リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Novel properties of the optical conductivity due to electric-dipole-induced magnetic transitions in the Hubbard model」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Novel properties of the optical conductivity due to electric-dipole-induced magnetic transitions in the Hubbard model

Bolens, Adrien-Isaac 東京大学 DOI:10.15083/0002001518

2021.09.08

概要

In this thesis, we study the electron spin resonance (ESR) induced by an AC electric field in the Hubbard model, and its effects on the optical conductivity. The weakly correlated and strongly correlated regimes are both considered, but with different approaches which effectively split the thesis into two parts.
 In the weak coupling regime, the electric dipole moment is described in terms of the current j of nearly free electrons. In the Hubbard model, the operator is written as a hopping operator between neighboring sites, as shown in Figure 1, in terms of the electron creation (annihilation) operators c† (ci,α) with spin α and position ri. A spin-dependent hopping tαβ can result in electric-dipole-induced spin-flip transitions.
 In contrast, in the Mott insulating phase of the Hubbard model, the electrons are localized at each site due to the Coulomb repulsion U. Treating t as a perturbation, effective magnetic interactions emerge from virtual hopping of the electrons to neighboring sites. In addition, a finite local electric polarization operator P can emerge even at low energies, i.e., with matrix elements between magnetic states in the low-energy manifold. The resulting effective operator Peff, written in terms of local spin operators, scales as tn/Un for virtual hopping around loops of n sites. This magnetoelectric (ME) effect results in intricate electric-dipole-induced magnetic transitions in the effective spin model, below the optical gap. Besides, we also consider the ME effect originating form the overlap of the electronic wave functions on neighboring sites.
 In both limits, spin-orbit coupling (SOC), which explicitly couples the spin of the electrons to their motional degree of freedom, plays a central role.

 The first chapter introduces the motivation for the research and the outline of the main contributions of the thesis. In this thesis, we extensively consider the coupling of the spin and charge degrees of freedom of electrons in the Hubbard model, and how it affects the optical conductivity through electric-dipole-induced magnetic transitions.

 In Chapter 2, we first investigate spin-flip transitions in one-dimensional (1D) and two- dimensional (2D) tight-binding models, in the non-interacting limit. The synergetic effect of strong SOC and Zeeman splitting (ZS) on the spin resonance is studied using the Kubo formula. With both SOC and ZS, the spin flip can be induced by an AC electric field: the so-called electric dipole spin resonance (EDSR). The resulting contribution to the optical conductivity is analyzed analytically. We show that the electromagnetic absorption spectrum is considerably influenced by the interplay of SOC and ZS, and depends on the relative angle between the SOC vector and the magnetic field direction. In particular, the EDSR is dominant over the traditional magnetic-dipole-induced ESR. Additionally, the spectrum depends on the lattice, the band structure, and the Fermi energy. In 2D systems, we show that the resonance spectrum becomes continuous with unexpected Van Hove-like singularities.
 The effect of the Coulomb repulsion U on the spin resonance is also studied numerically in the 1D model. We find that at half-filling, the resonance is first enhanced for small U but vanishes when the optical gap becomes larger than the kinetic hopping amplitude t.
 In the U → ∞ limit of the same model at half-filling, we also investigate the resonance between the lower and upper Hubbard bands appearing at ℏω ∼ U, above the optical gap. A large magnetic field tends to suppress the resonance while it is recovered thanks to SOC depending on the relative angle of the magnetic field.

 In the second part of the thesis, we study the low-energy electric-dipole-induced magnetic transitions in the Mott insulating phase, below the optical gap. By treating the inter-site hopping as a perturbation, we show in Chapter 3 how the electric polarization operator can have non-trivial matrix elements between different low-energy magnetic states through vir- tual hopping of the electrons. This effective spin-polarization coupling is generally allowed in trimers for the single-band Hubbard model. In addition, we exhaustively derive the possible two-spin effective polarization operators emerging from spin-dependent hopping.

 Motivated by terahertz spectroscopy measurements in α-RuCl3, a so-called Kitaev mate- rial, multi-orbital Hubbard models are then considered. In Chapter 4, we develop a theory for electronic ME effects in Mott insulators of d5 transition metal ions in an octahedral crystal field. For 4d and 5d compounds, the extended orbitals favor charge fluctuations of the local- ized electrons to neighboring ions and a significant ME effect from electronic mechanisms is expected. The electric polarization originating from two-spin operators on bonds of nearest- neighbor magnetic sites is considered. The allowed coupling is first derived using a symmetry approach. Then, the effective polarization operator in the ground state manifold is evaluated using perturbation theory. We show in particular that the involved lattice structure of Kitaev materials results in a new type of electronic ME coupling.

 Finally, in Chapter 5 we calculate the optical conductivity of ideal Kitaev materials origi- nating from the derived ME coupling. Using exact analytical results of the Kitaev honeycomb spin model, we calculate the continuous terahertz spectrum of the quantum spin liquid orig- inating from Majorana excitations.

参考文献

[1] F. Bloch. Nuclear Induction. Phys. Rev., 70:460–474, Oct 1946.

[2] F. Bloch, W. W. Hansen, and M. Packard. The Nuclear Induction Experiment. Phys. Rev., 70:474–485, Oct 1946.

[3] E. M. Purcell, H. C. Torrey, and R. V. Pound. Resonance Absorption by Nuclear Magnetic Moments in a Solid. Phys. Rev., 69:37–38, Jan 1946.

[4] E. Zavoisky. Spin-magnetic resonance in paramagnetics. Fizicheski˘ı Zhurnal, 9:211–245, 1945.

[5] S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnár, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger. Spintronics: A Spin- Based Electronics Vision for the Future. Science, 294(5546):1488–1495, 2001.

[6] I. Žutic´, J. Fabian, and S. Das Sarma. Spintronics: Fundamentals and applica- tions. Rev. Mod. Phys., 76:323–410, Apr 2004.

[7] J. Fabian, A. Matos-Abiague, C. Ertler, P. Stano, and I. Zutic. Semiconductor spintronics. Acta Phys. Slovaca, 57:565, 2007.

[8] A. Fert. Nobel Lecture: Origin, development, and future of spintronics. Rev. Mod. Phys., 80:1517–1530, Dec 2008.

