リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「α-チタンの双晶変形と強化機構に関する研究」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

α-チタンの双晶変形と強化機構に関する研究

塚本, 元気 TSUKAMOTO, Genki ツカモト, ゲンキ 九州大学

2022.03.23

概要

チタンは低密度、高比強度、高耐食性、高生体適合性などの優れた材料特性を有しており、航空機分野、自動車分野、化学工業分野などで様々な用途に適用されている。近年では、LCC(ライフサイクルコスト、Life Cycle Cost)やSDGs(持続可能な開発目標、Sustainable Development Goals)の観点から、建物の屋根(軽量、高耐食性によるメンテナンスフリー化、耐震性の向上)や海洋鋼構造物のカバー(高耐食性による経年劣化対策)などにも適用されている。このようにチタンはLCCの低減やSDGsの17の目標の一つである“住み続けられるまちづくりを”に貢献する金属であり、今後もさらなる使用が期待される。

 チタンは、その製造工程にて熱間鍛造、熱間圧延、冷間圧延、伸線加工、プレス成形、切削など、様々な塑性加工に供される。そのため、チタンの塑性変形挙動の理解は重要である。チタンのα相では、主に5種類のすべり系と5種類の双晶系によって塑性変形が進行することが知られており、活動する系によって機械的特性は大きく変化する。双晶変形の挙動は、変形温度、結晶粒径、化学組成など、多くの因子に影響されることが報告されているが、未だに系統的な整理がされていない因子も多く、双晶変形が塑性変形挙動に与える影響を定量的に評価することは難しい。

 一方で、近年のカーボンニュートラルの流れから、自動車や航空機部材などのさらなる軽量化が求められている。そのためには、チタン合金のさらなる高強度が必要であり、析出強化の積極的な活用に期待が集まっている。しかし、現状において、チタン合金において析出強化を有効活用している例は多くはない。

 以上の背景から、本研究では、工業用純チタンとチタン二元系合金の変形双晶に及ぼす変形温度、結晶粒径、添加元素(OまたはAl)の影響について調査し、その原理を考察した。また、工業用純チタンの加工硬化挙動に及ぼす双晶変形に影響を調査し、塑性変形を記述する新たな関係式を提案した。さらに、Ti-2.3mass%Cuの時効析出挙動を調査し、析出物と強度との関係性を考察した。

 第1章では、工業的に使用されている純チタンとチタン合金を紹介した。次に金属の塑性変形機構の説明し、チタンのα相(HCP構造)の各双晶系に関する研究の文献を要約して、各双晶系の特徴を示した。

 第2章では、本論文における実験方法を示した。

 第3章では、結晶粒径の異なる工業用純チタンを種々温度で圧縮試験した際の活動双晶系を調査し、各双晶系における変形温度と結晶粒径の影響を検討した。工業用純チタンでは{10-12}双晶は25°Cから800°Cまでの全温度域での圧縮変形で活動したが、{11-21}および{11-22}双晶は低温域のみ、{101-1}双晶は高温域のみで活動した。また、{10-12}、{11-21}および{11-22}双晶は粗粒の方が細粒よりも多く形成していたが、{10-11}双晶は粒径依存性も確認されなかった。このような双晶系ごとの粒径依存性の違いは、チタンの双晶変形の素過程である単純せん断とシャッフリングの観点から説明することが可能であった。

 第4章では、工業用純チタン、O添加チタン、Al添加チタンを種々温度で圧縮試験した際の活動双晶系を調査し、各双晶系におけるO、Al添加の影響を検討した。双晶変形挙動に及ぼすOの影響は、100℃以下での{10-12}、{11-21}および、{11-22}双晶の形成を抑制するが、300℃以上での{10-12}双晶や{10-11}双晶に関しては、ほとんど抑制しなかった。双晶変形挙動に及ぼすAlの影響は、{11-22}双晶の形成を大きく抑制するが、そのほかの双晶系にはほとんど影響しなかった。O添加による双晶抑制は、主にシャッフリング時のO原子の拡散を介して生じており、Alによる{11-22}双晶抑制効果は、転位の抑制により生じていると考えられた。

 第5章では、工業用純チタン冷延薄板を用いて、引張変形時の加工硬化挙動と変形中の組織変化を調査し、結晶粒径変化と集合組織変化の観点から、双晶変形による加工硬化率増加メカニズムに関して検討した。双晶変形が発生する系では、発生しない系と比較して加工硬化率が増加した。双晶変形により、結晶粒が分断され、ひずみ増加に伴い微細な結晶粒の割合が増加した。また、集合組織変化が大きく変化した。双晶変形が発生しないような結晶粒径の範囲では、結晶粒が小さいほど加工硬化率が大きかった。これは結晶粒径が小さいほど、転位密度の増加率が大きく、転位も多く活動するためであった。双晶変形による加工硬化促進は、結晶粒微細化による転位密度増加率の上昇と転位の活動割合の増加、集合組織変化によるテイラー因子の変化でおおよそ説明可能であった。

 第6章では、Ti-2.3mass%Cuの時効析出挙動と機械的特性変化を調査し、析出物の遷移挙動や各析出物の機械的特性への影響を検討した。Ti-2.3Cu合金は400℃と450℃の時効で硬化を、600℃の時効で軟化を示した。400℃の時効では、40hで平均長さ20nm程度のG.P.zone-like析出物が観察され、このG.P.zone-like析出物の生成と成長が400℃や450℃での時効硬化の要因であると考えられる。600℃の時効では、長さ200nm程度のTi2Cuと長さ1µm程度の粗大なG.P.zone-like析出物の析出が観察された。これらの生成によりα-Ti相中の固溶Cu量が低下したことが軟化の要因であると推察された。G.P.zone-like析出物のみが生成する温度域(400℃)から、G.P.zone-like析出物とTi2Cuの2種類が生成する温度域(600℃)へと温度を変化させた2段階時効を実施した結果、複数のG.P.zone-like析出物が接触したV字型のクラスターを形成し、その接合部において析出物がTi2Cuへ変化している様子が捉えられた。このような析出物の変化は硬度とよく相関しており、析出物の粗大化、数密度の減少によって硬度変化を説明することが可能であった。

 第7章では、上記の結果をまとめた。

この論文で使われている画像

参考文献

[1] Okabe T. H., “Smelting, Refining, and Recycling of Titanium,” Mater. Jpn., vol. 58, no. 4, pp. 176–180, Apr. 2019, doi: 10.2320/materia.58.176.

