リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「菌体外多糖生産乳酸菌Lactococcus lactis subsp. cremoris FCに関する研究」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

菌体外多糖生産乳酸菌Lactococcus lactis subsp. cremoris FCに関する研究

後藤 弥生 大阪府立大学 DOI:info:doi/10.24729/00017528

2021.11.19

概要

乳酸菌摂取による健康効果のうち免疫調節作用は特に注目されており、これは免疫系が環境中の様々な種類の微生物に対応するために発達してきたことによる。近年、特定の乳酸菌やその代謝物である EPS などが免疫学的効果を持ち、経口投与後に免疫系を調節できることが報告されている。その一例として、乳酸菌やビフィズス菌などの特定の乳酸菌の経口投与が呼吸器系で免疫調節作用を発揮し、マウスのインフルエンザウイルス(IFV)感染を防御すること報告されている [33-35]。一方、EPS の中には、マクロファージの活性化を示すもの [36]や、マウス脾臓細胞におけるインターフェロン-γ(IFN-γ)誘導活性やナチュラルキラー(NK)細胞活性の増強を示すもの[18]があることが示されている。さらに、Lactobacillus が産生した EPS の経口投与のマウスの IFV に対する有効性もいくつか報告されている [37, 38]。しかし、Lactococcus属の乳酸菌や EPS の経口投与による IFV 等の呼吸器感染症に対する防御効果については検討されていない。本章では、EPS を産生する Lactococcus lactis subsp. cremoris FC で発酵させたヨーグルトの投与が、マウスの IFV に対して予防効果があるかどうかを評価することを目的として検討を行った。

この論文で使われている画像

参考文献

1. 寺本貴則, 戸田登志也 & 家森幸男. (2003). 特別レポート カスピ海ヨーグルトの 特性とその応用. 食品と開発, 38(12), 59-61.

2. Ishida, T., Yokota, A., Umezawa, Y., Toda, T. & Yamada, K. (2005). Identification and characterization of lactococcal and Acetobacter strains isolated from traditional Caucasusian fermented milk. Journal of Nutritional Science and Vitaminology, 51(3), 187193.

3. 愛宕世高, 谷知美, 戸田登志也, 山田勝重, 奥平武則, 赤谷薫 & 家森幸男. (2003). カ ス ピ 海 ヨ ー グ ル ト か ら 分 離 し た Lactococcus lactis subsp. cremoris F 株 と Acetobacter orientalis F 株の混合培養に関する研究. 日本醸造学会大会講演要旨集, 2003, 8.

4. 宮本拓. (2007). 世界の発酵乳とそれらの微生物フローラ. ミルクサイエンス , 55(4), 253-262.

5. Uchida, K., Urashima, T., Chanishvili, N., Arai, I. & Motoshima, H. (2007). Major microbiota of lactic acid bacteria from Matsoni, a traditional Georgian fermented milk. Animal Science Journal, 78(1), 85-91.

6. Tamang, J.P., Watanabe, K. & Holzapfel, W.H. (2016). Diversity of microorganisms in global fermented foods and beverages. Frontiers in microbiology, 7, 377.

7. 田之上大 & 本田賢也. (2014). 第2章-1.腸内細菌と腸管免疫系. 実験医学(増 刊):常在細菌叢が操るヒトの健康と疾患, 大野博司 & 服部正平編, 82-87.

8. Bouskra, D., Brézillon, C., Bérard, M., Werts, C., Varona, R., Boneca, I.G. & Eberl, G. (2008). Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature, 456(7221), 507-510.

9. Hamada, H., Hiroi, T., Nishiyama, Y., Takahashi, H., Masunaga, Y., Hachimura, S., Kaminogawa, S., Takahashi-Iwanaga, H., Iwanaga, T. & Kiyono, H. (2002). Identification 75 of multiple isolated lymphoid follicles on the antimesenteric wall of the mouse small intestine. The Journal of Immunology, 168(1), 57-64.

10. Fagarasan, S., Kawamoto, S., Kanagawa, O. & Suzuki, K. (2009). Adaptive immune regulation in the gut: T cell–dependent and T cell–independent IgA synthesis. Annual review of immunology, 28, 243-273.

