リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Aspergillus属糸状菌における解糖系酵素遺伝子の選択的プロモーターによる転写制御機構の解析」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Aspergillus属糸状菌における解糖系酵素遺伝子の選択的プロモーターによる転写制御機構の解析

井上 大志 東北大学

2020.03.25

概要

真菌類の子嚢菌門に属する Aspergillus 属糸状菌には、発酵産業に利用される産業用真菌やヒトの病原菌、穀物のカビ毒汚染原因菌が含まれ、それらは人間社会にも影響を及ぼす(1)。黄麹菌 Aspergillus oryzae は、代表的な産業用 Aspergillus 属糸状菌の一種であり、米のデンプンや大豆のタンパク質を分解する能力に優れていることから、日本において日本酒や味噌、醤油などの伝統的発酵食品の醸造に古くから利用されている(2)。また、その 1000年に及ぶ醸造利用の歴史に裏付けられた安全性(3)や高いタンパク質分泌能力(4)、有機酸生産能力(5, 6)から、A. oryzae は食品や医薬品用途の有用物質生産宿主としての利用が期待されている。さらに、A. oryzae 自身は二次代謝産物をほとんど生産しないため、近年では異種二次代謝産物生産のためのクリーンホストとしての利用も広がりつつある(7, 8)。以上のように有用性の高い A. oryzae についての理解をさらに深めるため、A. oryzae に関する分子生物学的知見の蓄積が進められている。

解糖系は、ほとんどの生物に共通して存在する基本的な代謝系の一つである。その異化経路(解糖)は、10 種類の連続した化学反応によって構成される糖分解経路であり、それに伴う基質レベルのリン酸化によって細胞のエネルギー獲得に寄与する。一方、代謝系の可逆反応を触媒する解糖系酵素群は、2 分子のピルビン酸から 1 分子の糖を合成する同化経路(糖新生)に利用され、核酸や糖鎖などの細胞構成成分合成の出発物質の供給に寄与する。

A. oryzae では、重要な遺伝子発現プロファイルとして、解糖系酵素遺伝子群がグルコース等の糖存在下において転写レベルで非常に高発現することが知られている(9, 10)。例えば、2-ホスホグリセリン酸とホスホエノールピルビン酸の可逆的な変換反応を触媒するエノラーゼをコードする遺伝子 enoA の転写産物量は、A. oryzae の代表的な高発現遺伝子である α-アミラーゼ遺伝子 amyB に匹敵し、細胞における全mRNA 量の 3 % (w/w)を占めると推定されている(11)。興味深いことに、世界各地の醸造産業において利用される酵母 Saccharomyces cerevisiae でも、糖存在下において解糖系遺伝子群が高発現することが知られる(12)。一般的に、代謝系を構成する酵素遺伝子の発現制御は、特定の環境において数時間から数日にわたり細胞の代謝流量を最適化する上で重要であると考えられる。そのため、上述したような解糖系酵素遺伝子の発現制御について理解することは、発酵産業における微生物の生育制御のための基礎的知見として重要である。また、解糖系酵素遺伝子群のプロモーターは、高発現プロモーターとして生物工学的に利用価値が高い。実際、A. oryzae では、有用タンパク質の商業生産に向けた enoA プロモーターの改変も試みられている(13)。以上に述べたことから、解糖系酵素遺伝子の発現制御に関わる研究は醸造産業用微生物における遺伝子工学的ツールの開発という点からも重要である。

S. cerevisiae において、解糖系酵素遺伝子群の発現に関与する転写因子は少なくとも 6 つ以上同定されており、それらによる複雑な転写制御機構が提唱されている(14)。一方、A. oryzae においては解糖系酵素遺伝子の発現に関与する転写因子が同定されておらず、転写制御機構に関する知見は S. cerevisiae と比べて乏しい。本博士論文では、重要な遺伝子発現情報の一つである転写開始点(Transcription Start Sites: TSSs)に着目した解析を通して、 Aspergillus 属糸状菌の解糖系酵素遺伝子における転写制御の分子機構の一端を解明することを目的とした。

