リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Dispersion and damping rate of plasmino excitations in the high density Yukawa model」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Dispersion and damping rate of plasmino excitations in the high density Yukawa model

阿部, 雄哉 東京大学 DOI:10.15083/0002004673

2022.06.22

概要

Field theory at high density is an important subject for not only academic exercise but also for applications for materials in reality. There exist several classes of matter where the high density physics plays a crucial role. One clear instance of such classes of matter is found in the neutron star. Another example is a quark-gluon plasma, although high temperature effects are considerable in the quark-gluon plasma. To study these systems the relativistic thermal field theory is employed, while non-relativistic descriptions are common in condensed matter physics. However, the importance of the relativistic thermal field theory in condensed matter physics is increasing according to the experimental progresses; e.g. discovery of Weyl and Dirac semimetals, Hamiltonian engineering with the optical lattice, and so on.

In this thesis, we analyze the density effect on matter with finite chiral imbalance using a Yukawa model, which can be easily generalized into more complex systems like QED and QCD. We study the dispersion relations of the fermionic collective modes quantitatively in an advanced theoretical framework called the hard dense loop approximation. This method is an analogue of the hard thermal loop approximation especially known in the QCD contexts. We emphasize that the hard thermal/dense loop approximation is well founded and indispensable for the contemporary hot/dense matter calculations. In this framework we can include higher order effects of the fermion self energy. With these higher order terms, we compute not only the dispersion relations but also the damping rates and the spectral functions of the fermionic collective modes.

Then, we find that the damping rates of the fermionic excitations remain small compared to their excitation energies as long as the dimensionless coupling constant is of order of the unity or smaller. Our results indicate a tendency that the damping rates become even smaller with larger chiral imbalance. Especially a dispersion branch named “collective branch” has considerably small damping rate, so that this branch can be easily distinguished from other branches even when the chiral imbalance is not large. We also discuss experimental opportunities to observe such fermionic excitations with the help of the photon emission spectroscopy and the more sophisticated ARPES method.

参考文献

[1] V. P. Silin. On the electronmagnetic properties of a relativistic plasma. Sov. Phys. JETP, 11(5):1136–1140, 1960. [Zh. Eksp. Teor. Fiz.38,1577(1960)].

[2] V. N. Tsytovich. Spatial dispersion in a relativistic plasma. Sov. Phys. JETP, 13(6):1249– 1256, 1961. [Zh. Eksp. Teor. Fiz.40,1775(1961)].

[3] E. S. Fradkin. The Green’s functions method in quantum statistics. Sov. Phys. JETP, 36(9):912–919, 1959. [Zh. Eksp. Teor. Fiz.36,1286(1959)].

[4] M. B. Kislinger and P. D. Morley. Collective Phenomena in Gauge Theories. 1. The Plasmon Effect for Yang-Mills Fields. Phys. Rev., D13:2765, 1976.

[5] M. B. Kislinger and P. D. Morley. Collective Phenomena in Gauge Theories. 2. Renormalization in Finite Temperature Field Theory. Phys. Rev., D13:2771, 1976.

[6] P. D. Morley and M. B. Kislinger. Relativistic Many Body Theory, Quantum Chromodynamics and Neutron Stars/Supernova. Phys. Rept., 51:63, 1979.

[7] Andrei D. Linde. Phase Transitions in Gauge Theories and Cosmology. Rept. Prog. Phys., 42:389, 1979.

[8] A. Bechler. Two Point Green’s Functions in Quantum Electrodynamics at Finite Temperature and Density. Annals Phys., 135:19–57, 1981.

[9] David J. Gross, Robert D. Pisarski, and Laurence G. Yaffe. QCD and Instantons at Finite Temperature. Rev. Mod. Phys., 53:43, 1981.

[10] V. V. Klimov. Spectrum of Elementary Fermi Excitations in Quark Gluon Plasma. (In Russian). Sov. J. Nucl. Phys., 33:934–935, 1981. [Yad. Fiz.33,1734(1981)].

[11] H. Arthur Weldon. Covariant Calculations at Finite Temperature: The Relativistic Plasma. Phys. Rev., D26:1394, 1982.