11. Atarashi, K., Tanoue, T., Shima, T., Imaoka, A., Kuwahara, T., Momose, Y., Cheng, G., Yamasaki, S., Saito, T. & Ohba, Y. (2011). Induction of colonic regulatory T cells by indigenous Clostridium species. Science, 331(6015), 337-341.

12. Lebeer, S., Vanderleyden, J. & De Keersmaecker, S.C. (2010). Host interactions of probiotic bacterial surface molecules: comparison with commensals and pathogens. Nature Reviews Microbiology, 8(3), 171-184.

13. Ciszek‐Lenda, M., Nowak, B., Śróttek, M., Gamian, A. & Marcinkiewicz, J. (2011). Immunoregulatory potential of exopolysaccharide from Lactobacillus rhamnosus KL37. Effects on the production of inflammatory mediators by mouse macrophages. International journal of experimental pathology, 92(6), 382-391.

14. Matsuzaki, C., Kamishima, K., Matsumoto, K., Koga, H., Katayama, T., Yamamoto, K. & Hisa, K. (2014). Immunomodulating activity of exopolysaccharide ‐ producing Leuconostoc mesenteroides strain NTM048 from green peas. Journal of Applied Microbiology, 116(4), 980-989.

15. Xu, Y., Cui, Y., Yue, F., Liu, L., Shan, Y., Liu, B., Zhou, Y. & Lü, X. (2019). Exopolysaccharides produced by lactic acid bacteria and Bifidobacteria: Structures, physiochemical functions and applications in the food industry. Food Hydrocolloids, 94, 475-499.

16. Zhou, Y., Cui, Y. & Qu, X. (2019). Exopolysaccharides of lactic acid bacteria: Structure, bioactivity and associations: A review. Carbohydrate polymers, 207, 317-332.

17. Kitazawa, H., Harata, T., Uemura, J., Saito, T., Kaneko, T. & Itoh, T. (1998). Phosphate group requirement for mitogenic activation of lymphocytes by an extracellular phosphopolysaccharide from Lactobacillus delbrueckii ssp. bulgaricus. International Journal of Food Microbiology, 40(3), 169-175.

18. Makino, S., Ikegami, S., Kano, H., Sashihara, T., Sugano, H., Horiuchi, H., Saito, T. & Oda, M. (2006). Immunomodulatory effects of polysaccharides produced by Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1. Journal of Dairy Science, 89(8), 2873-2881.

19. Sato, T., Nishimura-Uemura, J., Shimosato, T., Kawai, Y., Kitazawa, H. & Saito, T. (2004). Dextran from Leuconostoc mesenteroides augments immunostimulatory effects by the introduction of phosphate groups. Journal of food protection, 67(8), 1719-1724.

20. Teuber, M. (1995). The genus Lactococcus. The genera of lactic acid bacteria. (Springer), 173-234.

21. Kimoto-Nira, H., Mizumachi, K., Nomura, M., Kobayashi, M., Fujita, Y., Okamoto, T., Suzuki, I., Tsuji, N.M., Kurisaki, J.-i. & Ohmomo, S. (2007). Lactococcus sp. as potential probiotic lactic acid bacteria. Japan Agricultural Research Quarterly: JARQ, 41(3), 181189.

22. 戸田登志也, 高見澤菜穂子, 難波文男, 塩谷順彦, 新井嘉平 & 鈴木聡. (2017). 健 常者を対象とした Lactococcus lactis subsp. cremoris FC 含有食品摂取による整腸 効果の検証―プラセボ対照ランダム化二重盲検クロスオーバー比較試験―. 薬理 と治療, 45(6), 989-997.

23. Gibson, G. & Wang, X. (1994). Regulatory effects of bifidobacteria on the growth of other colonic bacteria. Journal of Applied bacteriology, 77(4), 412-420.

24. Gilliland, S.E. (1990). Health and nutritional benefits from lactic acid bacteria. FEMS Microbiology reviews, 7(1-2), 175-188.

25. 戸 田 登 志 也 , 小 阪 英 樹 , 寺 井 雅 一 , 森 英 樹 , 辨 野 義 己 & 家 森 幸 男 . (2005). 77 Lactococcus lactis subsp. cremoris FC を含有する発酵乳の健常高齢者に対する排便 および糞便内菌叢に及ぼす影響. 日本食品科学工学会誌, 52(6), 243-250.