この論文で使われている画像

参考文献

1. Gibbons JG, Rokas A. 2013. The function and evolution of the Aspergillus genome. Trends in Microbiology 21:14-22.

2. Machida M, Asai K, Sano M, Tanaka T, Kumagai T, Terai G, Kusumoto KI, Arima T, Akita O, Kashiwagi Y, Abe K, Gomi K, Horiuchi H, Kitamoto K, Kobayashi T, Takeuchi M,Denning DW, Galagan JE, Nierman WC, Yu JJ, Archer DB, Bennett JW, Bhatnagar D, Cleveland TE, Fedorova ND, Gotoh O, Horikawa H, Hosoyama A, Ichinomiya M, Igarashi R, Iwashita K, Juvvadi PR, Kato M, Kato Y, Kin T, Kokubun A, Maeda H, Maeyama N, Maruyama J, Nagasaki H, Nakajima T, Oda K, Okada K, Paulsen I, Sakamoto K, Sawano T,Takahashi M, Takase K, Terabayashi Y, Wortman JR, et al. 2005. Genome sequencing and analysis of Aspergillus oryzae. Nature 438:1157-1161.

3. Machida M, Yamada O, Gomi K. 2008. Genomics of Aspergillus oryzae: Learning from the History of Koji Mold and Exploration of Its Future. DNA Research 15:173-183.

4. Oda K, Kakizono D, Yamada O, Iefuji H, Akita O, Iwashita K. 2006. Proteomic analysis of extracellular proteins from Aspergillus oryzae grown under submerged and solid-state culture conditions. Applied and Environmental Microbiology 72:3448-3457.

5. Brown SH, Bashkirova L, Berka R, Chandler T, Doty T, McCall K, McCulloch M, McFarland S, Thompson S, Yaver D, Berry A. 2013. Metabolic engineering of Aspergillus oryzae NRRL 3488 for increased production of L-malic acid. Applied Microbiology and Biotechnology 97:8903-8912.

6. Yang L, Lubeck M, Lubeck PS. 2017. Aspergillus as a versatile cell factory for organic acid production. Fungal Biology Reviews 31:33-49.

7. Sakai K, Kinoshita H, Nihira T. 2012. Heterologous expression system in Aspergillus oryzae for fungal biosynthetic gene clusters of secondary metabolites. Applied Microbiology and Biotechnology 93:2011-2022.

8. Yoshimi A, Yamaguchi S, Fujioka T, Kawai K, Gomi K, Machida M, Abe K. 2018. Heterologous Production of a Novel Cyclic Peptide Compound, KK-1, in Aspergillus oryzae. Frontiers in Microbiology 9:12.

9. Nakajima K, Kunihiro S, Sano M, Zhang Y, Eto S, Chang YC, Suzuki T, Jigami Y, Machida M. 2000. Comprehensive cloning and expression analysis of glycolytic genes from the filamentous fungus, Aspergillus oryzae. Current Genetics 37:322-327.

10. Maeda H, Sano M, Maruyama Y, Tanno T, Akao T, Totsuka Y, Endo M, Sakurada R, Yamagata Y, Machida M, Akita O, Hasegawa F, Abe K, Gomi K, Nakajima T, Iguchi Y. 2004. Transcriptional analysis of genes for energy catabolism and hydrolytic enzymes in the filamentous fungus Aspergillus oryzae using cDNA microarrays and expressed sequence tags. Applied Microbiology and Biotechnology 65:74-83.

11. Machida M, Chang YC, Manabe M, Yasukawa M, Kunihiro S, Jigami Y. 1996. Molecular cloning of a cDNA encoding enolase from the filamentous fungus, Aspergillus oryzae. Current Genetics 30:423-431.

12. Holland MJ, Holland JP. 1978. ISOLATION AND IDENTIFICATION OF YEAST MESSENGER RIBONUCLEIC-ACIDS CODING FOR ENOLASE, GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE, AND PHOSPHOGLYCERATE KINASE. Biochemistry 17:4900-4907.

13. Tsuboi H, Koda A, Toda T, Minetoki T, Hirotsune M, Machida M. 2005. Improvement of the Aspergillus oryzae enolase promoter (P-enoA) by the introduction of cis-element repeats. Bioscience Biotechnology and Biochemistry 69:206-208.

14. Chambers A, Packham EA, Graham IR. 1995. Control of glycolytic gene expression in the budding yeast (Saccharomyces cerevisiae). Current Genetics 29:1-9.