[2] Yatsunami Y. and Takanashi K., “Manufacturing Technology in Titanium and Titanium Alloy,” NIPPON STEEL Tech. Rep., vol. 418, no. 2, Mar. 2021.

[3] 日本チタン協会編, 現場で生かす金属材料シリーズ チタン. 東京: ㈱工業調査会, 2007.

[4] K. Terai and T. Takachi, “Expanding in Application of Titanium by Nippon Steel Corporation,” NIPPON STEEL Tech. Rep., vol. 418, no. 3, Aug. 2021, Accessed: Dec. 10, 2021. [Online]. Available: https://www.nipponsteel.com/tech/report/pdf/41 8 - 03.pdf

[5] Kunieda T., Tsukamoto G., and Koike Y., “Development of V Free Ti-Al-Fe Based Titanium Alloy Strip Products,” NIPPON STEEL Tech. Rep., vol. 418, no. 8, Aug. 2021.

[6] M. Tokita, T. Takechi, and M. Sasage, “Expanding in Application of Titanium by Nippon Steel & Sumitomo Metal Corporation,” vol. 106, no. 3, p. 7, 2014.

[7] T. H. Okabe, “Mass of Electricity and Technology : Titanium Metal and Its Production Process,” J. Inst. Electr. Eng. Jpn., vol. 126, no. 12, pp. 801–805, 2006, doi: 10.1541/ieejjournal.126.801.

[8] “原子力発電の位置づけ,” 関西電力株式会社事業概要 . https://www.kepco.co.jp/energy_supply/energy/nuclear_power/nowenergy/need.ht ml (accessed Dec. 10, 2021).

[9] Fujii H., “カーボンニュートラルチタン製錬を目指して,” JRCM NEWS, vol. 415, p. 1, May 2021.

[10] “チタンの新製錬技術を中核とした施策による 2050 年カーボンニュートラルビジョンについて,” 東邦チタニウム株式会社 ニュース, May 2021. https://ssl4.eir- parts.net/doc/5727/ir_material/158556/00.pdf (accessed Dec. 10, 2021).

[11] “「新しい低コスト省エネルギー型チタン製造技術の開発」プロジェクトに参画,” 日本製鉄株式会社プレスリリース, Jul. 2021. https://www.nipponsteel.com/news/20210727_200.html (accessed Dec. 10, 2021).

[12] A. M. Garde and R. E. Reed-Hill, “The importance of mechanical twinning in the stress-strain behavior of swaged high purity fine-grained titanium below 424°K,” Metall. Trans., vol. 2, no. 10, pp. 2885–2888, Oct. 1971, doi: 10.1007/BF02813267.

[13] N. E. Paton and W. A. Backofen, “Plastic deformation of titanium at elevated temperatures,” Metall. Trans., vol. 1, pp. 2839–2847, 1970, doi: 10.1007/BF03037822.

[14] H. Conrad, M. Doner, and B. de Meester, “Critical review,” in Deformation and Fracture in Titanium Science and Technology, New York, 1973, vol. 2, pp. 969–1005.

[15] F. Xu, X. Zhang, H. Ni, and Q. Liu, “Deformation twinning in pure Ti during dynamic plastic deformation,” Mater. Sci. Eng. A, vol. 541, pp. 190–195, Apr. 2012, doi: 10.1016/j.msea.2012.02.021.

[16] X. G. Deng, S. X. Hui, W. J. Ye, and X. Y. Song, “Analysis of twinning behavior of pure Ti compressed at different strain rates by Schmid factor,” Mater. Sci. Eng. A, vol. 575, pp. 15–20, Jul. 2013, doi: 10.1016/j.msea.2013.03.031.

[17] N. P. Gurao, R. Kapoor, and S. Suwas, “Deformation behaviour of commercially pure titanium at extreme strain rates,” Acta Mater., vol. 59, no. 9, pp. 3431–3446, May 2011, doi: 10.1016/j.actamat.2011.02.018.

[18] Y. Murayama, K. Obara, and K. Ikeda, “Effect of Twinning on the Deformation Behavior of Textured Sheets of Pure Titanium in Uniaxial Tensile Test,” Trans. Jpn. Inst. Met., vol. 28, no. 7, pp. 564–578, 1987, doi: 10.2320/matertrans1960.28.564.

[19] A. Ghaderi and M. R. Barnett, “Sensitivity of deformation twinning to grain size in titanium and magnesium,” Acta Mater., vol. 59, no. 20, pp. 7824–7839, Dec. 2011, doi: 10.1016/j.actamat.2011.09.018.

[20] H. Sasano and H. Kimura, “The Effect of Deformation Twinning on Mechanical Properties of α-Titanium Alloys at Low Temperatures,” J. Jpn. Inst. Met., vol. 41, no. 9, pp. 933–939, 1977, doi: 10.2320/jinstmet1952.41.9_933.

[21] G. Lütjering and J. C. Williams, “High Temperature Alloys,” in Titanium, G. Lütjering and J. C. Williams, Eds. Berlin, Heidelberg: Springer, 2003, pp. 233–246. doi: 10.1007/978-3-540-71398-2_6.

[22] X. Yao, Q. Y. Sun, L. Xiao, and J. Sun, “Effect of Ti2Cu precipitates on mechanical behavior of Ti–2.5Cu alloy subjected to different heat treatments,” J. Alloys Compd., vol. 484, no. 1–2, pp. 196–202, Sep. 2009, doi: 10.1016/j.jallcom.2009.04.095.

[23] Q. Y. Sun, Z. T. Yu, R. H. Zhu, and H. C. Gu, “Mechanical behavior and deformation mechanisms of Ti–2.5Cu alloy reinforced by nano-scale precipitates at 293 and 77 K,” Mater. Sci. Eng. A, vol. 364, no. 1, pp. 159–165, Jan. 2004, doi: 10.1016/j.msea.2003.08.015.

[24] 日本規格協会, JIS チタン及びチタン合金の板及び棒: JISH 4600. 2012.

[25] J. Gong and A. J. Wilkinson, “Anisotropy in the plastic flow properties of single-crystal α titanium determined from micro-cantilever beams,” Acta Mater., vol. 57, no. 19, pp. 5693–5705, Nov. 2009, doi: 10.1016/j.actamat.2009.07.064.

