リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Studies on Development of a Monitoring Method for High Risk Cattle of Bovine Leukemia Virus Transmission Using Milk Exosomes」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Studies on Development of a Monitoring Method for High Risk Cattle of Bovine Leukemia Virus Transmission Using Milk Exosomes

Md. Matiur Rahman 岐阜大学

2022.03.14

概要

牛伝染性リンパ腫ウイルス(BLV)は,B細胞性リンパ腫を特徴とする地方病性リンパ腫の原因ウイルスである。BLVに感染した牛は,非感染牛と比較し,免疫機能,乳量,増体率の低下,細菌感染による治療機会の増加,舂命の短縮,等が起こるとされており,大きな経済損失が発生する。日本において,乳牛の40.9%,肉牛の28.7%がBLVに対する抗体を持っていることが報告されている。血中プロウイルス量が高い(HPVL-)BLV感染牛は,プロウイルス量が低い(LPVL-)感染牛と比較し,健康な牛にBLV感染を伝播するリスクが高いことが報告されている。BLV感染を予防し,経済的損失を減らすためには,BLV伝播リスクの高い牛を早期に見つけ,隔離し,健康な牛を維持することが求められる。そこで本研究では,核酸やタンパク質を内包し,細胞間情報伝達に関与することが知られているエクソソームsmall extracellular vesicles(sEV)に着目し,採血の代わりに牛に痛みを与えず容易に採取できる生乳sEVを使用した,BLV伝播リスクの高い牛を検出する新しいモニタリング方法を開発することを目的とした。

 第1章では,生乳からのsEVの簡易分離に用いる酸の影響を評価した。sEVの分離を困難にしている主要な乳タンパク質であるカゼインを,超遠心(UC)法,塩酸(HC1)法,酢酸(AA)法によって生乳から除去した後,sEVを含む乳清のタンパク質濃度を分光光度計で,生乳sEVの形態を透過型電子顕微鏡,サイズ分布と粒子濃度をナノ粒子測定器によって評価した。さらに,ウェスタンブロット(WB)解析によるsEV表面および内部マーカータンパク質の検出を行った。sEVの形態学的特徴として,球形の二重膜構造が観察されたが,HC1法とAA法によって分離された生乳sEVの一部には,粗い表面構造が観察された。タンパク質濃度はUC法で得られた乳清で高かったが,粒子濃度はHC1法とAA法で得られた生乳sEVにおいて有意に高かった。また,HC1法とAA法の生乳sEVでは,表面マーカータンパク質であるCD9およびCD81が部分的に分解された。UC法ではカゼイン除去に7時間要した時間が,酸処理では30分〜40分に短縮できた。以上から,酸処理により簡便な生乳sEVの分離.精製に成功し,解析に使用できる生乳sEVの回収が可能であることを明らかにした。

 第2章では,生乳sEVからBLV伝播高リスク牛のmRNAバイオマーカー候補を探索した。BLV感染牛4頭と非感染牛4頭の生乳からAA法により生乳sEVを精製後,マイクロアレイによりmRNAプロファイルを同定した。生乳sEVには,合計36,754種のmRNAが含まれ,33,445種がBLV感染牛と非感染牛で共通し,1,772種がBLV感染牛で特異的であった。また,共通mRNAのうち176種はBLV感染牛で有意に増加あるいは減少していた。さらに,G0およびKEGG経路解析により,BLV感染牛の生乳sEVで有意に増減した遺伝子が,分子機能や疾患関連経路など多様な生物学的プロセスに関与していることが示された。以上から,BLV感染が宿主の細胞活性に大きな影響を与え,生乳sEVのmRNAプロファイルを変化させることが示唆された。次に,マイクロアレイ解析で選択されたmRNAバイオマーカー候補を検証するため,26頭のBLV感染牛と6頭の非感染牛の生乳sEVを使用してqPCRを行った。TMEM156とCALB1のmRNAの内包量が、BLV感染牛で有意に高く,BLV伝播リスク牛のmRNAバイオマーカーとなる可能性が示唆された。

 第3章では,BLV伝播高リスク牛の生乳sEV中のタンパク質バイオマーカー候補を探索した。HPVL-BLV感染牛3頭と非感染牛3頭の生乳sEVを精製後,nanoLC-MS/MS法によるプロテオミクス解析を行った。生乳sEVには,合計1,403種のタンパク質が含まれ,1,047種がHPVL-BLV感染牛と非感染牛で共通し,152種のタンパク質がHPVL-BLV感染牛で特異的であった。また,共通タンパク質のうち26種はHPVL-BLV感染牛で有意に増加あるいは減少していた。G0およびKEGG経路解析により,HPVL-BLV感染牛の生乳sEVで増減したタンパク質が,代謝や刺激応答,癌経路,Jak-STATシグナル伝達経路などに関与していることが示された。次に,BLV伝播高リスク牛のバイオマーカー候補を検証するため,HPVL-BLV感染牛8頭と非感染牛3頭の生乳sEVのWB解析を行ったところ,RHOQ, METAP1, MARCH8, KRT18の4種のタンパク質がBLV伝播高リスク牛のタンパク質バイオマーカーとなる可能性が示唆された。

 本研究では,AA法を用いた簡便な生乳sEVの分離・精製法を確立し,生乳sEV中のTMEM156とのmRNA,およびRHOQ, METAP1, MARCH8, KRT18タンパク質がBLV伝播高リスク牛のバイオマーカーとなる可能性を示した。AA法により効率的に生乳sEVを分離,精製し,本研究で同定したバイオマーカー候補のmRNAおよびタンパク質を検出することにより,BLV伝播リスクの高い牛を生乳から検出可能となることが期待される。本研究では,血液ではなく生乳を検査材料としたことで,農家におけるルーチンスクリーニングにも貢献できる。BLV伝播リスクの高い牛を早期に検出し,優先的に隔離することができ,農場内でのBLV感染拡大を防ぎ,健康牛を維持することが期待される。今後,BLV伝播リスクの高い牛のより正確なモニタリングを行うため,miRNAなどの他のバイオマーカーとの併用を検証していく必要がある。

この論文で使われている画像

参考文献

1. ICTV Taxonomy history: Bovine leukemia virus. International Committee on Taxonomy of Viruses (ICTV). (https://talk.ictvonline.org/taxonomy/, accessed on 2021, November, 5).