15. Toda T, Sano M, Honda M, Rimoldi O, Yang Y, Yamamoto M, Takase K, Hirozumi K, Kitamoto K, Minetoki T, Gomi K, Machida M. 2001. Deletion analysis of the enolase gene (enoA) promoter from the filamentous fungus Aspergillus oryzae. Current Genetics 40:260-267.

16. Akao T, Sano M, Yamada O, Akeno T, Fujii K, Goto K, Ohasi-Kunihiro S, Takase K, Yasukawa-Watanabe M, Yamaguchi K, Kurihara Y, Maruyama JI, Juvvadi PR, Tanaka A,Hata Y, Koyama Y, Yamaguchi S, Kitamoto N, Gomi K, Abe K, Takeuchi M, Kobayashi T, Horiuchi H, Kitamoto K, Kashiwagi Y, Machida M, Akita O. 2007. Analysis of expressed sequence tags from the fungus Aspergillus oryzae cultured under different conditions.DNA Research 14:47-57.

17. Hynes MJ, Szewczyk E, Murray SL, Suzuki Y, Davis MA, Lewis HMS. 2007. Transcriptional control of gluconeogenesis in Aspergillus nidulans. Genetics 176:139-150.

18. Suzuki Y, Murray SL, Wong KH, Davis MA, Hynes MJ. 2012. Reprogramming of carbon metabolism by the transcriptional activators AcuK and AcuM in Aspergillus nidulans. Molecular Microbiology 84:942-964.

19. de Klerk E, t Hoen PAC. 2015. Alternative mRNA transcription, processing, and translation: insights from RNA sequencing. Trends in Genetics 31:128-139.

20. McAlister L, Holland MJ. 1982. TARGETED DELETION OF A YEAST ENOLASE STRUCTURAL GENE - IDENTIFICATION AND ISOLATION OF YEAST ENOLASE ISOZYMES. Journal of Biological Chemistry 257:7181-7188.

21. Flipphi M, Sun JB, Robellet X, Karaffa L, Fekete E, Zeng AP, Kubicek CP. 2009. Biodiversity and evolution of primary carbon metabolism in Aspergillus nidulans and other Aspergillus spp. Fungal Genetics and Biology 46:S19-S44.

22. Prade RA, Timberlake WE. 1993. THE ASPERGILLUS-NIDULANS BRLA REGULATORY LOCUS CONSISTS OF OVERLAPPING TRANSCRIPTION UNITS THAT ARE INDIVIDUALLY REQUIRED FOR CONIDIOPHORE DEVELOPMENT.Embo Journal 12:2439-2447.

23. Szewczyk E, Andrianopoulos A, Davis MA, Hynes MJ. 2001. A single gene produces mitochondrial, cytoplasmic, and peroxisomal NADP-dependent isocitrate dehydrogenase in Aspergillus nidulans. Journal of Biological Chemistry 276:37722-37729.

24. Cheng CK, Au CH, Wilke SK, Stajich JE, Zolan ME, Pukkila PJ, Kwan HS. 2013. 5 '-Serial Analysis of Gene Expression studies reveal a transcriptomic switch during fruiting body development in Coprinopsis cinerea. Bmc Genomics 14:17.

25. Kaur JN, Panepinto JC. 2016. Morphotype-specific effector functions of Cryptococcus neoformans PUM1. Scientific Reports 6:9.

26. Guo N, Qian Y, Zhang QQ, Chen XX, Zeng GH, Zhang X, Mi WB, Xu C, Leger RJS, Fang WG. 2017. Alternative transcription start site selection in Mr-OPY2 controls lifestyle transitions in the fungus Metarhizium robertsii. Nature Communications 8:13.

27. Taggart J, MacDiarmid CW, Haws S, Eide DJ. 2017. Zap1-dependent transcription from an alternative upstream promoter controls translation of RTC4 mRNA in zinc-deficient Saccharomyces cerevisiae. Molecular Microbiology 106:678-689.

28. Minetoki T, Nunokawa Y, Gomi K, Kitamoto K, Kumagai C, Tamura G. 1996. Deletion analysis of promoter elements of the Aspergillus oryzae agdA encoding alpha-glucosidase. Current Genetics 30:432-438.