26. Maruo, T., Sakamoto, M., Toda, T. & Benno, Y. (2006). Monitoring the cell number of Lactococcus lactis subsp. cremoris FC in human feces by real-time PCR with strainspecific primers designed using the RAPD technique. International journal of food microbiology, 110(1), 69-76.

27. Tlaskalová-Hogenová, H., Štěpánková, R., Hudcovic, T., Tučková, L., Cukrowska, B., Lodinová-Žádnıková, R., Kozáková, H., Rossmann, P., Bártová, J. & Sokol, D. (2004). Commensal bacteria (normal microflora), mucosal immunity and chronic inflammatory and autoimmune diseases. Immunology letters, 93(2-3), 97-108.

28. 大野博司. (2017). 腸内細菌叢研究の現状と展望. ファルマシア, 53(11), 1059-1063.

29. Akbari, V. & Hendijani, F. (2016). Effects of probiotic supplementation in patients with type 2 diabetes: systematic review and meta-analysis. Nutrition reviews, 74(12), 774-784.

30. Tamboli, C.P., Neut, C., Desreumaux, P. & Colombel, J.F. (2004). Dysbiosis in inflammatory bowel disease. Gut, 53(1), 1-4.

31. Bjorksten, B., Naaber, P., Sepp, E. & Mikelsaar, M. (1999). The intestinal microflora in allergic Estonian and Swedish 2-year-old children. Clinical and Experimental Allergy, 29(3), 342-346.

32. Noverr, M.C. & Huffnagle, G. (2005). The ‘microflora hypothesis’ of allergic diseases. Clinical & Experimental Allergy, 35(12), 1511-1520.

33. Hori, T., Kiyoshima, J., Shida, K. & Yasui, H. (2002). Augmentation of cellular immunity and reduction of influenza virus titer in aged mice fed Lactobacillus casei strain Shirota. Clinical and diagnostic laboratory immunology, 9(1), 105-108.

34. Yasui, H., Kiyoshima, J. & Hori, T. (2004). Reduction of influenza virus titer and protection against influenza virus infection in infant mice fed Lactobacillus casei Shirota. Clinical and diagnostic laboratory immunology, 11(4), 675-679.

35. Maeda, N., Nakamura, R., Hirose, Y., Murosaki, S., Yamamoto, Y., Kase, T. & Yoshikai, Y. (2009). Oral administration of heat-killed Lactobacillus plantarum L-137 enhances protection against influenza virus infection by stimulation of type I interferon production in mice. International immunopharmacology, 9(9), 1122-1125.

36. Kitazawa, H., Itoh, T., Tomioka, Y., Mizugaki, M. & Yamaguchi, T. (1996). Induction of IFN-γ and IL-1α production in macrophages stimulated with phosphopolysaccharide produced by Lactococcus lactis ssp. cremoris. International Journal of Food Microbiology, 31(1), 99-106.

37. Oda, M., Nakamura, S., Komatsu, S., Kambe, M., Tsuchiya, F., Komiyama, K. & Umezawa, I. (1982). Physiological activities of polysaccharide produced by Lactobacillus sp. The Japanese journal of antibiotics, 35(12), 2748-2754.

38. 牧野聖也. (2009). Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1 で発酵したヨ ーグルトおよび産生多糖体の免疫賦活効果. Milk science, 58(2), 35-40.

39. Kamei, M., Nishimura, H., Takahashi, T., Takahashi, N., Inokuchi, K., Mato, T. & Takahashi, K. (2016). Anti‐influenza virus effects of cocoa. Journal of the Science of Food and Agriculture, 96(4), 1150-1158.

40. Okamoto, S., Kawabata, S., Nakagawa, I., Okuno, Y., Goto, T., Sano, K. & Hamada, S. (2003). Influenza A virus-infected hosts boost an invasive type of Streptococcus pyogenes infection in mice. Journal of virology, 77(7), 4104-4112.

41. Harata, G., He, F., Hiruta, N., Kawase, M., Kubota, A., Hiramatsu, M. & Yausi, H. (2010). Intranasal administration of Lactobacillus rhamnosus GG protects mice from H1N1 influenza virus infection by regulating respiratory immune responses. Letters in applied microbiology, 50(6), 597-602.