2. Sagata, N., Yasunaga, T., Tsuzuku-Kawamura, J., Ohishi, K., Ogawa, Y. and Ikawa, Y. (1985). Complete nucleotide sequence of the genome of bovine leukemia virus: its evolutionary relationship to other retroviruses. Proc. Natl. Acad. Sci. U.S.A. 82, 677–681.

3. Gillet, N., Florins, A., Boxus, M., Burteau, C., Nigro, A., Vandermeers, F., Balon, H., Bouzar, A. B., Defoiche, J., Burny, A., Reichert, M., Kettmann, R. and Willems, L. (2007). Mechanisms of leukemogenesis induced by bovine leukemia virus: Prospects for novel anti-retroviral therapies in human. Retrovirology 4: 18.

4. Office International des Epizooties (OIE), (2018). Enzootic bovine leukosis. In manual of diagnostic tests and vaccines for terrestrial animals. OIE: Paris, France, 2018, 1113–1124. Available online: https://www.oie.int/standard-setting/ terrestrial- manual/access-online/ (accessed on 2020, August, 11).

5. Frie, M. C. and Coussens, P. M. (2015). Bovine leukemia virus: A major silent threat to proper immune responses in cattle. Vet. Immunol. Immunopathol. 163, 103– 114.

6. Miller, J. M., Miller, L. D., Olson, C. and Gillette, K. G. (1969). Virus-like particles in phytohemagglutinin-stimulated lymphocyte cultures with reference to bovine lymphosarcoma. J. Natl. Cancer Inst. 43, 1297-1305.

7. Lassauzet, M.L., Thurmond, M. C., Johnson, W. O., Stevens, F. and Picanso, J. P. (1990). Effect of brucellosis vaccination and dehorning on transmission of bovine leukemia virus in heifers on a California dairy. Canadian J. Vet. Res. 54, 184-189.

8. Meas, S., Usui T., Ohashi, K., Sugimoto, C. and Onuma, M. (2002). Vertical transmission of bovine leukemia virus and bovine immunodeficiency virus in dairy cattle herds. Vet. Microbiol. 84, 275-282.

9. Sajiki, Y., Konnai, S., Nishimori, A., Okagawa, T., Maekawa, N., Goto, S., Nagano, M., Kohara, J., Kitano, N., Takahashi, T., Tajima, M., Mekata, H., Horii, Y., Murata, S. and Ohashi, K. (2017). Intrauterine infection with bovine leukemia virus in pregnant dam with high viral load. J. Vet. Med. Sci. 79, 2036–2039.

10. Hopkins, S. G. and DiGiacomo, R.F. (1997). Natural transmission of bovine leukemia virus in dairy and beef cattle. Vet. Clin. North Am. Food Anim. 13 107-128.

11. Bech-Nielsen, S., Piper, C. E. and Ferrer, J. F. (1978). Natural mode of transmission of the bovine leukemia virus: role of blood sucking insects. Am. J. Vet. Res. 39, 1089–1092.

12. Bartlett, P. C., Sordillo, L. M., Byrem, T. M., Norby, B., Grooms, D. L., Swenson, C. L., Zalucha, J. and Erskine, R. J. (2014). Options for the control of bovine leukemia virus in dairy cattle. Am. Vet. Med. Assoc. 244, 914–922.

13. European Commission, 2017. Bovine and swine diseases situation 2017 (https://ec. europa.eu/food/system/files/2018-12/la_annual-situation_2017.pdf, accessed on 2021, October, 20).

14. Nuotio, L., Rusanen, H., Sihvonen, L. and Neuvonen, E. (2003). Eradication of enzootic bovine leukosis from Finland. Prev. Vet. Med. 59, 43–49.

15. LaDronka, R. M., Ainsworth, S., Wilkins, M. J., Norby, B., Byrem, T. M. and Bartlett, P. C. (2018). Prevalence of bovine leukemia virus antibodies in us dairy cattle. Vet. Med. Int. 2018, 5831278.

16. Yang, Y., Fan, W., Mao, Y., Yang, Z., Lu, G., Zhang, R., Zhang, H., Szeto, C. and Wang, C. (2016). Bovine leukemia virus infection in cattle of China: Association with reduced milk production and increased somatic cell score. J. Dairy Sci. 99, 3688–3697.

17. Murakami, K., Kobayashi, S., Konishi, M., Kameyama, K.-I. and Tsutsui, T. (2013). Nationwide survey of bovine leukemia virus infection among dairy and beef breeding cattle in Japan from 2009-2011. J. Vet. Med. Sci. 75, 1123–1126.

18. Beier, D., Riebe, R., Blankenstein, P., Starick, E., Bondzio, A. and Marquardt, O. (2004). Establishment of a new bovine leukosis virus producing cell line. J. Virol. Methods. 121, 239-246.

19. Jimba, M., Takeshima, S. N., Murakami, H., Kohara, j., Kobayashi, N., Matsuhashi, T., Ohmori, T., Nunoya, T. and Aida, Y. (2012). BLV CoCoMo- qPCR: A useful tool for evaluating bovine leukemia virus infection status. BMC Vet. Res. 8, 167.