[26] X. Wu, S. R. Kalidindi, C. Necker, and A. A. Salem, “Modeling Anisotropic Stress-Strain Response and Crystallographic Texture Evolution in α-Titanium during Large Plastic Deformation using Taylor-Type Models: Influence of Initial Texture and Purity,” Metall. Mater. Trans. A, vol. 39, no. 12, pp. 3046–3054, Dec. 2008, doi: 10.1007/s11661-008-9651-x.

[27] A. Poty et al., “Classification of the critical resolved shear stress in the hexagonal-close- packed materials by atomic simulation: Application to α-zirconium and α-titanium,” J. Appl. Phys., vol. 110, no. 1, p. 014905, Jul. 2011, doi: 10.1063/1.3599870.

[28] A. A. Salem, S. R. Kalidindi, and S. L. Semiatin, “Strain hardening due to deformation twinning in α-titanium: Constitutive relations and crystal-plasticity modeling,” Acta Mater., vol. 53, no. 12, pp. 3495–3502, Jul. 2005, doi: 10.1016/j.actamat.2005.04.014.

[29] I. P. Jones and W. B. Hutchinson, “Stress-state dependence of slip in Titanium-6Al- 4V and other H.C.P. metals,” Acta Metall., vol. 29, no. 6, pp. 951–968, Jun. 1981, doi: 10.1016/0001-6160(81)90049-3.

[30] J. A. M. Perillaa, “Two-dimensional sections of the yield locus of a Ti-6%Al-4%V alloy with a strong transverse-type crystallographic a -texture,” Mater. Sci. Eng., p. 8, 1995.

[31] T. Dick and G. Cailletaud, “Fretting modelling with a crystal plasticity model of Ti6Al4V,” Comput. Mater. Sci., vol. 38, no. 1, pp. 113–125, Nov. 2006, doi: 10.1016/j.commatsci.2006.01.015.

[32] J. J. Fundenbergert, M. J. Philippe, F. Wagner, and C. Esling, “Modelling and prediction of mechanical properties for materials with hexagonal symmetry (zinc, titanium and zirconium alloys),” p. 15.

[33] H. Li, D. E. Mason, T. R. Bieler, C. J. Boehlert, and M. A. Crimp, “Methodology for estimating the critical resolved shear stress ratios of α-phase Ti using EBSD-based trace analysis,” Acta Mater., vol. 61, no. 20, pp. 7555–7567, Dec. 2013, doi: 10.1016/j.actamat.2013.08.042.

[34] 吉永日出男, 稠密六方晶金属の変形双晶 -マグネシウムを中心として-. 東京: 内田労鶴圃, 2007.

[35] 武井英雄, 金属材料学 (機械工学基礎講座). 東京: 理工学社, 1977.

[36] E. Schmid and W. Boas, Plasticity of Crystals with Special Reference to Metals. London: Chapman and Hall, 1968.

[37] A. W. Sleeswyk, “Emissary dislocations: Theory and experiments on the propagation of deformation twins in α-iron,” Acta Metall., vol. 10, no. 8, pp. 705–725, Aug. 1962, doi: 10.1016/0001-6160(62)90040-8.

[38] Narita N., “Deformation twinning in metals and alloys.,” Bull. Jpn. Inst. Met., vol. 24, no. 12, pp. 984–992, 1985, doi: 10.2320/materia1962.24.984.

[39] J. W. Christian, The Theory of Transformation in Metals and Alloys. Oxford: Pergamon Press, 1965.

[40] A. H. Cottrell and B. A. Bilby, “A mechanism for the growth of deformation twins in crystals,” Lond. Edinb. Dublin Philos. Mag. J. Sci., vol. 42, no. 329, pp. 573–581, Jun. 1951, doi: 10.1080/14786445108561272.

[41] K. Sumino, “Surface dislocations and the growth of deformation twins,” Acta Metall., vol. 14, no. 11, pp. 1607–1615, Nov. 1966, doi: 10.1016/0001-6160(66)90181-7.

[42] E. Orowan, Dislocation in Metals. New York: AIME, 1954.

[43] M. L. Kronberg, “A structural mechanism for the twinning process on {10-12} in hexagonal close packed metals,” Acta Metall., vol. 16, no. 1, pp. 29–34, Jan. 1968, doi: 10.1016/0001-6160(68)90068-0.

[44] S. Ishioka, “Dynamic formation of a twin in a bcc crystal,” J. Appl. Phys., vol. 46, no. 10, pp. 4271–4274, Oct. 1975, doi: 10.1063/1.321410.

[45] H. Suzuki and C. S. Barrett, “Deformation twinning in silver-gold alloys,” Acta Metall., vol. 6, no. 3, pp. 156–165, Mar. 1958, doi: 10.1016/0001-6160(58)90002-6.

[46] R. Priestner and W. C. Leslie, “Nucleation of deformation twins at slip plane intersections in B.C.C. metals,” Philos. Mag., vol. 11, no. 113, pp. 895–916, May 1965, doi: 10.1080/14786436508223953.

[47] J. B. Cohen and J. Weertman, “A dislocation model for twinning in f.c.c. metals,” Acta Metall., vol. 11, no. 8, pp. 996–998, Aug. 1963, doi: 10.1016/0001-6160(63)90074-9.

[48] A. W. Sleeswyk, “½ screw dislocations and the nucleation of {112} twins in the b.c.c. lattice,” Philos. Mag., vol. 8, no. 93, pp. 1467–1486, Sep. 1963, doi: 10.1080/14786436308207311.

[49] K. Ogawa, “Edge dislocations dissociated in {112} planes and twinning mechanism of b.c.c. metals,” Philos. Mag., vol. 11, no. 110, pp. 217–233, Feb. 1965, doi: 10.1080/14786436508221852.

[50] S. Mahajan and G. Y. Chin, “Formation of deformation twins in f. c.c. crystals,” Acta Metall., vol. 21, no. 10, pp. 1353–1363, Oct. 1973, doi: 10.1016/0001-6160(73)90085-0.

[51] H. Fujita and T. Mori, “A formation mechanism of mechanical twins in F.C.C. Metals,” Scr. Metall., vol. 9, no. 6, pp. 631–636, Jun. 1975, doi: 10.1016/0036-9748(75)90476-7.