[12] H. Arthur Weldon. Effective Fermion Masses of Order gT in High Temperature Gauge Theories with Exact Chiral Invariance. Phys. Rev., D26:2789, 1982.

[13] H. Arthur Weldon. Dynamical Holes in the Quark - Gluon Plasma. Phys. Rev., D40:2410, 1989.

[14] E. Petitgirard. Massive fermion dispersion relation at finite temperature. Z. Phys., C54:673–678, 1992.

[15] Gordon Baym, Jean-Paul Blaizot, and Benjamin Svetitsky. Emergence of new quasiparticles in quantum electrodynamics at finite temperature. Phys. Rev., D46:4043–4051, 1992.

[16] D. T. Son. Quantum critical point in graphene approached in the limit of infinitely strong coulomb interaction. Phys. Rev. B, 75:235423, Jun 2007.

[17] Dmitri E. Kharzeev, Robert D. Pisarski, and Ho-Ung Yee. Universality of plasmon excitations in Dirac semimetals. Phys. Rev. Lett., 115(23):236402, 2015.

[18] K. Kajantie and Joseph I. Kapusta. Behavior of Gluons at High Temperature. Annals Phys., 160:477, 1985.

[19] Ulrich W. Heinz, K. Kajantie, and T. Toimela. Damping of Plasma Oscillations in Hot Gluon Matter. Phys. Lett., B183:96–100, 1987.

[20] Sudhir Nadkarni. Linear Response and Plasmon Decay in Hot Gluonic Matter. Phys. Rev. Lett., 61:396, 1988.

[21] T. H. Hansson and I. Zahed. Electric and Magnetic Properties of Hot Gluons. Phys. Rev. Lett., 58:2397, 1987.

[22] R. Kobes and G. Kunstatter. Stability of Plasma Oscillations in Hot Gluonic Matter. Phys. Rev. Lett., 61:392, 1988.

[23] H. T. Elze, K. Kajantie, and T. Toimela. CHROMOMAGNETIC SCREENING AT HIGH TEMPERATURE. Z. Phys., C37:601, 1988.

[24] H. T. Elze, Ulrich W. Heinz, K. Kajantie, and T. Toimela. High Temperature Gluon Matter in the Background Gauge. Z. Phys., C37:305, 1988.

[25] T. H. Hansson and I. Zahed. Plasmons From a Gauge Invariant Effective Action for Hot Gluons. Nucl. Phys., B292:725–744, 1987.

[26] M. E. Carrington, T. H. Hansson, H. Yamagishi, and I. Zahed. Linear Response of Hot Gluons. Annals Phys., 190:373, 1989.

[27] Eric Braaten and Robert D. Pisarski. Resummation and Gauge Invariance of the Gluon Damping Rate in Hot QCD. Phys. Rev. Lett., 64:1338, 1990.

[28] Eric Braaten and Robert D. Pisarski. Soft Amplitudes in Hot Gauge Theories: A General Analysis. Nucl. Phys., B337:569–634, 1990.

[29] Eric Braaten and Robert D. Pisarski. Calculation of the gluon damping rate in hot QCD. Phys. Rev., D42:2156–2160, 1990.

[30] Eric Braaten and Robert D. Pisarski. Deducing Hard Thermal Loops From Ward Identities. Nucl. Phys., B339:310–324, 1990.

[31] Eric Braaten and Robert D. Pisarski. Simple effective Lagrangian for hard thermal loops. Phys. Rev., D45(6):R1827, 1992.

[32] P. F. Kelly, Q. Liu, C. Lucchesi, and C. Manuel. Classical transport theory and hard thermal loops in the quark - gluon plasma. Phys. Rev., D50:4209–4218, 1994.

[33] H. Kleinert. Systematic corrections to the variational calculation of the effective classical potential. Physics Letters A, 173(4):332 – 342, 1993.

[34] H. Kleinert and H. Meyer. Variational calculation of effective classical potential at t 6= 0 to higher orders. Physics Letters A, 184(4):319 – 327, 1994.

[35] R. Karrlein and H. Kleinert. Precise variational tunneling rates of anharmonic oscillator for g ¡0. Physics Letters A, 187(2):133 – 139, 1994.

