リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「The identification of novel small extracellular vesicle (sEV) production modulators using luciferase‐based sEV quantification method」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

The identification of novel small extracellular vesicle (sEV) production modulators using luciferase‐based sEV quantification method

Yamamoto, Aki Takahashi, Yuki Inuki, Shinsuke Nakagawa, Shumpei Nakao, Kodai Ohno, Hiroaki Doi, Masao Takakura, Yoshinobu 京都大学 DOI:10.1002/jex2.62

2022.09

概要

Small extracellular vesicles (sEVs) are nano-sized vesicles secreted from various cells that contain bioactive metabolites and function as key regulators for intercellular communication. sEVs modulate diverse biological and pathological processes in the body, and the amount of circulating sEVs has been reported to correlate with certain disease progression. Therefore, the identification of small molecular compounds that can control sEV production may become a novel therapeutic strategy. In this study, a rapid, highly sensitive sEV quantification method utilizing fusion proteins consisting of Gaussia luciferase (gLuc) reporter protein and sEV markers (CD63 and CD82) was developed. A total of 480 compounds were screened to identify potent inducers and inhibitors of gLuc activity. Two novel compounds, KPYC08425 and KPYC12163, showed significant and dose-dependent changes in gLuc activity with minimal cytotoxicity based on the LDH assay. The efficacy of these two compounds was further evaluated by protein quantification of the isolated sEVs. Further evaluation of KPYC12163 suggested that the autolysosomal pathway may be involved in its inhibitory effect on sEV production.

この論文で使われている画像

参考文献

Altick, A. L., Baryshnikova, L. M., Vu, T. Q., & von Bartheld, C. S. (2009). Quantitative analysis of multivesicular bodies (MVBs) in the hypoglossal nerve:

Evidence that neurotrophic factors do not use MVBs for retrograde axonal transport. The Journal of Comparative Neurology, (6), 641–657. https://doi.org/

10.1002/cne.22047

Baell, J. B., & Holloway, G. A. (2010). New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their

exclusion in bioassays. Journal of Medicinal Chemistry, (7), 2719–2740. https://doi.org/10.1021/jm901137j

Baell, J. B., & Nissink, J. W. M. (2018). Seven year itch: Pan-assay interference compounds (PAINS) in 2017—Utility and limitations. ACS Chemical Biology, (1),

36–44. https://doi.org/10.1021/acschembio.7b00903

27682811, 2022, 9, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/jex2.62 by Cochrane Japan, Wiley Online Library on [19/01/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

 of 

YAMAMOTO et al.

Becker, A., Thakur, B. K., Weiss, J. M., Kim, H. S., Peinado, H., & Lyden, D. (2016). Extracellular vesicles in cancer: Cell-to-cell mediators of metastasis. Cancer

Cell, (6), 27066. https://doi.org/10.1016/j.ccell.2016.10.009

Catalano, M., & O’Driscoll, L. (2020). Inhibiting extracellular vesicles formation and release: A review of EV inhibitors. Journal of Extracellular Vesicles, (1),

1703244. https://doi.org/10.1080/20013078.2019.1703244

Charoenviriyakul, C., Takahashi, Y., Morishita, M., Nishikawa, M., & Takakura, Y. (2018). Role of extracellular vesicle surface proteins in the pharmacokinetics

of extracellular vesicles. Molecular Pharmaceutics, (3), 1073–1080. https://doi.org/10.1021/acs.molpharmaceut.7b00950

Datta, A., Kim, H., McGee, L., Johnson, A. E., Talwar, S., Marugan, J., Southall, N., Hu, X., Lal, M., Mondal, D., Ferrer, M., & Abdel-Mageed, A. B. (2018). Highthroughput screening identified selective inhibitors of exosome biogenesis and secretion: A drug repurposing strategy for advanced cancer. Scientific Reports,

(1), 8161. https://doi.org/10.1038/s41598-018-26411-7

el Andaloussi, S., Mäger, I., Breakefield, X. O., & Wood, M. J. A. (2013). Extracellular vesicles: Biology and emerging therapeutic opportunities. Nature Reviews

Drug Discovery, (5), 347–357. https://doi.org/10.1038/nrd3978

Emam, S. E., Ando, H., Abu Lila, A. S., Shimizu, T., Ukawa, M., Okuhira, K., Ishima, Y., Mahdy, M. A., Ghazy, F. S., & Ishida, T. (2018). A novel strategy to

increase the yield of exosomes (extracellular vesicles) for an expansion of basic research. Biological and Pharmaceutical Bulletin, (5), 733–742. https://doi.

org/10.1248/bpb.b17-00919

Eskelinen, E.-L. (2006). Roles of LAMP-1 and LAMP-2 in lysosome biogenesis and autophagy. Molecular Aspects of Medicine, (5–6), 495–502. https://doi.org/