42. Harata, G., He, F., Hiruta, N., Kawase, M., Kubota, A., Hiramatsu, M. & Yausi, H. (2011). Intranasally administered Lactobacillus gasseri TMC0356 protects mice from H1N1 influenza virus infection by stimulating respiratory immune responses. World Journal of Microbiology and Biotechnology, 27(2), 411-416.

43. Izumo, T., Maekawa, T., Ida, M., Noguchi, A., Kitagawa, Y., Shibata, H., Yasui, H. & Kiso, Y. (2010). Effect of intranasal administration of Lactobacillus pentosus S-PT84 on influenza virus infection in mice. International immunopharmacology, 10(9), 1101-1106.

44. Yasui, H., Kiyoshima, J., Hori, T. & Shida, K. (1999). Protection against influenza virus infection of mice fed Bifidobacterium breve YIT4064. Clinical and Diagnostic Laboratory Immunology, 6(2), 186-192.

45. Kobayashi, N., Saito, T., Uematsu, T., Kishi, K., Toba, M., Kohda, N. & Suzuki, T. (2011). Oral administration of heat-killed Lactobacillus pentosus strain b240 augments protection against influenza virus infection in mice. International immunopharmacology, 11(2), 199203.

46. Kosaka, A., Yan, H., Ohashi, S., Gotoh, Y., Sato, A., Tsutsui, H., Kaisho, T., Toda, T. & Tsuji, N.M. (2012). Lactococcus lactis subsp. cremoris FC triggers IFN-γ production from NK and T cells via IL-12 and IL-18. International Immunopharmacology, 14(4), 729-733.

47. Chesler, D.A. & Reiss, C.S. (2002). The role of IFN-γ in immune responses to viral infections of the central nervous system. Cytokine & growth factor reviews, 13(6), 441-454.

48. Ikeda, H., Old, L.J. & Schreiber, R.D. (2002). The roles of IFN-γ in protection against tumor development and cancer immunoediting. Cytokine & growth factor reviews, 13(2), 95-109.

49. Tohno, M., Shimazu, T., Ueda, W., Anzawa, D., Aso, H., Nishimura, J., Kawai, Y., Saito, Y., Saito, T. & Kitazawa, H. (2007). Molecular cloning of porcine RP105/MD-1 involved in recognition of extracellular phosphopolysaccharides from Lactococcus lactis ssp. cremoris. Molecular immunology, 44(10), 2566-2577.

50. Hong, T., Matsumoto, T., Kiyohara, H. & Yamada, H. (1998). Enhanced production of hematopoietic growth factors through T cell activation in Peyer’s patches by oral administration of Kampo (Japanese herbal) medicine,“Juzen-Taiho-To”. Phytomedicine, 5(5), 353-360.

51. Kiyohara, H., Nonaka, K., Sekiya, M., Matsumoto, T., Nagai, T., Tabuchi, Y. & Yamada, H. (2011). Polysaccharide-containing macromolecules in a kampo (traditional Japanese herbal) medicine, hochuekkito: dual active ingredients for modulation of immune functions on intestinal Peyer's patches and epithelial cells. Evidence-Based Complementary and Alternative Medicine, 2011, 492691.

52. Becker, D., Kolde, G., Reske, K. & Knop, J. (1994). An in vitro test for endocytotic activation of murine epidermal Langerhans cells under the influence of contact allergens. Journal of Immunological Methods, 169(2), 195-204.

53. Yang, Z., Ahn, H.-J. & Nam, H.-W. (2015). Chronic Toxoplasmosis Modulates the Induction of Contact Hypersensitivity by TNCB in Mouse Model. The Korean Journal of Parasitology, 53(6), 755.

54. Shah, M.M., Miyamoto, Y., Yamada, Y., Yamashita, H., Tanaka, H., Ezaki, T., Nagai, H. & Inagaki, N. (2010). Orally supplemented Lactobacillus acidophilus strain L‐92 inhibits passive and active cutaneous anaphylaxis as well as 2, 4‐dinitroflurobenzene and mite fecal antigen induced atopic dermatitis ‐like skin lesions in mice. Microbiology and immunology, 54(9), 523-533.