[9] M. N. Baibich, J. M. Broto, A. Fert, F. N. Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas. Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices. Phys. Rev. Lett., 61:2472–2475, Nov 1988.

[10] G. Binasch, P. Grünberg, F. Saurenbach, and W. Zinn. Enhanced magnetore- sistance in layered magnetic structures with antiferromagnetic interlayer ex- change. Phys. Rev. B, 39:4828–4830, Mar 1989.

[11] E. I. Rashba. Properties of semiconductors with an extremum loop. 1. Cy- clotron and combinational resonance in a magnetic field perpendicular to the plane of the loop. Sov. Phys. Solid State, 2(6):1109–1122, 1960.

[12] M. Fiebig. Revival of the magnetoelectric effect. Journal of Physics D: Applied Physics, 38(8):R123, 2005.

[13] P. Curie. Sur la symétrie dans les phénomènes physiques, symétrie d’un champ électrique et d’un champ magnétique. J. Phys., 3(1):393–415, 1894.

[14] L. D. Landau and E. M. Lifshitz. Electrodynamics of continuous media. 1960.

[15] I. Dzyaloshinskii. On the magneto-electrical effects in antiferromagnets. Soviet Physics JETP, 10:628–629, 1960.

[16] M. Date, J. Kanamori, and M. Tachiki. Origin of magnetoelectric effect in Cr2O3. J. Phys. Soc. Jpn., 16(12):2589–2589, 1961.

[17] G. T. Rado and V. J. Folen. Observation of the Magnetically Induced Magne- toelectric Effect and Evidence for Antiferromagnetic Domains. Phys. Rev. Lett., 7:310–311, Oct 1961.

[18] T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T.-h. Arima, and Y. Tokura. Mag- netic control of ferroelectric polarization. nature, 426(6962):55, 2003.

[19] J. Wang, J. Neaton, H. Zheng, V. Nagarajan, S. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. Schlom, U. Waghmare, et al. Epitaxial BiFeO3 multifer- roic thin film heterostructures. science, 299(5613):1719–1722, 2003.

[20] N. Hur, S. Park, P. Sharma, J. Ahn, S. Guha, and S. Cheong. Electric polar- ization reversal and memory in a multiferroic material induced by magnetic fields. Nature, 429(6990):392, 2004.

[21] W. Eerenstein, N. Mathur, and J. F. Scott. Multiferroic and magnetoelectric materials. nature, 442(7104):759, 2006.

[22] S.-W. Cheong and M. Mostovoy. Multiferroics: a magnetic twist for ferroelec- tricity. Nature materials, 6(1):13, 2007.

[23] D. Khomskii. Trend: Classifying multiferroics: Mechanisms and effects. Physics, 2:20, 2009.

[24] Y. Tokura, S. Seki, and N. Nagaosa. Multiferroics of spin origin. Rep. Prog. Phys., 77(7):076501, 2014.

[25] Y. Wang, J. Hu, Y. Lin, and C.-W. Nan. Multiferroic magnetoelectric composite nanostructures. Npg Asia Materials, 2:61 EP –, 04 2010.

[26] T.-K. Ng and P. A. Lee. Power-Law Conductivity inside the Mott Gap: Appli- cation to κ-(BEDT-TTF)2Cu2(CN)3. Phys. Rev. Lett., 99(15):156402, 2007.

[27] A. C. Potter, T. Senthil, and P. A. Lee. Mechanisms for sub-gap optical conduc- tivity in Herbertsmithite. Phys. Rev. B, 87(24):245106, 2013.

[28] S. Elsässer, D. Wu, M. Dressel, and J. A. Schlueter. Power-law dependence of the optical conductivity observed in the quantum spin-liquid compound κ-(BEDT-TTF)2Cu2(CN)3. Phys. Rev. B, 86(15):155150, 2012.

[29] D. V. Pilon, C. H. Lui, T.-H. Han, D. Shrekenhamer, A. J. Frenzel, W. J. Padilla, Y. S. Lee, and N. Gedik. Spin-induced optical conductivity in the spin-liquid candidate Herbertsmithite. Phys. Rev. Lett., 111(12):127401, 2013.

[30] C. Wellm, J. Zeisner, A. Alfonsov, A. Wolter, M. Roslova, A. Isaeva, T. Do- ert, M. Vojta, B. Büchner, and V. Kataev. Signatures of low-energy fraction- alized excitations in α-RuCl3 from field-dependent microwave absorption. arXiv:1710.00670, 2017.

[31] A. Little, L. Wu, P. Lampen-Kelley, A. Banerjee, S. Patankar, D. Rees, C. A. Bridges, J.-Q. Yan, D. Mandrus, S. E. Nagler, and J. Orenstein. Antiferro- magnetic Resonance and Terahertz Continuum in α-RuCl3. Phys. Rev. Lett., 119:227201, Nov 2017.

[32] Z. Wang, S. Reschke, D. Hüvonen, S.-H. Do, K.-Y. Choi, M. Gensch, U. Nagel, T. Rõõm, and A. Loidl. Magnetic Excitations and Continuum of a Possibly Field-Induced Quantum Spin Liquid in α-RuCl3. Phys. Rev. Lett., 119:227202, Nov 2017.

[33] S. Reschke, F. Mayr, S. Widmann, H.-A. K. von Nidda, V. Tsurkan, M. Eremin, S.-H. Do, K.-Y. Choi, Z. Wang, and A. Loidl. Sub-gap optical response across the structural phase transition in van der Waals layered α-RuCl3. arXiv:1803.04887, 2018.

[34] L. Shi, Y. Liu, T. Lin, M. Zhang, S. Zhang, L. Wang, Y. Shi, T. Dong, and N. Wang. Field induced magnon excitation and in gap absorption of Kitaev candidate RuCl3. arXiv:1803.08398, 2018.

[35] A. Kitaev. Anyons in an exactly solved model and beyond. Ann. Phys. (Berlin), 321(1):2–111, 2006.

[36] E. Rashba and V. Sheka. Combinational resonance of zonal electrons in crystals having a zinc blende lattice. Sov. Phys. Solid State, 3(6):1257–1267, 1961.