10.1016/j.mam.2006.08.005

Feng, Y., He, D., Yao, Z., & Klionsky, D. J. (2014). The machinery of macroautophagy. Cell Research, (1), 24–41. https://doi.org/10.1038/cr.2013.168

García-Seisdedos, D., Babiy, B., Lerma, M., Casado, M. E., Martínez-Botas, J., Lasunción, M. A., Pastor, Ó., & Busto, R. (2020). Curcumin stimulates exosome/microvesicle release in an in vitro model of intracellular lipid accumulation by increasing ceramide synthesis. Biochimica et Biophysica Acta (BBA) –

Molecular and Cell Biology of Lipids, (5), 158638. https://doi.org/10.1016/j.bbalip.2020.158638

Hikita, T., Miyata, M., Watanabe, R., & Oneyama, C. (2018). Sensitive and rapid quantification of exosomes by fusing luciferase to exosome marker proteins.

Scientific Reports, (1), 14035. https://doi.org/10.1038/s41598-018-32535-7

Im, E.-J., Lee, C.-H., Moon, P.-G., Rangaswamy, G. G., Lee, B., Lee, J. M., Lee, J.-C., Jee, J.-G., Bae, J.-S., Kwon, T.-K., Kang, K.-W., Jeong, M.-S., Lee, J.-E., Jung,

H.-S., Ro, H.-J., Jun, S., Kang, W., Seo, S.-Y., Cho, Y.-E., … Baek, M.-C. (2019). Sulfisoxazole inhibits the secretion of small extracellular vesicles by targeting

the endothelin receptor A. Nature Communications, (1), 1387. https://doi.org/10.1038/s41467-019-09387-4

Khan, F. M., Saleh, E., Alawadhi, H., Harati, R., Zimmermann, W.-H., & El-Awady, R. (2018). Inhibition of exosome release by ketotifen enhances sensitivity of

cancer cells to doxorubicin. Cancer Biology & Therapy, (1), 25–33. https://doi.org/10.1080/15384047.2017.1394544

Kulshreshtha, A., Singh, S., Ahmad, M., Khanna, K., Ahmad, T., Agrawal, A., & Ghosh, B. (2019). Simvastatin mediates inhibition of exosome synthesis,

localization and secretion via multicomponent interventions. Scientific Reports, (1), 16373. https://doi.org/10.1038/s41598-019-52765-7

Lässer, C., Seyed Alikhani, V., Ekström, K., Eldh, M., Torregrosa Paredes, P., Bossios, A., Sjöstrand, M., Gabrielsson, S., Lötvall, J., & Valadi, H. (2011). Human

saliva, plasma and breast milk exosomes contain RNA: Uptake by macrophages. Journal of Translational Medicine, (1), 9. https://doi.org/10.1186/1479-58769-9

Li, F., Long, L., Xiao, J., Wang, C., Li, W., Li, S., Zhao, C., & Wang, L. (2017). A novel hydroxyphenyl hydrazone derivate YCL0426 inhibits cancer cell proliferation

through sequestering iron. Anti-Cancer Drugs, (10), 1131–1140. https://doi.org/10.1097/CAD.0000000000000557

Ludwig, N., Yerneni, S. S., Menshikova, E. v., Gillespie, D. G., Jackson, E. K., & Whiteside, T. L. (2020). Simultaneous inhibition of glycolysis and oxidative

phosphorylation triggers a multi-fold increase in secretion of exosomes: Possible role of 2′,3′-CAMP. Scientific Reports, (1), 6948. https://doi.org/10.1038/

s41598-020-63658-5

Matsumoto, A., Takahashi, Y., Ogata, K., Kitamura, S., Nakagawa, N., Yamamoto, A., Ishihama, Y., & Takakura, Y. (2021). Phosphatidylserine-deficient small

extracellular vesicle (SEV) is a major somatic cell-derived SEV subpopulation in blood. Iscience, , 102839. https://doi.org/10.1016/j.isci.2021.102839

Piper, R. C., & Katzmann, D. J. (2007). Biogenesis and function of multivesicular bodies. Annual Review of Cell and Developmental Biology, (1), 519–547.

https://doi.org/10.1146/annurev.cellbio.23.090506.123319

Takahashi, Y., Nishikawa, M., Shinotsuka, H., Matsui, Y., Ohara, S., Imai, T., & Takakura, Y. (2013). Visualization and in vivo tracking of the exosomes of murine

melanoma B16-BL6 cells in mice after intravenous injection. Journal of Biotechnology, (2), 77–84. https://doi.org/10.1016/j.jbiotec.2013.03.013

Tang, J.-G., Wang, Y.-H., Wang, R.-R., Dong, Z.-J., Yang, L.-M., Zheng, Y.-T., & Liu, J.-K. (2008). Synthesis of analogues of flazin, in particular, flazinamide, as

promising anti-HIV agents. Chem Biodivers, (3), 447–460. https://doi.org/10.1002/cbdv.200890044

Théry, C., Witwer, K. W., Aikawa, E., Alcaraz, M. J., Anderson, J. D., Andriantsitohaina, R., Antoniou, A., Arab, T., Archer, F., Atkin-Smith, G. K., Ayre, D.