29. Mizutani O, Kudo Y, Saito A, Matsuura T, Inoue H, Abe K, Gomi K. 2008. A defect of ligD (human lig4 homolog) for nonhomologous end joining significantly improves efficiency of gene-targeting in Aspergillus oryzae. Fungal Genetics and Biology 45:878-889.

30. Hanahan D. 1983. STUDIES ON TRANSFORMATION OF ESCHERICHIA-COLI WITH PLASMIDS. Journal of Molecular Biology 166:557-580.

31. Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods 25:402-408.

32. Inoue H, Nojima H, Okayama H. 1990. HIGH-EFFICIENCY TRANSFORMATION OF ESCHERICHIA-COLI WITH PLASMIDS. Gene 96:23-28.

33. Yamada O, Lee BR, Gomi K. 1997. Transformation system for Aspergillus oryzae with double auxotrophic mutations, niaD and sC. Bioscience Biotechnology and Biochemistry 61:1367-1369.

34. Gomi K, Iimura Y, Hara S. 1987. INTEGRATIVE TRANSFORMATION OF ASPERGILLUS-ORYZAE WITH A PLASMID CONTAINING THE ASPERGILLUS-NIDULANS-ARGB GENE. Agricultural and Biological Chemistry 51:2549-2555.

35. Tanaka M, Tokuoka M, Shintani T, Gomi K. 2012. Transcripts of a heterologous gene encoding mite allergen Der f 7 are stabilized by codon optimization in Aspergillus oryzae. Applied Microbiology and Biotechnology 96:1275-1282.

36. Jefferson RA. 1989. THE GUS REPORTER GENE SYSTEM. Nature 342:837-838.

37. Bradford MM. 1976. RAPID AND SENSITIVE METHOD FOR QUANTITATION OF MICROGRAM QUANTITIES OF PROTEIN UTILIZING PRINCIPLE OF PROTEIN-DYE BINDING. Analytical Biochemistry 72:248-254.

38. Cerqueira GC, Arnaud MB, Inglis DO, Skrzypek MS, Binkley G, Simison M, Miyasato SR, Binkley J, Orvis J, Shah P, Wymore F, Sherlock G, Wortman JR. 2014. The Aspergillus Genome Database: multispecies curation and incorporation of RNA-Seq data to improve structural gene annotations. Nucleic Acids Research 42:D705-D710.

39. Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren JY, Li WW, Noble WS. 2009. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Research 37:W202-W208.

40. Ayoubi TAY, VanDeVen WJM. 1996. Regulation of gene expression by alternative promoters. Faseb Journal 10:453-460.

41. Davuluri RV, Suzuki Y, Sugano S, Plass C, Huang THM. 2008. The functional consequences of alternative promoter use in mammalian genomes. Trends in Genetics 24:167-177.

42. Rojas-Duran MF, Gilbert WV. 2012. Alternative transcription start site selection leads to large differences in translation activity in yeast. Rna-a Publication of the Rna Society 18:2299-2305.

43. Armitt S, McCullough W, Roberts CF. 1976. ANALYSIS OF ACETATE NON- UTILIZING (ACU) MUTANTS IN ASPERGILLUS-NIDULANS. Journal of General Microbiology 92:263-282.

44. Jin FJ, Han P, Zhuang M, Zhang ZM, Jin L, Koyama Y. 2018. Comparative proteomic analysis: SclR is importantly involved in carbohydrate metabolism in Aspergillus oryzae. Applied Microbiology and Biotechnology 102:319-332.

45. Roy SW, Penny D, Neafsey DE. 2007. Evolutionary conservation of UTR intron boundaries in Cryptococcus. Molecular Biology and Evolution 24:1140-1148.

46. Morris DR, Geballe AP. 2000. Upstream open reading frames as regulators of mRNA translation. Molecular and Cellular Biology 20:8635-8642.

47. Rose AB, Emami S, Bradnam K, Korf I. 2011. Evidence for a DNA-based mechanism of intron-mediated enhancement. Frontiers in Plant Science 2:9.

48. Goebels C, Thonn A, Gonzalez-Hilarion S, Rolland O, Moyrand F, Beilharz TH, Janbon G. 2013. Introns Regulate Gene Expression in Cryptococcus neoformans in a Pab2p Dependent Pathway. Plos Genetics 9:15.