[36] W. Janke and H. Kleinert. Scaling property of variational perturbation expansion for a general anharmonic oscillator with xp-potential. Physics Letters A, 199(5):287 – 290, 1995.

[37] H. Kleinert and W. Janke. Convergence behavior of variational perturbation expansion — a method for locating bender-wu singularities. Physics Letters A, 206(5):283 – 289, 1995.

[38] W. Janke and H. Kleinert. Convergent Strong-Coupling Expansions from Divergent WeakCoupling Perturbation Theory. Phys. Rev. Lett., 75:2787–2791, 1995.

[39] F. Karsch, A. Patkos, and P. Petreczky. Screened perturbation theory. Phys. Lett., B401:69–73, 1997.

[40] Jens O. Andersen, Eric Braaten, and Michael Strickland. Screened perturbation theory to three loops. Phys. Rev., D63:105008, 2001.

[41] Jens.O Andersen and Michael Strickland. Mass expansions of screened perturbation theory. Phys. Rev., D64:105012, 2001.

[42] Jens O. Andersen and Lars Kyllingstad. Four-loop Screened Perturbation Theory. Phys. Rev., D78:076008, 2008.

[43] S. Chiku and T. Hatsuda. Optimized perturbation theory at finite temperature. Phys. Rev., D58:076001, 1998.

[44] Jens O. Andersen, Eric Braaten, and Michael Strickland. Hard thermal loop resummation of the free energy of a hot gluon plasma. Phys. Rev. Lett., 83:2139–2142, 1999.

[45] Jens O. Andersen, Eric Braaten, and Michael Strickland. Hard thermal loop resummation of the thermodynamics of a hot gluon plasma. Phys. Rev., D61:014017, 2000.

[46] Jens O. Andersen, Eric Braaten, and Michael Strickland. Hard thermal loop resummation of the free energy of a hot quark - gluon plasma. Phys. Rev., D61:074016, 2000.

[47] Jens O. Andersen, Eric Braaten, Emmanuel Petitgirard, and Michael Strickland. HTL perturbation theory to two loops. Phys. Rev., D66:085016, 2002.

[48] Jens O. Andersen, Emmanuel Petitgirard, and Michael Strickland. Two loop HTL thermodynamics with quarks. Phys. Rev., D70:045001, 2004.

[49] Jens O. Andersen and Michael Strickland. Resummation in hot field theories. Annals Phys., 317:281–353, 2005.

[50] Jens O. Andersen, Michael Strickland, and Nan Su. Three-loop HTL Free Energy for QED. Phys. Rev., D80:085015, 2009.

[51] Jens O. Andersen, Michael Strickland, and Nan Su. Gluon Thermodynamics at Intermediate Coupling. Phys. Rev. Lett., 104:122003, 2010.

[52] Jens O. Andersen, Michael Strickland, and Nan Su. Three-loop HTL gluon thermodynamics at intermediate coupling. JHEP, 08:113, 2010.

[53] Jens O. Andersen, Lars E. Leganger, Michael Strickland, and Nan Su. NNLO hardthermal-loop thermodynamics for QCD. Phys. Lett., B696:468–472, 2011.

[54] Jens O. Andersen, Lars E. Leganger, Michael Strickland, and Nan Su. Three-loop HTL QCD thermodynamics. JHEP, 08:053, 2011.

[55] Jens O. Andersen, Najmul Haque, Munshi G. Mustafa, and Michael Strickland. Threeloop hard-thermal-loop perturbation theory thermodynamics at finite temperature and finite baryonic and isospin chemical potential. Phys. Rev., D93(5):054045, 2016.

[56] Aleksi Kurkela and Aleksi Vuorinen. Cool quark matter. Phys. Rev. Lett., 117(4):042501, 2016.

[57] Stefano Carignano, Cristina Manuel, and Joan Soto. Power corrections to the HTL effective Lagrangian of QED. Phys. Lett., B780:308–312, 2018.

[58] Nan Su. A brief overview of hard-thermal-loop perturbation theory. Commun. Theor. Phys., 57:409, 2012.

[59] Cristina Manuel. Hard dense loops in a cold nonAbelian plasma. Phys. Rev., D53:5866– 5873, 1996.