[52] N. Thompson and D. J. Millard, “Twin formation, in cadmium,” Lond. Edinb. Dublin Philos. Mag. J. Sci., vol. 43, no. 339, pp. 422–440, Apr. 1952, doi: 10.1080/14786440408520175.

[53] A. Ookawa, “On the Mechanism of Deformation Twin in fcc Crystal,” J. Phys. Soc. Jpn., vol. 12, no. 7, pp. 825–825, Jul. 1957, doi: 10.1143/JPSJ.12.825.

[54] J. A. Venables, “Deformation twinning in face-centred cubic metals,” Philos. Mag., vol. 6, no. 63, pp. 379–396, Mar. 1961, doi: 10.1080/14786436108235892.

[55] A. W. Sleeswyk, “Perfect dislocation pole models for twinning in the f.c.c. and b.c.c lattices,” Philos. Mag., vol. 29, no. 2, pp. 407–421, Feb. 1974, doi: 10.1080/14786437408213281.

[56] 小川 恵一, “変形双晶の発生および成長機構-体心立方格子型金属を中心にして,” 日本金属学会会報, vol. 5, no. 5, pp. 309–320, 1966, doi: 10.2320/materia1962.5.309.

[57] M. A. Jaswon and D. B. Dove, “Twinning properties of lattice planes,” Acta Crystallogr., vol. 9, no. 8, pp. 621–626, Aug. 1956, doi: 10.1107/S0365110X56001716.

[58] B. A. Bilby and A. G. Crocker, “The theory of the crystallography of deformation twinning,” Proc. R. Soc. Lond. Ser. Math. Phys. Sci., vol. 288, no. 1413, pp. 240–255, Oct. 1965, doi: 10.1098/rspa.1965.0216.

[59] Y. B. Chun, S. H. Yu, S. L. Semiatin, and S. K. Hwang, “Effect of deformation twinning on microstructure and texture evolution during cold rolling of CP-titanium,” Mater. Sci. Eng. A, vol. 398, no. 1–2, pp. 209–219, May 2005, doi: 10.1016/j.msea.2005.03.019.

[60] G. S. Dyakonov et al., “Grain-structure development in heavily cold-rolled alpha- titanium,” Mater. Sci. Eng. A, vol. 607, pp. 145–154, Jun. 2014, doi: 10.1016/j.msea.2014.03.141.

[61] S. V. Zherebtsov, G. S. Dyakonov, A. A. Salem, S. P. Malysheva, G. A. Salishchev, and S. L. Semiatin, “Evolution of grain and subgrain structure during cold rolling of commercial-purity titanium,” Mater. Sci. Eng. A, vol. 528, no. 9, pp. 3474–3479, Apr. 2011, doi: 10.1016/j.msea.2011.01.039.

[62] Y. Zhong, F. Yin, and K. Nagai, “Role of deformation twin on texture evolution in cold- rolled commercial-purity Ti,” J. Mater. Res., vol. 23, no. 11, pp. 2954–2966, Nov. 2008, doi: 10.1557/JMR.2008.0354.

[63] H. Qin and J. J. Jonas, “Variant selection during secondary and tertiary twinning in pure titanium,” Acta Mater., vol. 75, pp. 198–211, Aug. 2014, doi: 10.1016/j.actamat.2014.04.065.

[64] N. Stanford, U. Carlson, and M. R. Barnett, “Deformation Twinning and the Hall– Petch Relation in Commercial Purity Ti,” Metall. Mater. Trans. A, vol. 39, no. 4, pp. 934–944, Apr. 2008, doi: 10.1007/s11661-007-9442-9.

[65] F. Xu, X. Zhang, H. Ni, Y. Cheng, Y. Zhu, and Q. Liu, “Effect of twinning on microstructure and texture evolutions of pure Ti during dynamic plastic deformation,” Mater. Sci. Eng. A, vol. 564, pp. 22–33, Mar. 2013, doi: 10.1016/j.msea.2012.11.097.

[66] F. D. Rosi, F. C. Perkins, and L. L. Seigle, “Mechanism of Plastic Flow in Titanium at Low and High Temperatures,” JOM, vol. 8, no. 2, pp. 115–122, Feb. 1956, doi: 10.1007/BF03377654.

[67] Ishiyama S., Hanada S., and Izumi O., “Orientation Dependence of Twinning in Commercially Pure Titanium,” J. Jpn. Inst. Met., vol. 54, no. 9, pp. 976–984, 1990, doi: 10.2320/jinstmet1952.54.9_976.

[68] A. Roth, M. A. Lebyodkin, T. A. Lebedkina, J.-S. Lecomte, T. Richeton, and K. E. K. Amouzou, “Mechanisms of anisotropy of mechanical properties of α-titanium in tension conditions,” Mater. Sci. Eng. A, vol. 596, pp. 236–243, Feb. 2014, doi: 10.1016/j.msea.2013.12.061.

[69] P. Ye et al., “A comparative study between {11-22} twinning and {10-12} twinning variant selection mechanisms during uniaxial compression in pure titanium,” Mater. Charact., vol. 162, p. 110188, Apr. 2020, doi: 10.1016/j.matchar.2020.110188.

[70] B. Li and X. Y. Zhang, “Global strain generated by shuffling-dominated {10-12}<10- 11> twinning,” Scr. Mater., vol. 71, pp. 45–48, Jan. 2014, doi: 10.1016/j.scriptamat.2013.10.002.

[71] J. Li, X. Li, M. Yu, and M. Sui, “Nucleation mechanism of {10-12} twin with low Schmid factor in hexagonal close-packed metals,” Mater. Sci. Eng. A, vol. 791, p. 139542, Jul. 2020, doi: 10.1016/j.msea.2020.139542.

[72] P. Chen, F. Wang, and B. Li, “Transitory phase transformations during {10-12} twinning in titanium,” Acta Mater., vol. 171, pp. 65–78, Jun. 2019, doi: 10.1016/j.actamat.2019.04.002.

[73] S. Jin, K. Marthinsen, and Y. Li, “Formation of {11-21} twin boundaries in titanium by kinking mechanism through accumulative dislocation slip,” Acta Mater., vol. 120, pp. 403–414, Nov. 2016, doi: 10.1016/j.actamat.2016.08.042.

[74] L. Wang, R. Barabash, T. Bieler, W. Liu, and P. Eisenlohr, “Study of {11-21} Twinning in α-Ti by EBSD and Laue Microdiffraction,” Metall. Mater. Trans. A, vol. 44, no. 8, pp. 3664–3674, Aug. 2013, doi: 10.1007/s11661-013-1714-y.