20. Nishiike, M., Haoka, M., Doi, T., Kohda, T. and Mukamoto, M. (2016). Development of a preliminary diagnostic measure for bovine leukosis in dairy cows using peripheral white blood cell and lymphocyte counts. J. Vet. Med. Sci. 78, 1145– 1151.

21. Ohno, A., Takeshima, S. N., Matsumoto, Y. and Aida, Y. (2015). Risk factors associated with increased bovine leukemia virus proviral load in infected cattle in Japan from 2012 to 2014. Virus Res. 210, 283–290.

22. Ferrer, J. F. (1980). Bovine lymphosarcoma. Adv. Vet. Sci. Comp. Med. 24, 1–68.

23. Burny, A., Cleuter, Y., Kettmann, R., Mammerickx, M., Marbaix, G., Portetelle, D., van den Broeke, A., Willems, L. and Thomaset, R. (1988). Bovine leukemia: facts and hypotheses derived from the study of an infectious cancer. Vet. Microbiol. 17, 197-218.

24. Ott, S. L., Johnson, R. and Wells, S. J. (2003). Association between bovine-leukosis virus seroprevalence and herd-level productivity on US dairy farms. Prevent. Vet. Med. 61, 249-262.

25. Shaghayegh, A. R. (2019). Detection and identification of enzootic bovine leukosis (EBL) in calves in Iran. Arch. Razi Inst. 74, 321-325.

26. Emanuelson, U., Scherling, K. and Pettersson, H. (1992). Relationships between herd bovine leukemia virus infection status and reproduction, disease incidence, and productivity in Swedish dairy herds. Prevent. Vet. Med. 12, 121–131.

27. Trainin, Z., Brenner, J., Meirom, R. and Ungar-Waron, H. (1996). Detrimental effect of bovine leukemia virus (BLV) on the immunological state of cattle. Vet. Immunol. Immunopathol. 54, 293–302.

28. Watanabe, A., Murakami, H., Kakinuma, S., Murao, K., Ohmae, K., Isobe, N., Akamatsu, H., Seto, T., Hashimura, S., Konda, K., Shinozuka, Y. and Kawai, K. (2019). Association between bovine leukemia virus proviral load and severity of clinical mastitis. J. Vet. Med. Sci. 81, 1431–1437.

29. Nekouei, O., VanLeeuwen, J., Stryhn, H., Kelton, D. and Keefe, G. (2016). Lifetime effects of infection with bovine leukemia virus on longevity and milk production of dairy cows. Prev. Vet. Med. 133, 1–9.

30. Rodríguez, S. M., Florins, A., Gillet, N., de Brogniez, A., Sánchez-Alcaraz, M. T., Boxus, M., Boulanger, F., Gutiérrez, G., Trono, K., Alvarez, I., Vagnoni, L. and Willems L. (2011). Preventive and therapeutic strategies for bovine leukemia virus: Lessons for HTLV. Viruses 3, 1210-1248.

31. MAFF, 2015. Guidelines for Biosecurity Measures of Enzootic Bovine Leukosis. (www.maff.go.jp/j/syouan/douei/pdf/ebl_guide.pdf, accessed on 2017, September, 5)

32. Kobayashi, S., Tsutsui, T., Yamamoto, T., Hayama, Y., Kameyama, K., Konishi, M. and Murakami, K. (2010). Risk factors associated with within-herd transmission of bovine leukemia virus on dairy farms in Japan. BMC Vet. Res. 6, 1.

33. Kobayashi, T., Inagaki, Y., Ohnuki, N., Sato, R., Murakami, S. and Imakawa, K. (2019). Increasing bovine leukemia virus (BLV) proviral load is a risk factor for progression of enzootic bovine leucosis: a prospective study in Japan. Prev. Vet. Med. 178, 104680.

34. Kalra, H., Drummen, G. P. and Mathivanan, S. (2016). Focus on extracellular vesicles: Introducing the next small big thing. Int. J. Mol. Sci. 17, 170.

35. Gheinani, A. H., Vögeli, M., Baumgartner, U., Vassella, E., Draeger, A., Burkhard, F. C. and Monastyrskaya, k. (2018). Improved isolation strategies to increase the yield and purity of human urinary exosomes for biomarker discovery. Sci. Rep. 8, 3945.

36. Lässer, C., Alikhani, V. S., Ekström, K., Eldh, M., Paredes, P. T., Bossios, A., Sjöstrand, M., Gabrielsson, S., Lötvall, J. and Valadi, H. (2011). Human saliva, plasma and breast milk exosomes contain RNA: uptake by macrophages. J. Transl. Med. 9, 9.