[60] Jean-Paul Blaizot and Jean-Yves Ollitrault. Collective fermionic excitations in systems with a large chemical potential. Phys. Rev., D48:1390–1408, 1993.

[61] Jean-Paul Blaizot, Edmond Iancu, and Rajesh R. Parwani. On the screening of static electromagnetic fields in hot QED plasmas. Phys. Rev., D52:2543–2562, 1995.

[62] Aleksi Kurkela, Paul Romatschke, and Aleksi Vuorinen. Cold Quark Matter. Phys. Rev., D81:105021, 2010.

[63] Tyler Gorda, Aleksi Kurkela, Paul Romatschke, Matias S¨appi, and Aleksi Vuorinen. Nextto-Next-to-Next-to-Leading Order Pressure of Cold Quark Matter: Leading Logarithm. Phys. Rev. Lett., 121(20):202701, 2018.

[64] Stefano Carignano and Cristina Manuel. Damping rate of a fermion in ultradegenerate chiral matter. Phys. Rev., D99(9):096022, 2019.

[65] Deog Ki Hong. An Effective field theory of QCD at high density. Phys. Lett., B473:118– 125, 2000.

[66] Deog Ki Hong. Aspects of high density effective theory in QCD. Nucl. Phys., B582:451– 476, 2000.

[67] Thomas Schafer. Hard loops, soft loops, and high density effective field theory. Nucl. Phys., A728:251–271, 2003.

[68] Rudolf Baier and Krzysztof Redlich. Hard thermal loop resummed pressure of a degenerate quark gluon plasma. Phys. Rev. Lett., 84:2100–2103, 2000.

[69] Bengt Friman and Wolfram Weise. Neutron star matter as a relativistic fermi liquid. Phys. Rev. C, 100:065807, Dec 2019.

[70] Eduardo S. Fraga, Aleksi Kurkela, and Aleksi Vuorinen. Neutron star structure from QCD. Eur. Phys. J., A52(3):49, 2016.

[71] D. Kharzeev and A. Zhitnitsky. Charge separation induced by P-odd bubbles in QCD matter. Nucl. Phys., A797:67–79, 2007.

[72] Dmitri E. Kharzeev, Larry D. McLerran, and Harmen J. Warringa. The Effects of topological charge change in heavy ion collisions: ’Event by event P and CP violation’. Nucl. Phys., A803:227–253, 2008.

[73] Kenji Fukushima, Dmitri E. Kharzeev, and Harmen J. Warringa. The Chiral Magnetic Effect. Phys. Rev., D78:074033, 2008.

[74] Dmitri E. Kharzeev and Harmen J. Warringa. Chiral Magnetic conductivity. Phys. Rev., D80:034028, 2009.

[75] Dmitri E. Kharzeev. Topologically induced local P and CP violation in QCD x QED. Annals Phys., 325:205–218, 2010.

[76] Ho-Ung Yee. Holographic Chiral Magnetic Conductivity. JHEP, 11:085, 2009.

[77] Dmitri E. Kharzeev. The Chiral Magnetic Effect and Anomaly-Induced Transport. Prog. Part. Nucl. Phys., 75:133–151, 2014.

[78] Dmitri E. Kharzeev and Ho-Ung Yee. Chiral Magnetic Wave. Phys. Rev., D83:085007, 2011.

[79] Yukinao Akamatsu and Naoki Yamamoto. Chiral Plasma Instabilities. Phys. Rev. Lett., 111:052002, 2013.

[80] Cristina Manuel and Juan M. Torres-Rincon. Kinetic theory of chiral relativistic plasmas and energy density of their gauge collective excitations. Phys. Rev., D89(9):096002, 2014.

[81] Cristina Manuel and Juan M. Torres-Rincon. Chiral transport equation from the quantum Dirac Hamiltonian and the on-shell effective field theory. Phys. Rev., D90(7):076007, 2014.

[82] N. Sadooghi and F. Taghinavaz. Contribution of plasminos to the shear viscosity of a hot and dense Yukawa-Fermi gas. Phys. Rev., D89(12):125005, 2014.

[83] Naoki Yamamoto. Chiral Alfven Wave in Anomalous Hydrodynamics. Phys. Rev. Lett., 115(14):141601, 2015.