[75] M. Gong et al., “Steps and {11-21} secondary twinning associated with {11-22} twin in titanium,” Acta Mater., vol. 164, pp. 776–787, Feb. 2019, doi: 10.1016/j.actamat.2018.11.019.

[76] N. J. Lane, S. I. Simak, A. S. Mikhaylushkin, I. A. Abrikosov, L. Hultman, and M. W. Barsoum, “First-principles study of dislocations in hcp metals through the investigation of the (11-21) twin boundary,” Phys. Rev. B, vol. 84, no. 18, p. 184101, Nov. 2011, doi: 10.1103/PhysRevB.84.184101.

[77] 徳永隼人, 九州大学大学院総合理工学府物質理工学専攻修士論文, 2018.

[78] Y. Guo, H. Abdolvand, T. B. Britton, and A. J. Wilkinson, “Growth of {11-22} twins in titanium: A combined experimental and modelling investigation of the local state of deformation,” Acta Mater., vol. 126, pp. 221–235, Mar. 2017, doi: 10.1016/j.actamat.2016.12.066.

[79] Y. Guo, J. Schwiedrzik, J. Michler, and X. Maeder, “On the nucleation and growth of {11-22} twin in commercial purity titanium: In situ investigation of the local stress field and dislocation density distribution,” Acta Mater., vol. 120, pp. 292–301, Nov. 2016, doi: 10.1016/j.actamat.2016.08.073.

[80] H. Li, X. Xu, Q. Sun, X. Zhang, X. Fang, and M. Zhu, “Investigation of interfacial feature and interactional behavior of {11-22} twin in deformed titanium,” J. Alloys Compd., vol. 788, pp. 1137–1145, Jun. 2019, doi: 10.1016/j.jallcom.2019.02.309.

[81] B. Li, “Shear and shuffle in twinning in titanium,” J. Mater. Res., vol. 30, no. 24, pp. 3795–3802, Dec. 2015, doi: 10.1557/jmr.2015.371.

[82] Z. Zeng, Y. Zhang, and S. Jonsson, “Deformation behaviour of commercially pure titanium during simple hot compression,” Mater. Des., vol. 30, no. 8, pp. 3105–3111, Sep. 2009, doi: 10.1016/j.matdes.2008.12.002.

[83] Z. Zeng, Y. Zhang, and S. Jonsson, “Microstructure and texture evolution of commercial pure titanium deformed at elevated temperatures,” Mater. Sci. Eng. A, vol. 513–514, pp. 83–90, Jul. 2009, doi: 10.1016/j.msea.2009.01.065.

[84] Z. Zeng, S. Jonsson, and H. J. Roven, “The effects of deformation conditions on microstructure and texture of commercially pure Ti,” Acta Mater., vol. 57, no. 19, pp. 5822–5833, Nov. 2009, doi: 10.1016/j.actamat.2009.08.016.

[85] Horita Z., “Production of Ultrafine-Grained Structures Using Equal-Channel Angular Pressing,” J. Jpn. Weld. Soc., vol. 74, no. 2, pp. 88–91, 2005, doi: 10.2207/qjjws1943.74.88.

[86] I. Kim, J. Kim, D. H. Shin, X. Z. Liao, and Y. T. Zhu, “Deformation twins in pure titanium processed by equal channel angular pressing,” Scr. Mater., vol. 48, no. 6, pp. 813–817, Mar. 2003, doi: 10.1016/S1359-6462(02)00513-4.

[87] Y. Xirong, Z. Xicheng, and F. Wenjie, “Deformed Microstructures and Mechanical Properties of CP-Ti Processed by Multi-Pass ECAP at Room Temperature,” Rare Met. Mater. Eng., vol. 38, no. 6, pp. 955–957, Jun. 2009, doi: 10.1016/S1875- 5372(10)60039-2.

[88] I. Kim, J. Kim, D. H. Shin, C. S. Lee, and S. K. Hwang, “Effects of equal channel angular pressing temperature on deformation structures of pure Ti,” Mater. Sci. Eng. A, vol. 342, no. 1–2, pp. 302–310, Feb. 2003, doi: 10.1016/S0921-5093(02)00318-0.

[89] Y. J. Li, Y. J. Chen, J. C. Walmsley, R. H. Mathinsen, S. Dumoulin, and H. J. Roven, “Faceted interfacial structure of {10-11} twins in Ti formed during equal channel angular pressing,” Scr. Mater., vol. 62, no. 7, pp. 443–446, Apr. 2010, doi: 10.1016/j.scriptamat.2009.11.039.

[90] X. Zhao, W. Fu, X. Yang, and T. G. Langdon, “Microstructure and properties of pure titanium processed by equal-channel angular pressing at room temperature,” Scr. Mater., vol. 59, no. 5, pp. 542–545, Sep. 2008, doi: 10.1016/j.scriptamat.2008.05.001.

[91] D. H. Shin, I. Kim, J. Kim, Y. S. Kim, and S. L. Semiatin, “Microstructure development during equal-channel angular pressing of titanium,” Acta Mater., vol. 51, no. 4, pp. 983–996, Feb. 2003, doi: 10.1016/S1359-6454(02)00501-3.

[92] Y. J. Chen, Y. J. Li, X. J. Xu, J. Hjelen, and H. J. Roven, “Novel deformation structures of pure titanium induced by room temperature equal channel angular pressing,” Mater. Lett., vol. 117, pp. 195–198, Feb. 2014, doi: 10.1016/j.matlet.2013.11.111.

[93] C. Cayron, “Hard-sphere displacive model of deformation twinning in hexagonal close- packed metals. Revisiting the case of the (56°, a ) contraction twins in magnesium,” Acta Crystallogr. Sect. Found. Adv., vol. 73, no. 4, pp. 346–356, Jul. 2017, doi: 10.1107/S2053273317005459.

[94] H. Okamoto, Phase Diagrams for Binary Alloys. Materials Park, OH: ASM International, 2000.

[95] Suzuki S., “Basics of EBSD Method and its Latest Progress,” J. Smart Process., vol. 9, no. 1, pp. 20–27, 2019, doi: 10.7791/jspmee.9.20.