37. Théry, C., Witwer, K. W., Aikawa, E., Alcaraz, M. J., Anderson, J. D., Andriantsitohaina, R., Antoniou, A., Arab, T., Archer, F., Atkin-Smith, G. K., Ayre, D. C., Bach, J. M., Bachurski, D., Baharvand, H., Balaj, L., Baldacchino, S., Bauer, N. N., Baxter, A. A., Bebawy, M., Beckham, C., Bedina Zavec, A., Benmoussa, A., Berardi, A. C., Bergese, P., Bielska, E., Blenkiron, C., Bobis- Wozowicz, S., Boilard, E., Boireau, W., Bongiovanni, A., Borràs, F. E., Bosch, S., Boulanger, C. M., Breakefield, X., Breglio, A. M., Brennan, M. Á., Brigstock, D. R., Brisson, A., Broekman, M. L., Bromberg, J. F., Bryl-Górecka, P., Buch, S., Buck, A. H., Burger, D., Busatto, S., Buschmann, D., Bussolati, B., Buzás, E. I., Byrd, J. B., Camussi, G., Carter, D. R., Caruso, S., Chamley, L. W., Chang, Y. T., Chen, C., Chen, S., Cheng, L., Chin, A. R., Clayton, A., Clerici, S. P., Cocks, A., Cocucci, E., Coffey, R. J., Cordeiro-da-Silva, A., Couch, Y., Coumans, F. A., Coyle, B., Crescitelli, R., Criado, M. F., D'Souza-Schorey, C., Das, S., Datta, Chaudhuri, A., de Candia, P., De Santana, E. F., De Wever, O., Del Portillo, H. A., Demaret, T., Deville, S., Devitt, A., Dhondt, B., Di Vizio, D., Dieterich, L. C., Dolo, V., Dominguez Rubio, A. P., Dominici, M., Dourado, M. R., Driedonks, T. A., Duarte, F. V., Duncan, H. M., Eichenberger, R. M., Ekström, K., El Andaloussi, S., Elie-Caille, C., Erdbrügger, U., Falcón-Pérez, J. M., Fatima, F., Fish, J. E., Flores-Bellver, M., Försönits, A., Frelet-Barrand, A., Fricke, F., Fuhrmann, G., Gabrielsson, S., Gámez-Valero, A., Gardiner, C., Gärtner, K., Gaudin, R., Gho, Y. S., Giebel, B., Gilbert, C., Gimona, M., Giusti, I., Goberdhan, D. C., Görgens, A., Gorski, S. M., Greening, D. W., Gross, J. C., Gualerzi, A., Gupta, G. N., Gustafson, D., Handberg, A., Haraszti, R. A., Harrison, P., Hegyesi, H., Hendrix, A., Hill, A. F., Hochberg, F. H., Hoffmann, K. F., Holder, B., Holthofer, H., Hosseinkhani, B., Hu, G., Huang, Y., Huber, V., Hunt, S., Ibrahim, A. G., Ikezu, T., Inal, J. M., Isin, M., Ivanova, A., Jackson, H. K., Jacobsen, S., Jay, S. M., Jayachandran, M., Jenster, G., Jiang, L., Johnson, S. M., Jones, J. C., Jong, A., Jovanovic-Talisman, T., Jung, S., Kalluri, R., Kano, S. I., Kaur, S., Kawamura, Y., Keller, E. T., Khamari, D., Khomyakova, E., Khvorova, A., Kierulf, P., Kim, K. P., Kislinger, T., Klingeborn, M., Klinke, D. J., Kornek, M., Kosanović, M. M., Kovács, Á. F., Krämer-Albers, E. M., Krasemann, S., Krause, M., Kurochkin, I. V., Kusuma, G. D., Kuypers, S., Laitinen, S., Langevin, S. M., Languino, L. R., Lannigan, J., Lässer, C., Laurent, L. C., Lavieu, G., Lázaro- Ibáñez, E., Le Lay, S., Lee, M. S., Lee, Y. X. F., Lemos, D. S., Lenassi, M., Leszczynska, A., Li, I. T., Liao, K., Libregts, S. F., Ligeti, E., Lim, R., Lim, S. K., Linē, A., Linnemannstöns, K., Llorente, A., Lombard, C. A., Lorenowicz, M. J., Lörincz, Á. M, Lötvall, J., Lovett, J., Lowry, M. C., Loyer, X., Lu, Q., Lukomska, B., Lunavat, T. R., Maas, S. L., Malhi, H., Marcilla, A., Mariani, J., Mariscal, J., Martens-Uzunova, E. S., Martin-Jaular, L., Martinez, M. C., Martins, V. R., Mathieu, M., Mathivanan, S., Maugeri, M., McGinnis, L. K., McVey, M. J., Meckes, D. G. Jr., Meehan, K. L., Mertens, I., Minciacchi, V. R., Möller, A., Møller Jørgensen, M., Morales-Kastresana, A., Morhayim, J., Mullier, F., Muraca, M., Musante, L., Mussack, V., Muth, D. C., Myburgh, K. H., Najrana, T., Nawaz, M., Nazarenko, I., Nejsum, P., Neri, C., Neri, T., Nieuwland, R., Nimrichter, L., Nolan, J. P., Nolte-'t Hoen, E. N., Noren Hooten, N., O'Driscoll, L., O'Grady, T., O'Loghlen, A., Ochiya, T., Olivier, M., Ortiz, A., Ortiz, L. A., Osteikoetxea, X., Østergaard, O., Ostrowski, M., Park, J, Pegtel, D. M., Peinado, H., Perut, F., Pfaffl, M. W., Phinney, D. G., Pieters, B. C., Pink, R. C., Pisetsky, D. S., Pogge von Strandmann, E., Polakovicova, I., Poon, I. K., Powell, B. H., Prada, I., Pulliam, L., Quesenberry, P., Radeghieri, A., Raffai, R. L., Raimondo, S., Rak, J., Ramirez, M. I., Raposo, G., Rayyan, M. S., Regev-Rudzki, N., Ricklefs, F. L., Robbins, P. D., Roberts, D. D., Rodrigues, S. C., Rohde, E., Rome, S., Rouschop, K. M., Rughetti, A., Russell, A. E., Saá, P., Sahoo, S., Salas-Huenuleo, E., Sánchez, C., Saugstad, J. A., Saul, M. J., Schiffelers, R. M., Schneider, R., Schøyen, T. H., Scott, A., Shahaj, E., Sharma, S., Shatnyeva, O., Shekari, F., Shelke, G. V., Shetty, A. K., Shiba, K., Siljander, P. R., Silva, A. M., Skowronek, A., Snyder, O. L., Soares, R. P., Sódar, B. W., Soekmadji, C., Sotillo, J., Stahl, P. D., Stoorvogel, W., Stott, S. L., Strasser, E. F., Swift, S., Tahara, H., Tewari, M., Timms, K., Tiwari, S., Tixeira, R., Tkach, M., Toh, W. S., Tomasini, R., Torrecilhas, A. C., Tosar, J. P., Toxavidis, V., Urbanelli, L., Vader, P., van Balkom, B. W., van der Grein, S. G., Van Deun, J., van Herwijnen, M. J., Van Keuren-Jensen, K., van Niel, G., van Royen, M. E., van Wijnen, A. J., Vasconcelos, M. H., Vechetti, I. J. Jr., Veit, T. D., Vella, L. J., Velot, É., Verweij, F. J., Vestad, B., Viñas, J. L., Visnovitz, T., Vukman, K. V., Wahlgren, J., Watson, D. C., Wauben, M. H., Weaver, A., Webber, J. P., Weber, V., Wehman, A. M., Weiss, D. J., Welsh, J. A., Wendt, S., Wheelock, A. M., Wiener, Z., Witte, L., Wolfram, J., Xagorari, A., Xander, P., Xu, J., Yan, X., Yáñez-Mó, M., Yin, H., Yuana, Y., Zappulli, V., Zarubova, J., Žėkas, V., Zhang, J. Y., Zhao, Z., Zheng, L., Zheutlin, A. R., Zickler, A. M., Zimmermann, P., Zivkovic, A. M., Zocco, D. and Zuba-Surma, E. K. (2018). Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles 7, 1535750.