[37] E. Rashba and V. Sheka. Landau Level Spectroscopy. Elsevier, New York, 1991.

[38] O. A. Tretiakov, K. S. Tikhonov, and V. L. Pokrovsky. Spin resonance in a Luttinger liquid with spin-orbit interaction. Phys. Rev. B, 88(12):125143, 2013.

[39] A. Bolens, H. Katsura, M. Ogata, and S. Miyashita. Synergetic effect of spin- orbit coupling and Zeeman splitting on the optical conductivity in the one- dimensional Hubbard model. Phys. Rev. B, 95:235115, Jun 2017.

[40] L. N. Bulaevskii, C. D. Batista, M. V. Mostovoy, and D. I. Khomskii. Electronic orbital currents and polarization in Mott insulators. Phys. Rev. B, 78(2):024402, 2008.

[41] A. Bolens. Theory of electronic magnetoelectric coupling in d5 Mott insulators. arXiv:1805.02488, 2018.

[42] G. Baskaran, S. Mandal, and R. Shankar. Exact results for spin dynamics and fractionalization in the Kitaev model. Phys. Rev. Lett., 98(24):247201, 2007.

[43] J. Knolle, G.-W. Chern, D. L. Kovrizhin, R. Moessner, and N. B. Perkins. Raman scattering signatures of Kitaev spin liquids in A2IrO3 iridates with A= Na or Li. Phys. Rev. Lett., 113(18):187201, 2014.

[44] J. Knolle, D. L. Kovrizhin, J. T. Chalker, and R. Moessner. Dynamics of a two- dimensional quantum spin liquid: signatures of emergent Majorana fermions and fluxes. Phys. Rev. Lett., 112(20):207203, 2014.

[45] J. Knolle, D. L. Kovrizhin, J. T. Chalker, and R. Moessner. Dynamics of frac- tionalization in quantum spin liquids. Phys. Rev. B, 92(11):115127, 2015.

[46] X.-Y. Song, Y.-Z. You, and L. Balents. Low-energy spin dynamics of the hon- eycomb spin liquid beyond the Kitaev limit. Phys. Rev. Lett., 117(3):037209, 2016.

[47] J. Knolle. Dynamics of a Quantum Spin Liquid. Springer, Cham, 2016.

[48] G. B. Halász, N. B. Perkins, and J. van den Brink. Resonant inelastic X- ray scattering response of the Kitaev honeycomb model. Phys. Rev. Lett., 117(12):127203, 2016.

[49] G. Jackeli and G. Khaliullin. Mott insulators in the strong spin-orbit coupling limit: from Heisenberg to a quantum compass and Kitaev models. Phys. Rev. Lett., 102(1):017205, 2009.

[50] X. Liu, T. Berlijn, W.-G. Yin, W. Ku, A. Tsvelik, Y.-J. Kim, H. Gretarsson, Y. Singh, P. Gegenwart, and J. P. Hill. Long-range magnetic ordering in Na2IrO3. Phys. Rev. B, 83(22):220403, 2011.

[51] S. K. Choi, R. Coldea, A. N. Kolmogorov, T. Lancaster, I. I. Mazin, S. J. Blundell, P. G. Radaelli, Y. Singh, P. Gegenwart, K. R. Choi, S. W. Cheong, P. J. Baker, C. Stock, and J. Taylor. Spin waves and revised crystal structure of honeycomb iridate Na2IrO3. Phys. Rev. Lett., 108(12):127204, 2012.

[52] F. Ye, S. Chi, H. Cao, B. C. Chakoumakos, J. A. Fernandez-Baca, R. Custelcean, T. F. Qi, O. B. Korneta, and G. Cao. Direct evidence of a zigzag spin-chain structure in the honeycomb lattice: A neutron and x-ray diffraction investiga- tion of single-crystal Na2IrO3. Phys. Rev. B, 85(18):180403, 2012.

[53] R. D. Johnson, S. C. Williams, A. A. Haghighirad, J. Singleton, V. Zapf, P. Manuel, I. I. Mazin, Y. Li, H. O. Jeschke, R. Valenti, and R. Coldea. Mon- oclinic crystal structure of α-RuCl3 and the zigzag antiferromagnetic ground state. Phys. Rev. B, 92(23):235119, 2015.

[54] J. A. Sears, M. Songvilay, K. W. Plumb, J. P. Clancy, Y. Qiu, Y. Zhao, D. Parshall, and Y.-J. Kim. Magnetic order in α-RuCl3: A honeycomb-lattice quantum mag- net with strong spin-orbit coupling. Phys. Rev. B, 91(14):144420, 2015.

[55] H. B. Cao, A. Banerjee, J.-Q. Yan, C. A. Bridges, M. D. Lumsden, D. G. Man- drus, D. A. Tennant, B. C. Chakoumakos, and S. E. Nagler. Low-temperature crystal and magnetic structure of α-RuCl3. Phys. Rev. B, 93(13):134423, 2016.

[56] L. J. Sandilands, Y. Tian, K. W. Plumb, Y.-J. Kim, and K. S. Burch. Scattering Continuum and Possible Fractionalized Excitations in α-RuCl3. Phys. Rev. Lett., 114(14):147201, 2015.

[57] J. Nasu, J. Knolle, D. L. Kovrizhin, Y. Motome, and R. Moessner. Fermionic response from fractionalization in an insulating two-dimensional magnet. Nat. Phys., 12:912, 2016.

[58] A. Banerjee, C. Bridges, J.-Q. Yan, A. Aczel, L. Li, M. Stone, G. Granroth, M. Lumsden, Y. Yiu, J. Knolle, et al. Proximate Kitaev quantum spin liquid behaviour in a honeycomb magnet. Nature materials, 15(7):733, 2016.

[59] A. Banerjee, J. Yan, J. Knolle, C. A. Bridges, M. B. Stone, M. D. Lumsden, D. G. Mandrus, D. A. Tennant, R. Moessner, and S. E. Nagler. Neutron scattering in the proximate quantum spin liquid α-RuCl3. Science, 356(6342):1055–1059, 2017.