49. Bicknell AA, Cenik C, Chua HN, Roth FP, Moore MJ. 2012. Introns in UTRs: Why we should stop ignoring them. Bioessays 34:1025-1034.

50. Agarwal N, Ansari A. 2016. Enhancement of Transcription by a Splicing-Competent Intron Is Dependent on Promoter Directionality. Plos Genetics 12:20.

51. Hashimoto S, Suzuki Y, Kasai Y, Morohoshi K, Yamada T, Sese J, Morishita S, Sugano S, Matsushima K. 2004. 5 '-end SAGE for the analysis of transcriptional start sites. Nature Biotechnology 22:1146-1149.

52. de Vries RP, Riley R, Wiebenga A, Aguilar-Osorio G, Amillis S, Uchima CA, Anderluh G, Asadollahi M, Askin M, Barry K, Battaglia E, Bayram O, Benocci T, Braus-Stromeyer SA,Caldana C, Canovas D, Cerqueira GC, Chen FS, Chen WP, Choi C, Clum A, dos Santos RAC, Damasio ARD, Diallinas G, Emri T, Fekete E, Flipphi M, Freyberg S, Gallo A, Gournas C, Habgood R, Hainaut M, Harispe ML, Henrissat B, Hilden KS, Hope R, Hossain A, Karabika E, Karaffa L, Karanyi Z, Krasevec N, Kuo A, Kusch H, LaButti K, Lagendijk EL,Lapidus A, Levasseur A, Lindquist E, Lipzen A, Logrieco AF, et al. 2017. Comparative genomics reveals high biological diversity and specific adaptations in the industrially and medically important fungal genus Aspergillus. Genome Biology 18:45.

53. Andersen MR, Vongsangnak W, Panagiotou G, Salazar MP, Lehmann L, Nielsen J. 2008. A trispecies Aspergillus microarray: Comparative transcriptomics of three Aspergillus species. Proceedings of the National Academy of Sciences of the United States of America 105:4387-4392.

54. Frith MC, Ponjavic J, Fredman D, Kai C, Kawai J, Carninci P, Hayshizaki Y, Sandelin A. 2006. Evolutionary turnover of mammalian transcription start sites. Genome Research 16:713-722.

55. Tanaka T, Koyanagi KO, Itoh T. 2009. Highly Diversified Molecular Evolution of Downstream Transcription Start Sites in Rice and Arabidopsis. Plant Physiology 149:1316-1324.

56. Cotney J, Leng J, Yin J, Reilly SK, DeMare LE, Emera D, Ayoub AE, Rakic P, Noonan JP. 2013. The Evolution of Lineage-Specific Regulatory Activities in the Human Embryonic Limb. Cell 154:185-196.

57. Young RS, Hayashizaki Y, Andersson R, Sandelin A, Kawaji H, Itoh M, Lassmann T, Carninci P, Bickmore WA, Forrest AR, Taylor MS, The FC. 2015. The frequent evolutionary birth and death of functional promoters in mouse and human. Genome Research 25:1546-1557.

58. Forrest ARR, Kawaji H, Rehli M, Baillie JK, de Hoon MJL, Haberle V, Lassmann T,Kulakovskiy IV, Lizio M, Itoh M, Andersson R, Mungall CJ, Meehan TF, Schmeier S, Bertin N, Jorgensen M, Dimont E, Arner E, Schmidl C, Schaefer U, Medvedeva YA, Plessy C,Vitezic M, Severin J, Semple CA, Ishizu Y, Young RS, Francescatto M, Alam I, Albanese D, Altschuler GM, Arakawa T, Archer JAC, Arner P, Babina M, Rennie S, Balwierz PJ, Beckhouse AG, Pradhan-Bhatt S, Blake JA, Blumenthal A, Bodega B, Bonetti A, Briggs J, Brombacher F, Burroughs AM, Califano A, Cannistraci CV, Carbajo D, Chen Y, et al. 2014. A promoter-level mammalian expression atlas. Nature 507:462-+.

59. Roumelioti K, Vangelatos I, Sophianopoulou V. 2010. A cryptic role of a glycolytic- gluconeogenic enzyme (aldolase) in amino acid transporter turnover in Aspergillus nidulans. Fungal Genetics and Biology 47:254-267.