38. Pap, E., Ṕallinger, É., Ṕasztói, M. and Falus, A. (2009). Highlights of a new type of intercellular communication: microvesicle-based information transfer. J. Inflamm. Res. 58, 1–8.

39. Valadi, H., Ekström, K., Bossios, A., Sjöstrand, M., Lee, J. J. and Lötvall, J. O. (2007). Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biol. 9, 654–659.

40. Luga, V., Zhang, L., Viloria-Petit, A. M., Ogunjimi, A. A., Inanlou, M. R., Chiu, E., Buchanan, M., Hosein, A. N., Basik, M. and Wrana, J. L. (2012). Exosomes mediate stromal mobilization of autocrine WNT-PCP signaling in breast cancer cell migration. Cell 151, 1542–1566.

41. Gould, S. J. and Raposo, G. (2013). As we wait: Coping with an imperfect nomenclature for extracellular vesicles. J. Extracell. Vesicles 2, 20389.

42. Haug, A., Hostmark, A. T. and Harstad, O. M. (2007). Bovine milk in human nutrition. A review. Lipids Health Dis. 6, 25.

43. Hata, T., Murakami, K., Nakatani, H., Yamamoto, Y., Matsuda, T. and Aoki, N. (2010). Isolation of bovine milk-derived microvesicles carrying mRNAs and microRNAs. Biochem. Biophys. Res. Commun. 396, 528–533.

44. Izumi, H., Kosaka, N., Shimizu, T., Sekine, K., Ochiya, T. and Takase, M. (2012). Bovine milk contains microRNA and messenger RNA that are stable under degradative conditions. J. Dairy Sci. 95, 4831–4841.

45. Reinhardt, T. A., Lippolis, J. D., Nonnecke, B. J. and Sacco R. E. (2012). Bovine milk exosome proteome. J. Proteom. 75, 1486–1492.

46. Sanwlani, R., Fonseka Chitti, P. S. V. and Mathivanan, S. (2020). Milk-derived extracellular vesicles in inter-organism, cross-species communication and drug delivery. Proteomes 8, 11.

47. Samuel, M., Chisanga, D., Liem, M., Keerthikumar, S., Anand, S., Ang, C-S., Adda, C. G., Versteegen, E., Jois, M. and Mathivanan S. (2017). Bovine milk-derived exosomes from colostrum are enriched with proteins implicated in immune response and growth. Sci. Rep. 7, 5933.

48. Donnet-Hughes, A., Duc, N., Serrant, P., Vidal, K. and Schiffrin, E. (2000). Bioactive molecules in milk and their role in health and disease: The role of transforming growth factor-β. Immunol. Cell Biol. 78, 74–79.

49. Crookenden, M. A., Walker, C. G., Peiris, H., Koh, Y., Heiser, A., Loor, J. J., Moyes, K. M., Murray, A., Dukkipati, V. S. R., Kay, J. K., Meier, S., Roche, J. R. and Mitchell, M. D. (2016). Proteins from circulating exosomes represent metabolic state in transition dairy cows. J. Dairy Sci. 99, 7661–7668.

50. Yamada, T., Shigemura, H., Ishiguro, N. and Inoshima, Y. (2013). Cell infectivity in relation to bovine leukemia virus gp51 and p24 in bovine milk exosomes. PLoS One 8, e77359.

51. Cai, M., He, H., Jia, X., Chen, S., Wang, J., Shi, Y., Liu, B., Xiao, W. and Lai, S. (2018). Genome-wide microRNA profiling of bovine milk-derived exosomes infected with Staphylococcus aureus. Cell Stress Chaperone. 23, 663–672.

52. Glass, E. J., Baxter, R., Leach, R. and Taylor, G. (2010). Bovine viral diseases: the role of host genetics, Chap. 6. In: Bishop, S. C., Axford, R. F. E., Nicholas, F. W., and Owen, J. B. (ed) Breeding for disease resistance in farm animals, 3rd ed. CAB International Oxfordshire, UK, 88–140.