[60] Y. Kasahara, K. Sugii, T. Ohnishi, M. Shimozawa, M. Yamashita, N. Kurita, H. Tanaka, J. Nasu, Y. Motome, T. Shibauchi, and Y. Matsuda. Unusual Ther- mal Hall Effect in a Kitaev Spin Liquid Candidate α RuCl3. Phys. Rev. Lett., 120:217205, May 2018.

[61] R. Hentrich, M. Roslova, A. Isaeva, T. Doert, W. Brenig, B. Büchner, and C. Hess. Large Thermal Hall Effect in α-RuCl3: Evidence for Heat Transport by Kitaev-Heisenberg Paramagnons. arXiv:1803.08162, 2018.

[62] A. Bolens, H. Katsura, M. Ogata, and S. Miyashita. Mechanism for subgap op- tical conductivity in honeycomb Kitaev materials. Phys. Rev. B, 97(16):161108, 2018.

[63] R. Kubo. Statistical-Mechanical Theory of Irreversible Processes. I. General Theory and Simple Applications to Magnetic and Conduction Problems. J. Phys. Soc. Jpn., 12(6):570–586, 1957.

[64] D. Tong. Lectures on kinetic theory. Lecture notes available at http://www.damtp.cam.ac.uk/user/tong/kinetic.html, 2012.

[65] G. D. Mahan. Many-particle physics. Springer US, New York, 2013.

[66] B. S. Shastry and B. I. Shraiman. Theory of Raman scattering in Mott-Hubbard systems. Phys. Rev. Lett., 65:1068–1071, Aug 1990.

[67] A. Agarwal, S. Chesi, T. Jungwirth, J. Sinova, G. Vignale, and M. Polini. Plas- mon mass and Drude weight in strongly spin-orbit-coupled two-dimensional electron gases. Phys. Rev. B, 83:115135, Mar 2011.

[68] W. Kohn. Theory of the Insulating State. Phys. Rev., 133:A171–A181, Jan 1964.

[69] D. J. Scalapino, S. R. White, and S. Zhang. Insulator, metal, or superconductor: The criteria. Phys. Rev. B, 47:7995–8007, Apr 1993.

[70] T. Giamarchi. Umklapp process and resistivity in one-dimensional fermion systems. Phys. Rev. B, 44(7):2905, 1991.

[71] T. Giamarchi and A. J. Millis. Conductivity of a Luttinger liquid. Phys. Rev. B, 46(15):9325, 1992.

[72] T. Giamarchi. Mott transition in one dimension. Physica B: Condensed Matter, 230-232:975–980, 1997.

[73] A. Shekhter, M. Khodas, and A. M. Finkel’stein. Chiral spin resonance and spin-Hall conductivity in the presence of the electron-electron interactions. Phys. Rev. B, 71(16):165329, 2005.

[74] M. Dresselhaus and M. Dresselhaus. Optical properties of solids. Proceedings of the International School of Physics "Enrico Fermi", 1966.

[75] E. Jeckelmann, F. Gebhard, and F. H. L. Essler. Optical conductivity of the half-filled Hubbard chain. Phys. Rev. Lett., 85(18):3910, 2000.

[76] E. Jeckelmann. Dynamical density-matrix renormalization-group method. Phys. Rev. B, 66(4):045114, 2002.

[77] D. Controzzi, F. H. L. Essler, and A. M. Tsvelik. Optical conductivity of one- dimensional Mott insulators. Phys. Rev. Lett., 86(4):680, 2001.

[78] F. H. L. Essler, F. Gebhard, and E. Jeckelmann. Excitons in one-dimensional Mott insulators. Phys. Rev. B, 64(12):125119, 2001.

[79] A. Ovchinnikov. Excitation spectrum in the one-dimensional Hubbard model. Zh. Eksp. Teor. Fiz., 57:2137, 1969. [Sov. Phys. JETP 30, 1160 (1970)].

[80] A. Pustogow, Y. Li, I. Voloshenko, P. Puphal, C. Krellner, I. I. Mazin, M. Dres- sel, and R. Valentí. Nature of optical excitations in the frustrated kagome com- pound herbertsmithite. Phys. Rev. B, 96:241114, Dec 2017.

[81] Yu. A. Bychkov and E. I. Rashba. Properties of a 2D electron gas with lifted spectral degeneracy. JETP Lett., 39(2):78, 1984.

[82] G. Dresselhaus. Spin-orbit coupling effects in zinc blende structures. Phys. Rev., 100(2):580, 1955.

[83] I. Dzyaloshinsky. A thermodynamic theory of “weak” ferromagnetism of an- tiferromagnetics. Journal of Physics and Chemistry of Solids, 4(4):241–255, 1958.

[84] T. Moriya. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev., 120(1):91, 1960.

[85] N. Hatano, R. Shirasaki, and H. Nakamura. Non-Abelian gauge field theory of the spin-orbit interaction and a perfect spin filter. Phys. Rev. A, 75(3):032107, 2007.

[86] Y. Aharonov and A. Casher. Topological quantum effects for neutral particles. Phys. Rev. Lett., 53(4):319, 1984.

[87] W. Witczak-Krempa, G. Chen, Y. B. Kim, and L. Balents. Correlated Quan- tum Phenomena in the Strong Spin-Orbit Regime. Annual Review of Condensed Matter Physics, 5(1):57–82, 2014.

[88] J. G. Rau, E. K.-H. Lee, and H.-Y. Kee. Spin-Orbit Physics Giving Rise to Novel Phases in Correlated Systems: Iridates and Related Materials. Annual Review of Condensed Matter Physics, 7(1):195–221, 2016.

[89] R. Schaffer, E. K.-H. Lee, B.-J. Yang, and Y. B. Kim. Recent progress on cor- related electron systems with strong spin–orbit coupling. Rep. Prog. Phys., 79(9):094504, 2016.

[90] S. V. Streltsov and D. I. Khomskii. Orbital physics in transition metal com- pounds: new trends. Physics-Uspekhi, 60(11):1121, 2017.

[91] R. L. Bell. Electric Dipole Spin Transitions in InSb. Phys. Rev. Lett., 9:52–54, Jul 1962.

[92] B. D. McCombe, S. G. Bishop, and R. Kaplan. Combined Resonance and Elec- tron g Values in InSb. Phys. Rev. Lett., 18:748–750, May 1967.