[84] Cristina Manuel and Juan M. Torres-Rincon. Dynamical evolution of the chiral magnetic effect: Applications to the quark-gluon plasma. Phys. Rev., D92(7):074018, 2015.

[85] Yuji Hirono, Dmitri Kharzeev, and Yi Yin. Self-similar inverse cascade of magnetic helicity driven by the chiral anomaly. Phys. Rev., D92(12):125031, 2015.

[86] Karl Landsteiner. Notes on Anomaly Induced Transport. Acta Phys. Polon., B47:2617, 2016.

[87] Neil W. Ashcroft and N. David Mermin. Solid State Physics. Cengage Learning, 1976.

[88] H. Hopster, R. Raue, G. G¨untherodt, E. Kisker, R. Clauberg, and M. Campagna. Temperature dependence of the exchange splitting in ni studied by spin-polarized photoemission. Phys. Rev. Lett., 51:829–832, Aug 1983.

[89] F Meier, J H Dil, and J Osterwalder. Measuring spin polarization vectors in angle-resolved photoemission spectroscopy. New Journal of Physics, 11(12):125008, dec 2009.

[90] Gordon W. Semenoff. Condensed Matter Simulation of a Three-dimensional Anomaly. Phys. Rev. Lett., 53:2449, 1984.

[91] F. D. M. Haldane. Model for a quantum hall effect without landau levels: Condensedmatter realization of the ”parity anomaly”. Phys. Rev. Lett., 61:2015–2018, Oct 1988.

[92] E. V. Gorbar, V. A. Miransky, I. A. Shovkovy, and P. O. Sukhachov. Anomalous transport properties of Dirac and Weyl semimetals (Review Article). Low Temp. Phys., 44(6):487– 505, 2018. [Fiz. Nizk. Temp.44,635(2017)].

[93] N. P. Armitage, E. J. Mele, and Ashvin Vishwanath. Weyl and dirac semimetals in threedimensional solids. Rev. Mod. Phys., 90:015001, Jan 2018.

[94] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov. Electric Field Effect in Atomically Thin Carbon Films. Science, 306:666, 2004.

[95] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, A. A. Firsov. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 438:197, 2005.

[96] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim. The electronic properties of graphene. Rev. Mod. Phys., 81:109–162, 2009.

[97] Shuichi Murakami. Phase transition between the quantum spin hall and insulator phases in 3d: emergence of a topological gapless phase. New Journal of Physics, 9(9):356–356, sep 2007.

[98] Xiangang Wan, Ari M. Turner, Ashvin Vishwanath, and Sergey Y. Savrasov. Topological semimetal and fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B, 83:205101, May 2011.

[99] Zhijun Wang, Hongming Weng, Quansheng Wu, Xi Dai, and Zhong Fang. Threedimensional dirac semimetal and quantum transport in cd3as2. Phys. Rev. B, 88:125427, Sep 2013.

[100] Zhijun Wang, Yan Sun, Xing-Qiu Chen, Cesare Franchini, Gang Xu, Hongming Weng, Xi Dai, and Zhong Fang. Dirac semimetal and topological phase transitions in A3bi (a = Na, k, rb). Phys. Rev. B, 85:195320, May 2012.

[101] Sergey Borisenko, Quinn Gibson, Danil Evtushinsky, Volodymyr Zabolotnyy, Bernd B¨uchner, and Robert J. Cava. Experimental realization of a three-dimensional dirac semimetal. Phys. Rev. Lett., 113:027603, Jul 2014.

[102] Madhab Neupane, Su-Yang Xu, Raman Sankar, Nasser Alidoust, Guang Bian, Chang Liu, Ilya Belopolski, Tay-Rong Chang, Horng-Tay Jeng, Hsin Lin, Arun Bansil, Fangcheng Chou and M. Zahid Hasan. Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2. Nature Comm., 5:3786, 2014.

[103] B. Q. Lv, H. M. Weng, B. B. Fu, X. P. Wang, H. Miao, J. Ma, P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, Z. Fang, X. Dai, T. Qian, and H. Ding. Experimental discovery of weyl semimetal taas. Phys. Rev. X, 5:031013, Jul 2015.