53. Klener, P. Jr., Andera, L., Klener, P., Necas, E. and Zivný, J. (2006). Cell death signalling pathways in the pathogenesis and therapy of haematologic malignancies: overview of apoptotic pathways. Folia Biol. (Praha). 52, 34-44.

54. Polat, M., Takeshima, S-N. and Aida, Y. (2017). Epidemiology and genetic diversity of bovine leukemia virus. Virol. J. 14, 209.

55. Evermann, J. F. and Jackson, M. K. (1997). Laboratory diagnostic tests for retroviral infections in dairy and beef cattle. Vet. Clin. North Am. Food Anim. Pract. 13, 87–106.

56. Naif, H. M., Brandon, R. B., Daniel, R. C. W. and Lavin, M. F. (1990). Bovine leukemia proviral dna detection in cattle using the polymerase chain-reaction. Vet. Microbiol. 25, 117-129.

57. Shettigara, P. T., Samagh, B. S. and Lobinowich, E. M. (1989). Control of bovine leukemia virus infection in dairy herds by agar gel immunodiffusion test and segregation of reactors. Can. J. Vet. Res. 53, 108–110.

58. CABI, (2021). Enzootic bovine leukosis. In: Invasive species compendium. Wallingford, UK: CAB International. (https://www.cabi.org/isc, accessed on 2022, October, 25).

59. Hishamnuri, W. N. A. D., Nakagun, S., Maezawa, M., Sakaguchi, K., Akiyama, N., Watanabe, K. I., Horiuchi, N., Kobayashi, Y. and Inokuma, H. (2019). Disseminated thymic B-cell lymphoma in a Holstein heifer. J. Vet. Diagn. Invest. 31, 852-855.

60. Benmoussaa, A., Gottib, C., Bourassab, S., Gilbert, C. and Provost, P. (2019). Identification of protein markers for extracellular vesicle (EV) subsets in cow’s milk. J. Proteom. 192, 78–88.

61. Benmoussa, A. and Provost, P. (2019). Milk MicroRNAs in health and disease. Compr. Rev. Food Sci. Food Saf. 18, 703–722.

62. Izumi, H., Tsuda, M., Sato, Y., Kosaka, N., Ochiya, T., Iwamoto, H., Namba, K. and Takeda, Y. (2015). Bovine milk exosomes contain microRNA and mRNA and are taken up by human macrophages. J. Dairy Sci. 98, 2920-2933.

63. McMahon, D. J. and Oommen, B. S. (2008). Supramolecular structure of the casein micelle. J. Dairy Sci. 91, 1709–1721.

64. Lönnerdal, B. (2003). Nutritional and physiologic significance of human milk proteins. Am. J. Clin. Nutr. 77, 1537S-1543S.

65. Van der Pol, E., Coumans, F. A., Grootemaat, A. E., Gardiner, C., Sargent, I. L., Harrison, P., Sturk, A., van Leeuwen, T. G. and Nieuwland, R. (2014). Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing. J. Thromb. Haemost. 12, 1182–1192.

66. Webber, J. and Clayton, A. (2013). How pure are your vesicles? J. Extracell. Vesicles 2, 1–6.

67. Yamada, T., Inoshima, Y., Matsuda, T. and Ishiguro, N. (2012). Comparison of methods for isolating exosomes from bovine milk. J. Vet. Med. Sci. 74, 1523– 1525.

68. Ban, J. J., Lee, M., Im, W. and Kim, M. (2015). Low pH increases the yield of exosome isolation. Biochem. Biophys. Res. Commun. 461, 76–79.

69. Somiya, M., Yoshioka, Y. and Ochiya T. (2018). Biocompatibility of highly purified bovine milk derived extracellular vesicles. J. Extracell. Vesicles 7, 1440132.

70. Yamauchi, M., Shimizu, K., Rahman, M., Ishikawa, H., Takase, H., Ugawa, S., Okada, A. and Inoshima Y. (2019). Efficient method for isolation of exosomes from raw bovine milk. Drug Dev. Ind. Pharm. 45, 359-364.

71. Schacterle, G. R. and Pollack, R. L. A. (1973). simplified method for the quantitative assay of small amounts of protein in biologic material. Anal. Biochem. 51, 654– 655.

72. Vaswani, K., Koh, Y. Q., Almughlliq, F. B., Peiris, H. N. and Mitchell, M. D. (2015). A method for the isolation and enrichment of purified bovine milk exosomes. Reprod. Biol. 17, 341-348.

73. Schwartz, I. and Levy, D. (1994). Pathobiology of bovine leukemia virus. Vet. Res. 25, 521-536.

74. Brym, P. and Kamiński, S. (2016). Microarray analysis of differential gene expression profiles in blood cells of naturally BLV-infected and uninfected Holstein- Friesian cows. Mol. Biol. Rep. 44, 109–127.

75. Cha, B. S., Park, K. S. and Park, J. S. (2020). Signature mRNA markers in extracellular vesicles for the accurate diagnosis of colorectal cancer. J. Biol. Eng. 14, 4.

76. Fechner, H., Blankenstein, P., Looman, A.C., Elwert, J., Geue, L., Albrecht, C., Kurg, A., Beier, D., Marquardt, O. and Ebner, D. (1997). Provirus variants of the bovine leukemia virus and their relation to the serological status of naturally infected cattle. Virology 237, 261–269.

77. Murakami, K.; Okada, K.; Ikawa, Y. and Aida, Y. (1994). Bovine Leukemia Virus Induces CD5- B Cell lymphoma in sheep despite temporarily increasing CD5+ B cells in asymptomatic stage. Virology 202, 458–465.

78. Smyth, G. K. (2004). Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 3, 3.

79. Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Series B 57, 289–300.

80. Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y. and Morishima, K. (2017). KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 45, D353–D361.