[93] B. D. McCombe and R. J. Wagner. Electric-Dipole-Excited Electron Spin Reso- nance in InSb. Phys. Rev. B, 4:1285–1288, Aug 1971.

[94] M. Oshikawa and I. Affleck. Electron spin resonance in S=1/2 antiferromag- netic chains. Phys. Rev. B, 65(13):134410, 2002.

[95] S. Maiti, M. Imran, and D. L. Maslov. Electron spin resonance in a two- dimensional Fermi liquid with spin-orbit coupling. Phys. Rev. B, 93(4):045134, 2016.

[96] E. I. Rashba and A. L. Efros. Orbital mechanisms of electron-spin manipulation by an electric field. Phys. Rev. Lett., 91(12):126405, 2003.

[97] A. L. Efros and E. I. Rashba. Theory of electric dipole spin resonance in a parabolic quantum well. Phys. Rev. B, 73(16):165325, 2006.

[98] A. Abanov, V. L. Pokrovsky, W. M. Saslow, and P. Zhou. Spin resonance in a quantum wire: Anomalous effects of an applied magnetic field. Phys. Rev. B, 85(8):085311, 2012.

[99] J. Sun, S. Gangadharaiah, and O. A. Starykh. Spin-Orbit-Induced Spin-Density Wave in a Quantum Wire. Phys. Rev. Lett., 98:126408, Mar 2007.

[100] S. Gangadharaiah, J. Sun, and O. A. Starykh. Spin-orbital effects in magnetized quantum wires and spin chains. Phys. Rev. B, 78(5):054436, 2008.

[101] C. Sun and V. L. Pokrovsky. Spin correlations in quantum wires. Phys. Rev. B, 91:161305, Apr 2015.

[102] T. Giamarchi. Quantum physics in one dimension, volume 121. Oxford university press, 2004.

[103] V. Gritsev, G. Japaridze, M. Pletyukhov, and D. Baeriswyl. Competing Effects of Interactions and Spin-Orbit Coupling in a Quantum Wire. Phys. Rev. Lett., 94:137207, Apr 2005.

[104] N. Mott. On metal-insulator transitions. Journal of Solid State Chemistry, 88(1):5–7, 1990.

[105] L. Magarill, A. Chaplik, and M. Éntin. Spin-plasmon oscillations of the two-dimensional electron gas. Journal of Experimental and Theoretical Physics, 92(1):153–158, 2001.

[106] E. G. Mishchenko and B. I. Halperin. Transport equations for a two- dimensional electron gas with spin-orbit interaction. Phys. Rev. B, 68(4):045317, 2003.

[107] A.-K. Farid and E. G. Mishchenko. Optical conductivity of a two-dimensional electron liquid with spin-orbit interaction. Phys. Rev. Lett., 97(9):096604, 2006.

[108] E. H. Lieb and F. Y. Wu. Absence of Mott transition in an exact solution of the short-range, one-band model in one dimension. Phys. Rev. Lett., 20(25):1445, 1968.

[109] P. Horsch and W. Stephan. Frequency-dependent conductivity of the one- dimensional Hubbard model at strong coupling. Phys. Rev. B, 48(14):10595, 1993.

[110] A. C. Tiegel, T. Veness, P. E. Dargel, A. Honecker, T. Pruschke, I. P. McCulloch, and F. H. L. Essler. Optical conductivity of the Hubbard chain away from half filling. Phys. Rev. B, 93(12):125108, 2016.

[111] S. Fujimoto and N. Kawakami. Persistent currents in mesoscopic Hubbard rings with spin-orbit interaction. Phys. Rev. B, 48(23):17406, 1993.

[112] K. Y. Povarov, A. I. Smirnov, O. A. Starykh, S. V. Petrov, and A. Y. Shapiro. Modes of magnetic resonance in the spin-liquid phase of Cs2CuCl4. Phys. Rev. Lett., 107(3):037204, 2011.

[113] A. I. Smirnov, T. A. Soldatov, K. Y. Povarov, M. Hälg, W. E. A. Lorenz, and A. Zheludev. Electron spin resonance in a model S = 1/2 chain antifer- romagnet with a uniform Dzyaloshinskii-Moriya interaction. Phys. Rev. B, 92(13):134417, 2015.

[114] R. Glenn, O. A. Starykh, and M. E. Raikh. Interplay of spin-orbit coupling and Zeeman splitting in the absorption lineshape of fermions in two dimensions. Phys. Rev. B, 86(2):024423, 2012.

[115] S. Maiti, V. Zyuzin, and D. L. Maslov. Collective modes in two-and three- dimensional electron systems with Rashba spin-orbit coupling. Phys. Rev. B, 91(3):035106, 2015.

[116] T. Ando, A. B. Fowler, and F. Stern. Electronic properties of two-dimensional systems. Rev. Mod. Phys., 54:437–672, Apr 1982.

[117] A. Ashrafi and D. L. Maslov. Chiral Spin Waves in Fermi Liquids with Spin- Orbit Coupling. Phys. Rev. Lett., 109:227201, Nov 2012.

[118] S.-S. Zhang, X.-L. Yu, J. Ye, and W.-M. Liu. Collective modes of spin-orbit- coupled Fermi gases in the repulsive regime. Phys. Rev. A, 87:063623, Jun 2013.

[119] V. Silin. Oscillations of a Fermi-liquid in a magnetic field. Sov. Phys. JETP, 6:945–950, 1958.

[120] J. H. de Boer and E. J. Verwey. Semi-conductors with partially and with com- pletely filled 3d-lattice bands. Proceedings of the Physical Society, 49(4S):59, 1937.

[121] N. F. Mott. The basis of the electron theory of metals, with special reference to the transition metals. Proceedings of the Physical Society. Section A, 62(7):416, 1949.

[122] J. Hubbard. Electron correlations in narrow energy bands III. An improved solution. Proc. R. Soc. Lond. A, 281(1386):401–419, 1964.

[123] D. Khomskii. Spin chirality and nontrivial charge dynamics in frustrated Mott insulators: spontaneouscurrents and charge redistribution. J. Phys. Condens. Matter, 22(16):164209, 2010.