[96] Y. Hirose and K. Fukumoto, “Evaluation and Analysis Technique Using TEM,” J. Surf. Finish. Soc. Jpn., vol. 54, no. 1, pp. 21–25, 2003, doi: 10.4139/sfj.54.21.

[97] P. Thompson, D. E. Cox, and J. B. Hastings, “Rietveld refinement of Debye–Scherrer synchrotron X-ray data from Al 2 O 3,” J. Appl. Crystallogr., vol. 20, no. 2, pp. 79–83, Apr. 1987, doi: 10.1107/S0021889887087090.

[98] H. M. Rietveld, “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr., vol. 2, no. 2, pp. 65–71, Jun. 1969, doi: 10.1107/S0021889869006558.

[99] T. Ungár and A. Borbély, “The effect of dislocation contrast on x‐ray line broadening: A new approach to line profile analysis,” Appl. Phys. Lett., vol. 69, no. 21, pp. 3173– 3175, Nov. 1996, doi: 10.1063/1.117951.

[100] T. Ungár, J. Gubicza, G. Ribárik, and A. Borbély, “Crystallite size distribution and dislocation structure determined by diffraction profile analysis: principles and practical application to cubic and hexagonal crystals,” J. Appl. Crystallogr., vol. 34, no. 3, pp. 298–310, Jun. 2001, doi: 10.1107/S0021889801003715.

[101] G. K. Williamson and W. H. Hall, “X-ray line broadening from filed aluminium and wolfram,” Acta Metall., vol. 1, no. 1, pp. 22–31, Jan. 1953, doi: 10.1016/0001- 6160(53)90006-6.

[102] B. E. Warren and B. L. Averbach, “The Effect of Cold‐Work Distortion on X‐Ray Patterns,” J. Appl. Phys., vol. 21, no. 6, pp. 595–599, Jun. 1950, doi: 10.1063/1.1699713.

[103] T. H. Simm, “Peak Broadening Anisotropy and the Contrast Factor in Metal Alloys,” Crystals, vol. 8, no. 5, Art. no. 5, May 2018, doi: 10.3390/cryst8050212.

[104] T. Shintani, Y. Murata, Y. Terada, and M. Morinaga, “Evaluation of Dislocation Density in a Mg-Al-Mn-Ca Alloy Determined by X-ray Diffractometry and Transmission Electron Microscopy,” Mater. Trans., vol. 51, no. 6, pp. 1067–1071, 2010, doi: 10.2320/matertrans.M2010021.

[105] I. C. Dragomir and T. Ungár, “Contrast factors of dislocations in the hexagonal crystal system,” J. Appl. Crystallogr., vol. 35, no. 5, Art. no. 5, Oct. 2002, doi: 10.1107/S0021889802009536.

[106] A. A. Salem, S. R. Kalidindi, and R. D. Doherty, “Strain hardening of titanium: role of deformation twinning,” Acta Mater., vol. 51, no. 14, pp. 4225–4237, Aug. 2003, doi: 10.1016/S1359-6454(03)00239-8.

[107] E. O. Hall, “The Deformation and Ageing of Mild Steel: III Discussion of Results,” Proc. Phys. Soc. Sect. B, vol. 64, no. 9, pp. 747–753, Sep. 1951, doi: 10.1088/0370- 1301/64/9/303.

[108] N. J. Petch, “The Cleavage Strength of Polycrystals,” J. Iron Steel Inst., vol. 174, no. 1953, pp. 25–28.

[109] M. F. Ashby, “The deformation of plastically non-homogeneous materials,” Philos. Mag. J. Theor. Exp. Appl. Phys., vol. 21, no. 170, pp. 399–424, Feb. 1970, doi: 10.1080/14786437008238426.

[110] C. Lou, X. Zhang, and Y. Ren, “Non-Schmid-based {10-12} twinning behavior in polycrystalline magnesium alloy,” Mater. Charact., vol. 107, pp. 249–254, Sep. 2015, doi: 10.1016/j.matchar.2015.07.022.

[111] C. D. Barrett and H. El Kadiri, “The roles of grain boundary dislocations and disclinations in the nucleation of {102} twinning,” Acta Mater., vol. 63, pp. 1–15, Jan. 2014, doi: 10.1016/j.actamat.2013.09.012.

[112] L. Wang, Y. Yang, P. Eisenlohr, T. R. Bieler, M. A. Crimp, and D. E. Mason, “Twin Nucleation by Slip Transfer across Grain Boundaries in Commercial Purity Titanium,” Metall. Mater. Trans. A, vol. 41, no. 2, pp. 421–430, Feb. 2010, doi: 10.1007/s11661- 009-0097-6.

[113] X. Wang et al., “Nucleation and growth analysis of {10-12} extension twins in AZ31 magnesium alloy during in-situ tension,” J. Alloys Compd., vol. 817, p. 152967, Mar. 2020, doi: 10.1016/j.jallcom.2019.152967.

[114] W. Huang, Q. Huo, Z. Xiao, Z. Fang, A. Hashimoto, and X. Yang, “Identification and analysis of anomalous {10-12} twins in an extruded Mg-2wt%Y alloy sheet during uniaxial tensile loading,” Mater. Sci. Eng. A, vol. 792, p. 139699, Aug. 2020, doi: 10.1016/j.msea.2020.139699.

[115] K. D. Molodov, T. Al-Samman, D. A. Molodov, and G. Gottstein, “On the role of anomalous twinning in the plasticity of magnesium,” Acta Mater., vol. 103, pp. 711– 723, Jan. 2016, doi: 10.1016/j.actamat.2015.10.043.

[116] M. Arul Kumar, M. Wroński, R. J. McCabe, L. Capolungo, K. Wierzbanowski, and C. N. Tomé, “Role of microstructure on twin nucleation and growth in HCP titanium: A statistical study,” Acta Mater., vol. 148, pp. 123–132, Apr. 2018, doi: 10.1016/j.actamat.2018.01.041.

[117] T. Matsunaga, T. Kameyama, S. Ueda, and E. Sato, “Grain boundary sliding during ambient-temperature creep in hexagonal close-packed metals,” Philos. Mag., vol. 90, no. 30, pp. 4041–4054, Oct. 2010, doi: 10.1080/14786435.2010.502883.

[118] F. Dyment, “SELF AND SOLUTE DIFFUSION IN TITANIUM AND TITANIUM ALLOYS,” 1980, pp. 519–528.