[104] B. Q. Lv, S. Muff, T. Qian, Z. D. Song, S. M. Nie, N. Xu, P. Richard, C. E. Matt, N. C. Plumb, L. X. Zhao, G. F. Chen, Z. Fang, X. Dai, J. H. Dil, J. Mesot, M. Shi, H. M. Weng, and H. Ding. Observation of fermi-arc spin texture in taas. Phys. Rev. Lett., 115:217601, Nov 2015.

[105] Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen. Discovery of a three-dimensional topological dirac semimetal, na3bi. Science, 343(6173):864–867, 2014.

[106] M. Zahid Hasan, Su-Yang Xu, Ilya Belopolski, and Shin-Ming Huang. Discovery of weyl fermion semimetals and topological fermi arc states. Annual Review of Condensed Matter Physics, 8(1):289–309, 2017.

[107] Dmitri E. Kharzeev and Ho-Ung Yee. Anomaly induced chiral magnetic current in a weyl semimetal: Chiral electronics. Phys. Rev. B, 88:115119, Sep 2013.

[108] Dmitri E. Kharzeev. The chiral magnetic effect and anomaly-induced transport. Progress in Particle and Nuclear Physics, 75:133 – 151, 2014.

[109] Shu Ebihara, Kenji Fukushima, and Takashi Oka. Chiral pumping effect induced by rotating electric fields. Phys. Rev. B, 93:155107, Apr 2016.

[110] E. H. Hwang and S. Das Sarma. Quasiparticle spectral function in doped graphene: Electron-electron interaction effects in arpes. Phys. Rev. B, 77:081412, Feb 2008.

[111] R. Jalabert and S. Das Sarma. Quasiparticle properties of a coupled two-dimensional electron-phonon system. Phys. Rev. B, 40:9723–9737, Nov 1989.

[112] S. Y. Zhou, G.-H. Gweon, J. Graf, A. V. Fedorov, C. D. Spataru, R. D. Diehl, Y. Kopelevich, D.-H. Lee, Steven G. Louie and A. Lanzara. First direct observation of Dirac fermions in graphite. Nature Physics, 2:595, 2006.

[113] D. C. Elias, R. V. Gorbachev, A. S. Mayorov, S. V. Morozov, A. A. Zhukov, P. Blake, L. A. Ponomalenko, I. V. Grigorieva, K. S. Novoselov, F. Guinea, A. K. Geim. Dirac cones reshaped by interaction effects in suspended graphene. Nature Physics, 7:701, 2011.

[114] Long Ju, Baisong Geng, Jason Horng, Caglar Girit, Michael Martin, Zhao Hao, Hans A. Bechtel, Xiaogan Liang, Alex Zettl, Y. Ron Shen and Feng Wang. Graphene plasmonics for tunable terahertz metamaterials. Nature Nanotechnology, 6:630, 2011.

[115] A. N. Grigorenko, M. Polini and K. S. Novoselov. Graphene plasmonics. Nature Photonics, 6:749, 2012.

[116] Aaron Bostwick, Florian Speck, Thomas Seyller, Karsten Horn, Marco Polini, Reza Asgari, Allan H. MacDonald, Eli Rotenberg. Observation of Plasmarons in Quasi-Freestanding Doped Graphene. Nature, 328:999, 2010.

[117] Johannes Lischner, G. K. P´alsson, Derek Vigil-Fowler, S. Nemsak, J. Avila, M. C. Asensio, C. S. Fadley, and Steven G. Louie. Satellite band structure in silicon caused by electronplasmon coupling. Phys. Rev. B, 91:205113, May 2015.

[118] Joseph I. Kapusta and Charles Gale. Finite-Temperture Field Theory Principles and Applications. Cambridge Monographs on Mathematical Physics, 2006.

[119] Michel Le Bellac. Thermal Field Theory. Cambridge Monographs on Mathematical Physics, 2000.

[120] Ashok Das. Finite Temperture Field Theory. Cambridge Monographs on Mathematical Physics, 1997.

[121] Michael E. Peskin and Daniel V. Schroeder. An Introduction to Quantum Field Theory. Westview Press, 1994.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る