[124] B. Tsukerblat, A. Tarantul, and A. Müller. Low temperature EPR spectra of the mesoscopic cluster V15: The role of antisymmetric exchange. J. Chem. Phys, 125(5):054714, 2006.

[125] K. Hwang, S. Bhattacharjee, and Y. B. Kim. Signatures of spin-triplet excita- tions in optical conductivity of valence bond solids. New J. Phys, 16(12):123009, 2014.

[126] S. Zhu, Y.-Q. Li, and C. D. Batista. Spin-orbit coupling and electronic charge effects in Mott insulators. Phys. Rev. B, 90:195107, Nov 2014.

[127] Y. Kamiya and C. D. Batista. Multiferroic behavior in trimerized Mott insula- tors. Phys. Rev. Lett., 108:097202, Feb 2012.

[128] D. I. Khomskii. Electric dipoles on magnetic monopoles in spin ice. Nature Communications, 3:904, 06 2012.

[129] M. Trif, F. Troiani, D. Stepanenko, and D. Loss. Spin-Electric Coupling in Molecular Magnets. Phys. Rev. Lett., 101:217201, Nov 2008.

[130] M. Trif, F. Troiani, D. Stepanenko, and D. Loss. Spin electric effects in molecu- lar antiferromagnets. Phys. Rev. B, 82:045429, Jul 2010.

[131] Y. Huh, M. Punk, and S. Sachdev. Optical conductivity of visons in Z2 spin liquids close to a valence bond solid transition on the kagome lattice. Phys. Rev. B, 87:235108, Jun 2013.

[132] L. Savary and L. Balents. Quantum spin liquids: a review. Rep. Prog. Phys., 80(1):016502, 2017.

[133] C. D. Batista, S.-Z. Lin, S. Hayami, and Y. Kamiya. Frustration and chiral orderings in correlated electron systems. Rep. Prog. Phys., 79(8):084504, 2016.

[134] M. Poirier, S. Parent, A. Côté, K. Miyagawa, K. Kanoda, and Y. Shimizu. Mag- netodielectric effects and spin-charge coupling in the spin-liquid candidate κ-(BEDT-TTF)2Cu2(CN)3. Phys. Rev. B, 85:134444, Apr 2012.

[135] N. B. Perkins, Y. Sizyuk, and P. Wölfle. Interplay of many-body and single- particle interactions in iridates and rhodates. Phys. Rev. B, 89(3):035143, 2014.

[136] R. Peierls. Zur theorie des diamagnetismus von leitungselektronen. Zeitschrift für Physik, 80(11-12):763–791, 1933.

[137] Y. Aharonov and D. Bohm. Significance of Electromagnetic Potentials in the Quantum Theory. Phys. Rev., 115:485–491, Aug 1959.

[138] L.-M. Duan, E. Demler, and M. D. Lukin. Controlling Spin Exchange Interac- tions of Ultracold Atoms in Optical Lattices. Phys. Rev. Lett., 91:090402, Aug 2003.

[139] S. R. Hassan, P. V. Sriluckshmy, S. K. Goyal, R. Shankar, and D. Sénéchal. Stable Algebraic Spin Liquid in a Hubbard Model. Phys. Rev. Lett., 110:037201, Jan 2013.

[140] J. P. L. Faye, D. Sénéchal, and S. R. Hassan. Topological phases of the Kitaev- Hubbard model at half filling. Phys. Rev. B, 89:115130, Mar 2014.

[141] H. Katsura, M. Sato, T. Furuta, and N. Nagaosa. Theory of the Optical Con- ductivity of Spin Liquid States in One-Dimensional Mott Insulators. Phys. Rev. Lett., 103:177402, Oct 2009.

[142] I. A. Sergienko, C. S¸ en, and E. Dagotto. Ferroelectricity in the magnetic E- phase of orthorhombic perovskites. Phys. Rev. Lett., 97(22):227204, 2006.

[143] C. Jia, S. Onoda, N. Nagaosa, and J. H. Han. Bond electronic polarization induced by spin. Phys. Rev. B, 74(22):224444, 2006.

[144] C. Jia, S. Onoda, N. Nagaosa, and J. H. Han. Microscopic theory of spin- polarization coupling in multiferroic transition metal oxides. Phys. Rev. B, 76(14):144424, 2007.

[145] T.-h. Arima. Ferroelectricity induced by proper-screw type magnetic order. J. Phys. Soc. Jpn., 76(7):073702–073702, 2007.

[146] H. Katsura, N. Nagaosa, and A. V. Balatsky. Spin current and magnetoelectric effect in noncollinear magnets. Phys. Rev. Lett., 95(5):057205, 2005.

[147] M. Mostovoy. Ferroelectricity in spiral magnets. Phys. Rev. Lett., 96(6):067601, 2006.

[148] I. A. Sergienko and E. Dagotto. Role of the Dzyaloshinskii-Moriya interaction in multiferroic perovskites. Phys. Rev. B, 73(9):094434, 2006.

[149] T. A. Kaplan and S. D. Mahanti. Canted-spin-caused electric dipoles: A local symmetry theory. Phys. Rev. B, 83:174432, May 2011.

[150] A. Pimenov, A. Mukhin, V. Y. Ivanov, V. Travkin, A. Balbashov, and A. Loidl. Possible evidence for electromagnons in multiferroic manganites. Nature Physics, 2(2):97, 2006.

[151] A. Sushkov, R. V. Aguilar, S. Park, S. Cheong, and H. Drew. Electromagnons in multiferroic YMn2O5 and TbMn2O5. Phys. Rev. Lett., 98(2):027202, 2007.

[152] H. Katsura, A. V. Balatsky, and N. Nagaosa. Dynamical magnetoelectric cou- pling in helical magnets. Phys. Rev. Lett., 98(2):027203, 2007.

[153] M. Cazayous, Y. Gallais, A. Sacuto, R. De Sousa, D. Lebeugle, and D. Colson. Possible observation of cycloidal electromagnons in BiFeO3. Phys. Rev. Lett., 101(3):037601, 2008.

[154] S. Seki, N. Kida, S. Kumakura, R. Shimano, and Y. Tokura. Electromagnons in the spin collinear state of a triangular lattice antiferromagnet. Phys. Rev. Lett., 105(9):097207, 2010.