81. Huang, D. W., Sherman, B. T. and Lempicki, R. A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57.

82. Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A. and Speleman, F. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3, research0034.1–0034.11.

83. Andersen, C. L., Jensen, J. L. and Ørntoft, T. F. (2004). Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 64, 5245-5250.

84. Pfaffl, M. W., Tichopad, A., Prgomet, C. and Neuvians, T. P. (2004). Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper-Excel-based tool using pair-wise correlations. Biotechnol. Lett., 26, 509-515.

85. Silver, N., Best, S., Jiang, J. and Thein, S. L. (2006). Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Mol. Biol. 7, 33.

86. Xie, F., Xiao, P., Chen, D., Xu, L. and Zhang, B. (2012). miRDeepFinder: a miRNA analysis tool for deep sequencing of plant small RNAs. Plant Mol. Biol. 80, 75- 84.

87. Schmittgen, T. D. and Livak, K. J. (2008). Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 3, 1101–1108.

88. Kanda, Y. (2013). Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant. 48, 452–458.

89. Takeshima, S. N.; Ohno, A. and Aida, Y. (2019). Bovine leukemia virus proviral load is more strongly associated with bovine major histocompatibility complex class II DRB3 polymorphism than with DQA1 polymorphism in Holstein cow in Japan. Retrovirology 16, 14.

90. Bendixen, H. J. (1963). Preventive measures in cattle leukemia: leukosis enzootica bovis. Ann. N. Y. Acad. Sci. 108, 1241-1267.

91. Raab-Traub, N. and Dittmer, D. P. (2017). Viral effects on the content and function of extracellular vesicles. Nat. Rev. Genet. 15, 559–572.

92. Jaworski, E., Narayanan, A., Van Duyne, R., Shabbeer-Meyering, S., Iordanskiy, S., Saifuddin, M., Das, R., Afonso, P. V., Sampey, G. C., Chung, M., Popratiloff, A., Shrestha, B., Sehgal, M., Jain, P., Vertes, A., Mahieux, R. and Kashanchi, F. (2014). Human T-lymphotropic virus type 1-infected cells secrete exosomes that contain Tax protein. J. Biol. Chem. 289, 22284–22305.

93. Armogida, S. A., Yannaras, N. M., Melton, A. L. and Srivastava, M. D. (2004). Identification and quantification of innate immune system mediators in human breast milk. Allergy Asthma Proc. 25, 297–304.

94. Kuang, M., Tao, X., Peng, Y., Zhang, W., Pan, Y., Cheng, L., Yuan, C., Zhao, Y., Mao, H., Zhuge, L., Zhou, Z., Chen, H. and Sun, Y. (2019). Proteomic analysis of plasma exosomes to differentiate malignant from benign pulmonary nodules. Clin. Proteomics 16, 5–11.

95. Zhang, N. and Zhang, S. (2019). Identification of differentially expressed genes between primary lung cancer and lymph node metastasis via bioinformatic analysis. Oncol. Lett. 18, 3754–3768.

96. Frie, M. C., Droscha, C. J., Greenlick, A. E. and Coussens, P. M. (2017). MicroRNAs encoded by bovine leukemia virus (BLV) are associated with reduced expression of B cell transcriptional regulators in dairy cattle naturally infected with BLV. Front. Vet. Sci. 4, 245.

97. Li, Y., Zhang, C., Qin, L., Li, D., Zhou, G., Dang, D., Chen, S., Sun, T., Zhang, R., Wu, W., Xi, Y., Jin, Y. and Duan, G. (2018). Characterization of critical functions of long non-coding RNAs and mRNAs in rhabdomyosarcoma cells and mouse skeletal muscle infected by enterovirus 71 using RNA-seq. Viruses 10, 556.

98. Cheishvili, D., Stefanska, B., Yi, C., Li, C. C., Yu, P., Arakelian, A., Tanvir, I., Khan, H. A., Rabbani, S. and Szyf, M. (2015). A common promoter hypomethylation signature in invasive breast, liver and prostate cancer cell lines reveals novel targets involved in cancer invasiveness. Oncotarget 6, 33253.

99. Carles, A., Millon, R., Cromer, A., Ganguli, G., Lemaire, F., Young, J., Wasylyk, C., Muller, D., Schultz, I., Rabouel, Y., Dembélé, D., Zhao, C., Marchal, P., Ducray, C., Bracco, L., Abecassis, J., Poch, O. and Wasylyk, B. (2005). Head and neck squamous cell carcinoma transcriptome analysis by comprehensive validated differential display. Oncogene 25, 1821–1831.

100. Marx, S., Dal Maso, T., Chen, J. W., Bury, M., Wouters, J., Michiels, C. and Le, Calvé B. (2020). Transmembrane (TMEM) protein family members: Poorly characterized even if essential for the metastatic process. Sem. Cancer Biol. 60, 96–106.

101. Wrzesiński, T., Szelag, M., Cieślikowski, W. A., Ida, A., Giles, R., Zodro, E., Szumska, J., Poźniak, J., Kwias, Z., Bluyssen, H. A. and Wesoly, J. (2015). Expression of pre-selected TMEMs with predicted ER localization as potential classifiers of ccRCC tumors. BMC Cancer 15, 518.

102. Meng, X., Brachova, P., Yang, S., Xiong, Z., Zhang, Y., Thiel, K. W. and Leslie, K. K. (2011). Knockdown of MTDH sensitizes endometrial cancer cells to cell death induction by death receptor ligand TRAIL and HDAC inhibitor LBH589 co-treatment. PLoS One 6, e20920.

103. Huang, Z, Fan, G. and Wang, D. (2017). Downregulation of calbindin 1, a calcium- binding protein, reduces the proliferation of osteosarcoma cells. Oncol. Lett. 13, 3727.