C., Bach, J.-M., Bachurski, D., Baharvand, H., Balaj, L., Baldacchino, S., Bauer, N. N., Baxter, A. A., Bebawy, M., … Zuba-Surma, E. K. (2018). Minimal

information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the international society for extracellular vesicles and update of

the MISEV2014 guidelines. Journal of Extracellular Vesicles, (1), 1535750. https://doi.org/10.1080/20013078.2018.1535750

Tkach, M., & Théry, C. (2016). Communication by extracellular vesicles: Where we are and where we need to go. Cell, (6), 1226–1232. https://doi.org/10.1016/

j.cell.2016.01.043

Trajkovic, K., Hsu, C., Chiantia, S., Rajendran, L., Wenzel, D., Wieland, F., Schwille, P., Brugger, B., & Simons, M. (2008). Ceramide triggers budding of exosome

vesicles into multivesicular endosomes. Science (), (5867), 1244–1247. https://doi.org/10.1126/science.1153124

van Niel, G., D’Angelo, G., & Raposo, G. (2018). Shedding light on the cell biology of extracellular vesicles. Nature Reviews Molecular Cell Biology, (4), 213–228.

https://doi.org/10.1038/nrm.2017.125

Verweij, F. J., Bebelman, M. P., Jimenez, C. R., Garcia-Vallejo, J. J., Janssen, H., Neefjes, J., Knol, J. C., de Goeij-de Haas, R., Piersma, S. R., Baglio, S.

R., Verhage, M., Middeldorp, J. M., Zomer, A., van Rheenen, J., Coppolino, M. G., Hurbain, I., Raposo, G., Smit, M. J., Toonen, R. F. G., … Pegtel,

D. M. (2018). Quantifying exosome secretion from single cells reveals a modulatory role for GPCR signaling. Journal of Cell Biology, (3), 1129–1142.

https://doi.org/10.1083/jcb.201703206

Xu, J., Camfield, R., & Gorski, S. M. (2018). The interplay between exosomes and autophagy – Partners in crime. Journal of Cell Science, (15), jcs215210.

https://doi.org/10.1242/jcs.215210

Yáñez-Mó, M., Siljander, P. R.-M., Andreu, Z., Bedina Zavec, A., Borràs, F. E., Buzas, E. I., Buzas, K., Casal, E., Cappello, F., Carvalho, J., Colás, E., Cordeiroda Silva, A., Fais, S., Falcon-Perez, J. M., Ghobrial, I. M., Giebel, B., Gimona, M., Graner, M., Gursel, I., … de Wever, O. (2015). Biological properties of

extracellular vesicles and their physiological functions. Journal of Extracellular Vesicles, (1), 27066. https://doi.org/10.3402/jev.v4.27066

Yoshioka, Y., Konishi, Y., Kosaka, N., Katsuda, T., Kato, T., & Ochiya, T. (2013). Comparative marker analysis of extracellular vesicles in different human cancer

types. Journal of Extracellular Vesicles, (1), 20424. https://doi.org/10.3402/jev.v2i0.20424

27682811, 2022, 9, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/jex2.62 by Cochrane Japan, Wiley Online Library on [19/01/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

YAMAMOTO et al.

 of 

Zaborowski, M. P., Balaj, L., Breakefield, X. O., & Lai, C. P. (2015). Extracellular vesicles: Composition, biological relevance, and methods of study. BioScience,

(8), 783–797. https://doi.org/10.1093/biosci/biv084

Zhang, H., Lu, J., Liu, J., Zhang, G., & Lu, A. (2020). Advances in the discovery of exosome inhibitors in cancer. Journal of Enzyme Inhibition and Medicinal

Chemistr, (1), 1322–1330. https://doi.org/10.1080/14756366.2020.1754814

S U P P O R T I N G I N F O R M AT I O N

Additional supporting information can be found online in the Supporting Information section at the end of this article.

How to cite this article: Yamamoto, A., Takahashi, Y., Inuki, S., Nakagawa, S., Nakao, K., Ohno, H., Doi, M., &

Takakura, Y. (2022). The identification of novel small extracellular vesicle (sEV) production modulators using

luciferase-based sEV quantification method. Journal of Extracellular Biology, , e62. https://doi.org/10.1002/jex2.62

27682811, 2022, 9, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/jex2.62 by Cochrane Japan, Wiley Online Library on [19/01/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

...

参考文献をもっと見る