (doi:10.1088/1741-4326/aab032)

34. Milovanov AV, Rasmussen JJ, Dif-Pradalier G. 2021 Self-consistent model of the plasma

staircase and nonlinear Schrödinger equation with subquadratic power nonlinearity. Phys.

Rev. E 103, 052218. (doi:10.1103/PhysRevE.103.052218)

35. Choi MC, Park SY. 2022 Hybrid improper ferroelectricity in A-cation ordered perovskite

BaSrBi2 O6 . J. Korean Phys. Soc. 81, 790–795. (doi:10.1007/s40042-022-00616-6)

36. Ashourvan A, Diamond PH. 2016 How mesoscopic staircases condense to macroscopic

barriers in confined plasma turbulence. Phys. Rev. E 94, 051202. (doi:10.1103/

PhysRevE.94.051202)

37. Terry PW, Diamond PH, Hahm TS. 1990 The structure and dynamics of electrostatic and

magnetostatic drift holes. Phys. Fluids B 2, 2048. (doi:10.1063/1.859426)

38. Lesur M, Diamond PH, Kosuga Y. 2014 Nonlinear current-driven ion-acoustic instability

driven by phase-space structures. Plasma Phys. Controlled Fusion 56, 075005. (doi:10.1088/

0741-3335/56/7/075005)

39. Kishimoto Y et al. 2016 Characteristics of turbulent transport in flux-driven toroidal plasmas.

In Proc. of 26th IAEA Fusion Energy Conference, Kyoto, Japan, 17–22 October 2016. New York, NY:

42.

Downloaded from https://royalsocietypublishing.org/ on 04 June 2023

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

...............................................................

41.

20

royalsocietypublishing.org/journal/rsta Phil. Trans. R. Soc. A 381: 20210231

40.

IAEA. (https://nucleus.iaea.org/sites/fusionportal/Shared%20Documents/FEC%202016/

fec2016-preprints/preprint0601.pdf)

Obrejan K, Imadera K, Li J, Kishimoto Y. 2017 Development of a new zonal flow equation

solver by diagonalisation and its application in non-circular cross-section tokamak plasmas.

Comput. Phys. Commun. 216, 8–17. (doi:10.1016/j.cpc.2017.02.010)

Imadera K et al. 2016 ITB formation in gyrokinetic flux-driven ITG turbulence.

In Proc. of 26th IAEA Fusion Energy Conference, Kyoto, Japan 17–22, October 2016.

New York, NY: IAEA. (https://nucleus.iaea.org/sites/fusionportal/Shared%20Documents/

FEC%202016/fec2016-preprints/preprint0586.pdf)

Kikuchi M, Azumi M. 2012 Steady-state tokamak research: core physics. Rev. Mod. Phys. 84,

1807–1854. (doi:10.1103/RevModPhys.84.1807)

Imadera K, Kishimoto Y, Li J. 2010 Global profile relaxation and entropy dynamics in

turbulent transport. Plasma Fusion Res. 5, 019. (doi:10.1585/pfr.5.019)

Muto M, Imadera K, Kishimoto Y. 2021 Gyrokinetic entropy balances and dynamics in

toroidal flux-driven ITG turbulence. Phys. Plasmas 28, 082304. (doi:10.1063/5.0056058)

Gorler T, White AE, Told D, Jenko F, Holland C, Rhodes TL. 2014 A flux-matched gyrokinetic

analysis of DIII-D L-mode turbulence. Phys. Plasmas 21, 122307. (doi:10.1063/1.4904301)

Nakata M, Honda M, Yoshida M, Urano H, Nunami M, Maeyama S, Watanabe

TH, Sugama H. 2016 Validation studies of gyrokinetic ITG and TEM turbulence

simulations in a JT-60U tokamak using multiple flux matching. Nucl. Fusion 56, 086010.

(doi:10.1088/0029-5515/56/8/086010)

Rhodes TL et al. 2011 L-mode validation studies of gyrokinetic turbulence simulations via

multiscale and multifield turbulence measurements on the DIII-D tokamak. Nucl. Fusion 51,

063022. (doi:10.1088/0029-5515/51/6/063022)

Imadera K et al. 2014 Global profile relaxation coupled with E x B staircase in toroidal fluxdriven ITG turbulence. In Proc. of 25th IAEA Fusion Energy Conference, Saint Petersburg, Russia,

13–18 October 2014. New York, NY: IAEA. (http://www-naweb.iaea.org/napc/physics/

FEC/FEC2014/fec2014-preprints/410_THP58.pdf).

Kim JY, Kishimoto Y, Wakatani M, Tajima T. 1996 Poloidal shear flow effect on toroidal

ion temperature gradient mode: a theory and simulation. Phys. Plasmas 3, 3689–3695.

(doi:10.1063/1.871939)

Kishimoto Y, Kim JY, Horton W, Tajima T, LeBrun MJ, Shirai H. 1999 Toroidal mode structure

in weak and reversed magnetic shear plasmas and its role in the internal transport barrier.

Plasma Phys. Controlled Fusion 41, A663–A678. (doi:10.1088/0741-3335/41/3A/060)

Connor JW, Hastie RJ, Taylor JB. 1978 Shear, periodicity, and plasma ballooning modes. Phys.

Rev. Lett. 40, 396–399. (doi:10.1103/PhysRevLett.40.396)

Camenen1 Y, Idomura Y, Jolliet S, Peeters AG. 2011 Consequences of profile shearing on

toroidal momentum transport. Nucl. Fusion 51, 073039. (doi:10.1088/0029-5515/51/7/073039)

Kishimoto Y, Tajima T, Horton W, LeBrun MJ, Kim JY. 1996 Theory of self-organized critical

transport in tokamak plasmas. Phys. Plasmas 3, 1289–1307. (doi:10.1063/1.871754)

Imadera K, Kishimoto Y. 2020 Spontaneous ITB formation in gyrokinetic flux-driven

ITG/TEM turbulence. In Proc. of 28th IAEA Fusion Energy Conference, Virtual Event, 10–15 May

2021. New York, NY: IAEA. (https://conferences.iaea.org/event/214/contributions/17062/

contribution.pdf).

Ishizawa A, Imadera K, Nakamura Y, Kishimoto Y. 2019 Global gyrokinetic simulation

of turbulence driven by kinetic ballooning mode. Phys. Plasmas 26, 082301. (doi:10.1063/

1.5100308)

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る