104. Panei, C. J., Suzuki, K., Echeverría, M. G., Serena, M. S., Metz, G. E. and González, E. T. (2009). Association of BOLA-DRB3.2 alleles with resistance and susceptibility to persistent lymphocytosis in BLV infected cattle in Argentina. Int. J. Dairy Sci. 4, 123–128.

105. Lo, C. W., Borjigin, L., Saito, S., Fukunaga, K., Saitou, E., Okazaki, K., Mizutani, T., Wada, S., Takeshima, S. N. and Aida, Y. (2020). BoLA-DRB3 polymorphism is associated with differential susceptibility to bovine leukemia virus-induced lymphoma and proviral load. Viruses 12, 352.

106. Wang, Y. T., Shi, T., Srivastava, S., Kagan, J., Liu, T. and Rodland, K. D. (2020). Proteomic analysis of exosomes for discovery of protein biomarkers for prostate and bladder cancer. Cancers 12, 2335.

107. Overbye, A., Skotland, T., Koehler, C. J., Thiede, B., Seierstad, T., Berge, V., Sandvig, K. and Llorente, A. (2015). Identification of prostate cancer biomarkers in urinary exosomes. Oncotarget 6, 30357–30376.

108. Reinhardt, T. A., Sacco, R. E., Nonnecke, B. J. and Lippolis, J. D. (2013). Bovine milk proteome: Quantitative changes in normal milk exosomes, milk fat globule membranes and whey proteomes resulting from Staphylococcus aureus mastitis. J. Proteom. 82, 141–154.

109. Nguyen, E. V., Centenera, M. M., Moldovan, M., Das, R., Irani, S., Vincent, A. D., Chan, H., Horvath, L. G., Lynn, D. J., Daly, R. J. and Butler, L. M. (2018). Identification of novel response and predictive biomarkers to hsp90 inhibitors through proteomic profiling of patient-derived prostate. Mol. Cell. Proteomics 17, 1470-1486.

110. Delosière, M., Pires, J.A., Bernard, L., Cassar-Malek, I. and Bonnet, M. (2020). Dataset reporting 4654 cow milk proteins listed according to lactation stages and milk fractions. Data Brief 29, 105105.

111. Wilson, S. R., Vehus, T., Berg, H. S. and Lundanes, E. Nano-LC in proteomics: recent advances and approaches. Bioanalysis 7, 1799–1815.

112. Lu, H., Tang, X., Sibley, M., Coburn, J., Rao, R., Shyama, Prasad., Ahsan, N. and Ramratnam, B. (2019). Impact of exosomal HIV-1 Tat expression on the human cellular proteome. Oncotarget 10, 5632-5644.

113. Dreesen, O. and Brivanlou, A. H. (2007). Signaling pathways in cancer and embryonic stem cells. Stem Cell Rev. 3, 7–17.

114. Takemoto, S., Mulloy, J. C., Cereseto, A., Migone, T. S., Patel, B. K., Matsuoka, M., Yamaguchi, K., Takatsuki, K., Kamihira, S., White, J. D., Leonard, W. J., Waldmann, T. and Franchini, G. (1997). Proliferation of adult T cell leukemia/lymphoma cells is associated with the constitutive activation of JAK/STAT proteins. Proc. Natl. Acad. Sci. U.S.A. 94, 13897-13902.

115. Sawada, N. (2013). Tight junction-related human diseases. Pathol. Int. 63, 1–12.

116. Hülsemann, M., Sanchez, C., Verkhusha, P. V., Des Marais, V., Mao, S. P. H., Donnelly, S. K., Segall, J. E. and Hodgson, L. (2021). TC10 regulates breast cancer invasion and metastasis by controlling membrane type-1 matrix metalloproteinase at invadopodia. Commun. Biol. 2021, 4: 1091.

117. Hu, X., Addlagatta, A., Lu, J., Matthews, B. W. and Liu, J. O. (2006). Elucidation of the function of type 1 human methionine aminopeptidase during cell cycle progression. Proc. Natl. Acad. Sci. U.S.A. 103, 18148-18153.

118. Singh, S., Saraya, A., Das, P. and Sharma, R. (2017). Increased expression of MARCH8, an E3 ubiquitin ligase, is associated with growth of esophageal tumor. Cancer Cell Int. 17, 116.

119. Tada, T., Zhang, Y., Koyama, T., Tobiume, M., Tsunetsugu-Yokota, Y., Yamaoka, S., Fujita, H. and Tokunaga, K. (2015). MARCH8 inhibits HIV-1 infection by reducing virion incorporation of envelope glycoproteins. Nat. Med. 21, 1502- 1507.

120. Oyama, K., Fushida, S., Kinoshita, J., Okamoto, K., Makino, I., Nakamura, K., Hayashi, H., Inokuchi, M., Nakagawara, H., Tajima, H., Fujita, H., Takamura, H., Ninomiya, I., Kitagawa, H., Fujimura, T. and Ohta, T. (2013). Serum cytokeratin 18 as a biomarker for gastric cancer. Clin. Exp. Med. 13, 289-295.

121. Peduk, S., Tatar, C., Dincer, M., Ozer, B., Kocakusak, A., Citlak, G., Akinci, M. and Tuzun, I. S. (2018). The role of serum CK18, TIMP1, and MMP-9 levels in predicting R0 resection in patients with gastric cancer. Dis. Markers 2018, 5604702.

122. Han, W., Hu, C., Fan, Z. J. and Shen, G. L. (2021). Transcript levels of keratin 1/5/6/14/15/16/17 as potential prognostic indicators in melanoma patients. Sci. Rep. 11, 1023.

参考文献をもっと見る