[119] T. Matsunaga, T. Kameyama, K. Takahashi, and E. Sato, “Constitutive Relation for Ambient-Temperature Creep in Hexagonal Close-Packed Metals,” Mater. Trans., vol. 50, no. 12, pp. 2858–2864, 2009, doi: 10.2320/matertrans.M2009223.

[120] Y. Murayama, K. Obara, and K. Ikeda, “Effects of Deformation Twinning on the Deformation Behavior of Textured Titanium Sheets in Plane Strain Compressive Tests,” Mater. Trans. JIM, vol. 32, no. 9, pp. 854–861, 1991, doi: 10.2320/matertrans1989.32.854.

[121] Y. Murayama, K. Obara, and K. Ikeda, “Effect of Twinning on Deformation of Textured Commercially-Pure Ti Sheets under Plane Stress States,” Mater. Trans. JIM, vol. 34, no. 9, pp. 801–808, 1993, doi: 10.2320/matertrans1989.34.801.

[122] A. Fitzner et al., “The effect of aluminium on twinning in binary alpha-titanium,” Acta Mater., vol. 103, pp. 341–351, Jan. 2016, doi: 10.1016/j.actamat.2015.09.048.

[123] P. G. Oberson, Z. W. Wyatt, and S. Ankem, “Modeling interstitial diffusion controlled twinning in alpha titanium during low-temperature creep,” Scr. Mater., vol. 65, no. 7, pp. 638–641, Oct. 2011, doi: 10.1016/j.scriptamat.2011.06.049.

[124] Z. Liu and G. Welsch, “Literature Survey on Diffusivities of Oxygen, Aluminum, and Vanadium in Alpha Titanium, Beta Titanium, and in Rutile,” Metall. Trans. A, vol. 19, no. 4, pp. 1121–1125, Apr. 1988, doi: 10.1007/BF02628396.

[125] A. A. Salem, S. R. Kalidindi, R. D. Doherty, and S. L. Semiatin, “Strain hardening due to deformation twinning in α-titanium: Mechanisms,” Metall. Mater. Trans. A, vol. 37, no. 1, pp. 259–268, Jan. 2006, doi: 10.1007/s11661-006-0171-2.

[126] S. R. Kalidindi, A. A. Salem, and R. D. Doherty, “Role of Deformation Twinning on Strain Hardening in Cubic and Hexagonal Polycrystalline Metals,” Adv. Eng. Mater., vol. 5, no. 4, pp. 229–232, Apr. 2003, doi: 10.1002/adem.200300320.

[127] Z. S. Basinski, M. S. Szczerba, M. Niewczas, J. D. Embury, and S. J. Basinski, “The transformation of slipdislocations during twinning ofcopper-aluminum alloy crystals,” Rev. Métallurgie, vol. 94, no. 9, pp. 1037–1044, Sep. 1997, doi: 10.1051/metal/199794091037.

[128] B. M. Morrow, E. K. Cerreta, R. J. McCabe, and C. N. Tomé, “Transmission Electron Microscope In Situ Straining Technique to Directly Observe Defects and Interfaces During Deformation in Magnesium,” JOM, vol. 67, no. 8, pp. 1721–1728, Aug. 2015, doi: 10.1007/s11837-015-1432-6.

[129] H. El Kadiri and A. L. Oppedal, “A crystal plasticity theory for latent hardening by glide twinning through dislocation transmutation and twin accommodation effects,” J. Mech. Phys. Solids, vol. 58, no. 4, pp. 613–624, Apr. 2010, doi: 10.1016/j.jmps.2009.12.004.

[130] M. Battaini, E. V. Pereloma, and C. H. J. Davies, “Orientation Effect on Mechanical Properties of Commercially Pure Titanium at Room Temperature,” Metall. Mater. Trans. A, vol. 38, no. 2, pp. 276–285, Mar. 2007, doi: 10.1007/s11661-006-9040-2.

[131] A. Fitzner, J. Palmer, B. Gardner, M. Thomas, M. Preuss, and J. Q. da Fonseca, “On the work hardening of titanium: new insights from nanoindentation,” J. Mater. Sci., vol. 54, no. 10, pp. 7961–7974, May 2019, doi: 10.1007/s10853-019-03431-w.

[132] G. Proust, C. N. Tomé, and G. C. Kaschner, “Modeling texture, twinning and hardening evolution during deformation of hexagonal materials,” Acta Mater., vol. 55, no. 6, pp. 2137–2148, Apr. 2007, doi: 10.1016/j.actamat.2006.11.017.

[133] A. L. Oppedal et al., “Effect of dislocation transmutation on modeling hardening mechanisms by twinning in magnesium,” Int. J. Plast., vol. 30–31, pp. 41–61, Mar. 2012, doi: 10.1016/j.ijplas.2011.09.002.

[134] G. I. Taylor, “Plastic strain in metals,” J Inst Met., vol. 62, p. 3077324, 1938.

[135] S. R. Kalidindi, “Incorporation of deformation twinning in crystal plasticity models,” J. Mech. Phys. Solids, vol. 46, no. 2, pp. 267–290, Feb. 1998, doi: 10.1016/S0022-5096(97)00051-3.

[136] S. R. Kalidindi, “Modeling anisotropic strain hardening and deformation textures in low stacking fault energy fcc metals,” Int. J. Plast., vol. 17, no. 6, pp. 837–860, Jul. 2001, doi: 10.1016/S0749-6419(00)00071-1.

[137] S. Gao, M. Chen, M. Joshi, A. Shibata, and N. Tsuji, “Yielding behavior and its effect on uniform elongation in IF steel with various grain sizes,” J. Mater. Sci., vol. 49, no. 19, pp. 6536–6542, Oct. 2014, doi: 10.1007/s10853-014-8233-0.

[138] N. Kamikawa, X. Huang, N. Tsuji, and N. Hansen, “Strengthening mechanisms in nanostructured high-purity aluminium deformed to high strain and annealed,” Acta Mater., vol. 57, no. 14, pp. 4198–4208, Aug. 2009, doi: 10.1016/j.actamat.2009.05.017.

[139] C. Y. Yu, P. W. Kao, and C. P. Chang, “Transition of tensile deformation behaviors in ultrafine-grained aluminum,” Acta Mater., vol. 53, no. 15, pp. 4019–4028, Sep. 2005, doi: 10.1016/j.actamat.2005.05.005.