[155] Y. Takahashi, R. Shimano, Y. Kaneko, H. Murakawa, and Y. Tokura. Magne- toelectric resonance with electromagnons in a perovskite helimagnet. Nature Physics, 8(2):121, 2012.

[156] S. H. Chun, K. W. Shin, H. J. Kim, S. Jung, J. Park, Y.-M. Bahk, H.-R. Park, J. Kyoung, D.-H. Choi, D.-S. Kim, et al. Electromagnon with Sensitive Tera- hertz Magnetochromism in a Room-Temperature Magnetoelectric Hexaferrite. Phys. Rev. Lett., 120(2):027202, 2018.

[157] S. Kimura, M. Matsumoto, M. Akaki, M. Hagiwara, K. Kindo, and H. Tanaka. Electric dipole spin resonance in a quantum spin dimer system driven by mag- netoelectric coupling. Phys. Rev. B, 97:140406, Apr 2018.

[158] W. Lu, J. Tuchendler, M. von Ortenberg, and J. P. Renard. Direct observation of the Haldane gap in NENP by far-infrared spectroscopy in high magnetic fields. Phys. Rev. Lett., 67:3716–3719, Dec 1991.

[159] T. M. Brill, J. P. Boucher, J. Voiron, G. Dhalenne, A. Revcolevschi, and J. P. Renard. High-Field Electron Spin Resonance and Magnetization in the Dimer- ized Phase of CuGeO3. Phys. Rev. Lett., 73:1545–1548, Sep 1994.

[160] H. Nojiri, H. Ohta, S. Okubo, O. Fujita, J. Akimitsu, and M. Motokawa. Sub- millimeter Wave ESR Study of Spin Gap Excitations in CuGeO3. J. Phys. Soc. Jpn., 68(10):3417–3423, 1999.

[161] T. Rõõm, U. Nagel, E. Lippmaa, H. Kageyama, K. Onizuka, and Y. Ueda. Far- infrared study of the two-dimensional dimer spin system SrCu2(BO3)2. Phys. Rev. B, 61:14342–14345, Jun 2000.

[162] H. Nojiri, H. Kageyama, Y. Ueda, and M. Motokawa. ESR Study on the Excited State Energy Spectrum of SrCu2(BO3)2 –A Central Role of Multiple-Triplet Bound States–. J. Phys. Soc. Jpn., 72(12):3243–3253, 2003.

[163] T. Sakai and H. Shiba. Numerical Study of a Model for NENP: One- Dimensional S=1 Antiferromagnetin a Staggered Field. J. Phys. Soc. Jpn., 63(3):867–871, 1994.

[164] T. Sakai. Direct Observation of Spin Gaps in Electron Spin Resonance. J. Phys. Soc. Jpn., 72(Suppl.B):53–60, 2003.

[165] O. Cépas and T. Ziman. Theory of phonon-assisted forbidden optical transi- tions in spin-gap systems. Phys. Rev. B, 70:024404, Jul 2004.

[166] Z. Wang, D. Kamenskyi, O. Cépas, M. Schmidt, D. L. Quintero-Castro, A. T. M. N. Islam, B. Lake, A. A. Aczel, H. A. Dabkowska, A. B. Dabkowski, G. M. Luke, Y. Wan, A. Loidl, M. Ozerov, J. Wosnitza, S. A. Zvyagin, and J. Deisenhofer. High-field electron spin resonance spectroscopy of singlet- triplet transitions in the spin-dimer systems Sr3Cr2O8 and Ba3Cr2O8. Phys. Rev. B, 89:174406, May 2014.

[167] Y. Singh and P. Gegenwart. Antiferromagnetic Mott insulating state in single crystals of the honeycomb lattice material Na2IrO3. Phys. Rev. B, 82(6):064412, 2010.

[168] J. Chaloupka, G. Jackeli, and G. Khaliullin. Kitaev-Heisenberg model on a honeycomb lattice: possible exotic phases in iridium oxides A2IrO3. Phys. Rev. Lett., 105(2):027204, 2010.

[169] Y. Singh, S. Manni, J. Reuther, T. Berlijn, R. Thomale, W. Ku, S. Trebst, and P. Gegenwart. Relevance of the Heisenberg-Kitaev model for the honeycomb lattice iridates A2IrO3. Phys. Rev. Lett., 108(12):127203, 2012.

[170] I. Pollini. Electronic properties of the narrow-band material α-RuCl3. Phys. Rev. B, 53(19):12769, 1996.

[171] K. Plumb, J. Clancy, L. Sandilands, V. V. Shankar, Y. Hu, K. Burch, H.-Y. Kee, and Y.-J. Kim. α-RuCl3: A spin-orbit assisted Mott insulator on a honeycomb lattice. Phys. Rev. B, 90(4):041112, 2014.

[172] H.-S. Kim, V. S. V., A. Catuneanu, and H.-Y. Kee. Kitaev magnetism in honey- comb RuCl3 with intermediate spin-orbit coupling. Phys. Rev. B, 91(24):241110, 2015.

[173] S. Trebst. Kitaev Materials. arXiv:1701.07056, 2017.

[174] I. I. Mazin, H. O. Jeschke, K. Foyevtsova, R. Valentí, and D. I. Khomskii. Na2IrO3 as a Molecular Orbital Crystal. Phys. Rev. Lett., 109:197201, Nov 2012.

[175] G. L. Stamokostas and G. A. Fiete. Mixing of t2g eg orbitals in 4d and 5d transition metal oxides. Phys. Rev. B, 97:085150, Feb 2018.

[176] J. G. Rau, E. K.-H. Lee, and H.-Y. Kee. Generic spin model for the honeycomb iridates beyond the Kitaev limit. Phys. Rev. Lett., 112(7):077204, 2014.

[177] J. G. Rau and H.-Y. Kee. Trigonal distortion in the honeycomb iridates: Prox- imity of zigzag and spiral phases in Na2IrO3. arXiv:1408.4811, 2014.