60. Galagan JE, Calvo SE, Cuomo C, Ma LJ, Wortman JR, Batzoglou S, Lee SI, Basturkmen M, Spevak CC, Clutterbuck J, Kapitonov V, Jurka J, Scazzocchio C, Farman M, Butler J, Purcell S, Harris S, Braus GH, Draht O, Busch S, D'Enfert C, Bouchier C, Goldman GH, Bell- Pedersen D, Griffiths-Jones S, Doonan JH, Yu J, Vienken K, Pain A, Freitag M, Selker EU, Archer DB, Penalva MA, Oakley BR, Momany M, Tanaka T, Kumagai T, Asai K, Machida M, Nierman WC, Denning DW, Caddick M, Hynes M, Paoletti M, Fischer R, Miller B, Dyer P, Sachs MS, Osmani SA, Birren BW. 2005. Sequencing of Aspergillus nidulans and comparative analysis with A-fumigatus and A-oryzae. Nature 438:1105-1115.

61. Takahashi T, Mizutani O, Shiraishi Y, Yamada O. 2011. Development of an efficient gene- targeting system in Aspergillus luchuensis by deletion of the non-homologous end joining system. Journal of Bioscience and Bioengineering 112:529-534.

62. Raper KB. 1946. THE DEVELOPMENT OF IMPROVED PENICILLIN-PRODUCING MOLDS. Annals of the New York Academy of Sciences 48:41-&.

63. Murata M, Nishiyori-Sueki H, Kojima-Ishiyama M, Carninci P, Hayashizaki Y, Itoh M. 2014. Detecting Expressed Genes Using CAGE, p 67-85. In Miyamoto-Sato E, Ohashi H, Sasaki H, Nishikawa J-i, Yanagawa H (ed), Transcription Factor Regulatory Networks: Methods and Protocols doi:10.1007/978-1-4939-0805-9_7. Springer New York, New York, NY.

64. Ohmiya H, Vitezic M, Frith MC, Itoh M, Carninci P, Forrest ARR, Hayashizaki Y, Lassmann T, Consortium F. 2014. RECLU: a pipeline to discover reproducible transcriptional start sites and their alternative regulation using capped analysis of gene expression (CAGE). Bmc Genomics 15:15.

65. Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP. 2011. Integrative genomics viewer. Nature Biotechnology 29:24-26.

66. Carninci P, Sandelin A, Lenhard B, Katayama S, Shimokawa K, Ponjavic J, Semple CAM, Taylor MS, Engstrom PG, Frith MC, Forrest ARR, Alkema WB, Tan SL, Plessy C, Kodzius R, Ravasi T, Kasukawa T, Fukuda S, Kanamori-Katayama M, Kitazume Y, Kawaji H, Kai C, Nakamura M, Konno H, Nakano K, Mottagui-Tabar S, Arner P, Chesi A, Gustincich S, Persichetti F, Suzuki H, Grimmond SM, Wells CA, Orlando V, Wahlestedt C, Liu ET,Harbers M, Kawai J, Bajic VB, Hume DA, Hayashizaki Y. 2006. Genome-wide analysis of mammalian promoter architecture and evolution. Nature Genetics 38:626-635.

67. Li H, Hou JY, Bai L, Hu CS, Tong P, Kang YN, Zhao XD, Shao ZF. 2015. Genome-wide analysis of core promoter structures in Schizosaccharomyces pombe with DeepCAGE. Rna Biology 12:525-537.

68. Sibthorp C, Wu HH, Cowley G, Wong PWH, Palaima P, Morozov IY, Weedall GD, Caddick MX. 2013. Transcriptome analysis of the filamentous fungus Aspergillus nidulans directed to the global identification of promoters. Bmc Genomics 14:18.

69. Johnson AD. 2017. The rewiring of transcription circuits in evolution. Current Opinion in Genetics & Development 47:121-127.

70. Okar DA, Lange AJ. 1999. Fructose-2,6-bisphosphate and control of carbohydrate metabolism in eukaryotes. Biofactors 10:1-14.

71. Wakai S, Yoshie T, Asai-Nakashima N, Yamada R, Ogino C, Tsutsumi H, Hata Y, Kondo A. 2014. L-lactic acid production from starch by simultaneous saccharification and fermentation in a genetically engineered Aspergillus oryzae pure culture. Bioresource Technology 173:376-383.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る