[140] J. H. Hollomon, “Tensile Deformation,” Trans AIME, vol. 162, pp. 268–290, 1945.

[141] K. Wei et al., “Grain size effect on tensile properties and slip systems of pure magnesium,” Acta Mater., vol. 206, p. 116604, Mar. 2021, doi: 10.1016/j.actamat.2020.116604.

[142] J. E. Bailey and P. B. Hirsch, “The dislocation distribution, flow stress, and stored energy in cold-worked polycrystalline silver,” Philos. Mag., vol. 5, no. 53, pp. 485–497, May 1960, doi: 10.1080/14786436008238300.

[143] Y. Tanaka, S. Takaki, T. Tsuchiyama, and R. Uemori, “Effect of Grain Size on the Yield Stress of Cold Worked Iron,” ISIJ Int., vol. 58, no. 10, pp. 1927–1933, Oct. 2018, doi: 10.2355/isijinternational.ISIJINT-2018-371.

[144] H. Conrad, S. Feuerstein, and L. Rice, “Effects of grain size on the dislocation density and flow stress of niobium,” Mater. Sci. Eng., vol. 2, no. 3, pp. 157–168, Sep. 1967, doi: 10.1016/0025-5416(67)90032-8.

[145] Y. Tomota, P. Lukáš, D. Neov, S. Harjo, and Y. R. Abe, “In situ neutron diffraction during tensile deformation of a ferrite-cementite steel,” Acta Mater., vol. 51, no. 3, pp. 805–817, Feb. 2003, doi: 10.1016/S1359-6454(02)00472-X.

[146] S. Harjo et al., “In situ neutron diffraction study of α–γ Fe–Cr–Ni alloys under tensile deformation,” Acta Mater., vol. 49, no. 13, pp. 2471–2479, Aug. 2001, doi: 10.1016/S1359-6454(01)00147-1.

[147] M. Arul Kumar, A. K. Kanjarla, S. R. Niezgoda, R. A. Lebensohn, and C. N. Tomé, “Numerical study of the stress state of a deformation twin in magnesium,” Acta Mater., vol. 84, pp. 349–358, Feb. 2015, doi: 10.1016/j.actamat.2014.10.048.

[148] C. C. Aydıner, J. V. Bernier, B. Clausen, U. Lienert, C. N. Tomé, and D. W. Brown, “Evolution of stress in individual grains and twins in a magnesium alloy aggregate,” Phys. Rev. B, vol. 80, no. 2, p. 024113, Jul. 2009, doi: 10.1103/PhysRevB.80.024113.

[149] T. Y. Tsui, W. C. Oliver, and G. M. Pharr, “Influences of stress on the measurement of mechanical properties using nanoindentation: Part I. Experimental studies in an aluminum alloy,” J. Mater. Res., vol. 11, no. 3, pp. 752–759, Mar. 1996, doi: 10.1557/JMR.1996.0091.

[150] Y. Kawabe and S. Muneki, “Strengthening and Toughening of Titanium Alloys.,” ISIJ Int., vol. 31, no. 8, pp. 785–791, 1991, doi: 10.2355/isijinternational.31.785.

[151] T. Furuhara, T. Maki, and T. Makino, “Microstructure control by thermomechanical processing in β-Ti–15–3 alloy,” J. Mater. Process. Technol., vol. 117, no. 3, pp. 318– 323, Nov. 2001, doi: 10.1016/S0924-0136(01)00790-7.

[152] O. M. Ivasishin, P. E. Markovsky, Yu. V. Matviychuk, S. L. Semiatin, C. H. Ward, and S. Fox, “A comparative study of the mechanical properties of high-strength β-titanium alloys,” J. Alloys Compd., vol. 457, no. 1–2, pp. 296–309, Jun. 2008, doi: 10.1016/j.jallcom.2007.03.070.

[153] G. Lütjering and S. Weissmann, “Mechanical properties and structure of age-hardened Ti-Cu alloys,” Metall. Trans., vol. 1, no. 6, pp. 1641–1649, Jun. 1970, doi: 10.1007/BF02642011.

[154] M. Takahashi, M. Kikuchi, Y. Takada, and O. Okuno, “Mechanical Properties and Microstructures of Dental Cast Ti-Ag and Ti-Cu Alloys.,” Dent. Mater. J., vol. 21, no. 3, pp. 270–280, 2002, doi: 10.4012/dmj.21.270.

[155] Z. Y. Song et al., “Age hardening and its modeling of Ti–2.5Cualloy,” Mater. Sci. Eng. A, vol. 568, pp. 118–122, Apr. 2013, doi: 10.1016/j.msea.2013.01.003.

[156] F. F. Cardoso, A. Cremasco, R. J. Contieri, E. S. N. Lopes, C. R. M. Afonso, and R. Caram, “Hexagonal martensite decomposition and phase precipitation in Ti–Cu alloys,” Mater. Des., vol. 32, no. 8–9, pp. 4608–4613, Sep. 2011, doi: 10.1016/j.matdes.2011.03.040.

[157] J. C. Williams, R. Taggart, and D. H. Polonis, “An electron microscopy study of modes of intermetallic precipitation in Ti-Cu alloys,” Metall. Trans., vol. 2, no. 4, pp. 1139– 1148, Apr. 1971, doi: 10.1007/BF02664246.

[158] S. Nourbakhsh and J. J. Crowther, “Twin-precipitate interaction in Ti-1wt%Cu,” Acta Metall., vol. 33, no. 7, pp. 1187–1193, Jul. 1985, doi: 10.1016/0001-6160(85)90229-9.

[159] P. A. Blenkinsop and R. E. Goosey, The Science, Technology and Application of Titanium. Oxford: Pergamon Press, 1970.

[160] R. I. Jaffee, “The physical metallurgy of titanium alloys,” Prog. Met. Phys., vol. 7, pp. 65–163, Jan. 1958, doi: 10.1016/0502-8205(58)90004-2.

[161] S. J. Pennycook and P. D. Nellist, Scanning Transmission Electron Microscopy. New York: Springer, 2011.

[162] R. Monzen, T. Seo, T. Sakai, and C. Watanabe, “Precipitation Processes in a Cu&ndash;0.9 mass% Be Single Crystal,” Mater. Trans., vol. 47, no. 12, pp. 2925–2934, 2006, doi: 10.2320/matertrans.47.2925.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る