[178] Y. Sizyuk, C. Price, P. Wölfle, and N. B. Perkins. Importance of anisotropic exchange interactions in honeycomb iridates: minimal model for zigzag anti- ferromagnetic order in Na2IrO3. Phys. Rev. B, 90(15):155126, 2014.

[179] H.-S. Kim and H.-Y. Kee. Crystal structure and magnetism in α-RuCl3: An ab initio study. Phys. Rev. B, 93(15):155143, 2016.

[180] S. M. Winter, Y. Li, H. O. Jeschke, and R. Valenti. Challenges in design of Kitaev materials: Magnetic interactions from competing energy scales. Phys. Rev. B, 93(21):214431, 2016.

[181] R. Yadav, N. A. Bogdanov, V. M. Katukuri, S. Nishimoto, J. van den Brink, and L. Hozoi. Kitaev exchange and field-induced quantum spin-liquid states in honeycomb α-RuCl3. Sci. Rep., 6:37925, 2016.

[182] W. Wang, Z.-Y. Dong, S.-L. Yu, and J.-X. Li. Theoretical investigation of mag- netic dynamics in α-RuCl3. Phys. Rev. B, 96(11):115103, 2017.

[183] S. M. Winter, A. A. Tsirlin, M. Daghofer, J. van den Brink, Y. Singh, P. Gegen- wart, and R. Valenti. Models and Materials for Generalized Kitaev Magnetism. J. Phys. Condens. Matter, 2017.

[184] Y. S. Hou, H. J. Xiang, and X. G. Gong. Unveiling magnetic interactions of ruthenium trichloride via constraining direction of orbital moments: Potential routes to realize a quantum spin liquid. Phys. Rev. B, 96(5):054410, 2017.

[185] J. Kanamori. Electron correlation and ferromagnetism of transition metals. Progr. Theor. Phys., 30(3):275–289, 1963.

[186] A. Georges, L. de’ Medici, and J. Mravlje. Strong correlations from Hund’s coupling. Annu. Rev. Condens. Matter Phys., 4:137, 2013.

[187] J. C. Slater and G. F. Koster. Simplified LCAO method for the periodic potential problem. Phys. Rev., 94(6):1498, 1954.

[188] S. Miyahara and N. Furukawa. Theory of antisymmetric spin-pair-dependent electric polarization in multiferroics. Phys. Rev. B, 93(1):014445, 2016.

[189] M. Matsumoto, K. Chimata, and M. Koga. Symmetry Analysis of Spin- Dependent Electric Dipole and Its Application to Magnetoelectric Effects. J. Phys. Soc. Jpn., 86(3):034704, 2017.

[190] M. S. Dresselhaus, G. Dresselhaus, and A. Jorio. Applications of group theory to the physics of solids, 2008.

[191] P. Anderson. Resonating valence bonds: A new kind of insulator? Materials Research Bulletin, 8(2):153 – 160, 1973.

[192] H. Matsuura and M. Ogata. A Poor Man’s Derivation of Quantum Compass– Heisenberg Interaction: Superexchange Interaction in J–J Coupling Scheme. J. Phys. Soc. Jpn., 83(9):093701, 2014.

[193] S. M. Winter, K. Riedl, P. A. Maksimov, A. L. Chernyshev, A. Honecker, and R. Valenti. Breakdown of magnons in a strongly spin-orbital coupled magnet. Nat. Commun., 8(1):1152, 2017.

[194] F. Zschocke and M. Vojta. Physical states and finite-size effects in Kitaev’s hon- eycomb model: Bond disorder, spin excitations, and NMR line shape. Phys. Rev. B, 92:014403, Jul 2015.

[195] J. Blaizot and G. Ripka. Quantum Theory of Finite Systems. MIT Press, Cam- bridge, 1986.

[196] E. H. Lieb. Flux Phase of the Half-Filled Band. Phys. Rev. Lett., 73(16):2158, 1994.

[197] B. Dóra and R. Moessner. Gauge field entanglement in Kitaev’s honeycomb model. Phys. Rev. B, 97:035109, Jan 2018.

[198] H. Yao, S.-C. Zhang, and S. A. Kivelson. Algebraic Spin Liquid in an Exactly Solvable Spin Model. Phys. Rev. Lett., 102:217202, May 2009.

[199] F. L. Pedrocchi, S. Chesi, and D. Loss. Physical solutions of the Kitaev honey- comb model. Phys. Rev. B, 84:165414, Oct 2011.

[200] M. Gohlke, R. Verresen, R. Moessner, and F. Pollmann. Dynamics of the Kitaev-Heisenberg Model. Phys. Rev. Lett., 119:157203, Oct 2017.

[201] D. Gotfryd, J. Rusnacˇko, K. Wohlfeld, G. Jackeli, J. Chaloupka, and A. M. Oles´. Phase diagram and spin correlations of the Kitaev-Heisenberg model: Impor- tance of quantum effects. Phys. Rev. B, 95(2):024426, 2017.

[202] J. Knolle, S. Bhattacharjee, and R. Moessner. Dynamics of a quantum spin liquid beyond integrability: The Kitaev-Heisenberg-Γ model in an augmented parton mean-field theory. Phys. Rev. B, 97:134432, Apr 2018.

[203] A. Banerjee, P. Lampen-Kelley, J. Knolle, C. Balz, A. A. Aczel, B. Winn, Y. Liu, D. Pajerowski, J. Yan, C. A. Bridges, A. T. Savici, B. C. Chakoumakos, M. D. Lumsden, D. A. Tennant, R. Moessner, D. G. Mandrus, and S. E. Nagler. Exci- tations in the field-induced quantum spin liquid state of α-RuCl3. npj Quantum Materials, 3(1):8, 2018.

[204] M. Gohlke, G. Wachtel, Y. Yamaji, F. Pollmann, and Y. B. Kim. Quantum spin liquid signatures in Kitaev-like frustrated magnets. Phys. Rev. B, 97:075126, Feb 2018.

[205] D. Torchinsky, H. Chu, L. Zhao, N. Perkins, Y. Sizyuk, T. Qi, G. Cao, and D. Hsieh. Structural distortion-induced magnetoelastic locking in Sr2IrO4 revealed through nonlinear optical harmonic generation. Phys. Rev. Lett., 114(9):096404, 2015.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る