55. Sunada, Y., Nakamura, S. & Kamei, C. (2008). Effect of Lactobacillus acidophilus strain L-55 on the development of atopic dermatitis-like skin lesions in NC/Nga mice. International Immunopharmacology, 8(13), 1761-1766.

56. Taniguchi, Y., Kohno, K., Inoue, S.-i., Koya-Miyata, S., Okamoto, I., Arai, N., Iwaki, K., Ikeda, M. & Kurimoto, M. (2003). Oral administration of royal jelly inhibits the 81 development of atopic dermatitis-like skin lesions in NC/Nga mice. International Immunopharmacology, 3(9), 1313-1324.

57. Cerning, J., Renard, C., Thibault, J., Bouillanne, C., Landon, M., Desmazeaud, M. & Topisirovic, L. (1994). Carbon source requirements for exopolysaccharide production by Lactobacillus casei CG11 and partial structure analysis of the polymer. Applied and Environmental Microbiology, 60(11), 3914-3919.

58. Kohno, M., Suzuki, S., Kanaya, T., Yoshino, T., Matsuura, Y., Asada, M. & Kitamura, S. (2009). Structural characterization of the extracellular polysaccharide produced by Bifidobacterium longum JBL05. Carbohydrate Polymers, 77(2), 351-357.

59. Ciucanu, I. & Kerek, F. (1984). A simple and rapid method for the permethylation of carbohydrates. Carbohydrate Research, 131(2), 209-217.

60. Jansson, P.E., Kenne, L., Liedgren, H., Lindberg, B. & Lonngren, J. (1976). Chem. Commun., Univ. Stockholm, 8, 46.

61. Fiske, C.H. & Subbarow, Y. (1925). The colorimetric determination of phosphorus. Journal of Biological Chemistry, 66(2), 375-400.

62. Harada, D., Tsukumo, Y., Takashima, Y. & Manabe, H. (2006). Effect of orally administered rolipram, a phosphodiesterase 4 inhibitor, on a mouse model of the dermatitis caused by 2,4,6-trinitro-1-chlorobenzene (TNCB)-repeated application. European Journal of Pharmacology, 532(1), 128-137.

63. Page, B., Page, M. & Noel, C. (1993). A new fluorometric assay for cytotoxicity measurements in vitro. International Journal of Oncology, 3, 473-473.

64. Vinderola, G., Perdigón, G., Duarte, J., Farnworth, E. & Matar, C. (2006). Effects of the oral administration of the exopolysaccharide produced by Lactobacillus kefiranofaciens on the gut mucosal immunity. Cytokine, 36(5), 254-260.

65. Surayot, U., Wang, J., Seesuriyachan, P., Kuntiya, A., Tabarsa, M., Lee, Y., Kim, J.-K., Park, 82 W. & You, S. (2014). Exopolysaccharides from lactic acid bacteria: structural analysis, molecular weight effect on immunomodulation. International journal of biological macromolecules, 68, 233-240.

66. Hidalgo-Cantabrana, C., López, P., Gueimonde, M., Clara, G., Suárez, A., Margolles, A. & Ruas-Madiedo, P. (2012). Immune modulation capability of exopolysaccharides synthesised by lactic acid bacteria and bifidobacteria. Probiotics and Antimicrobial Proteins, 4(4), 227-237.

67. Nakajima, H., Hirota, T., Toba, T., Itoh, T. & Adachi, S. (1992). Structure of the extracellular polysaccharide from slime-forming Lactococcus lactis subsp. cremoris SBT 0495. Carbohydrate Research, 224, 245-253.

68. Yang, Z., Staaf, M., Widmalm, G. & Tenhu, H. (1999). Separation, purification and characterisation of extracellular polysaccharides produced by slime-forming Lactococcus lactis ssp. cremoris strains. International Dairy Journal, 9(9), 631-638.

69. van Casteren, W.H., Dijkema, C., Schols, H.A., Beldman, G. & Voragen, A.G. (2000). Structural characterisation and enzymic modification of the exopolysaccharide produced by Lactococcus lactis subsp. cremoris B39. Carbohydrate research, 324(3), 170-181.

70. van Casteren, W.H., de Waard, P., Dijkema, C., Schols, H.A. & Voragen, A.G. (2000). Structural characterisation and enzymic modification of the exopolysaccharide produced by Lactococcus lactis subsp. cremoris B891. Carbohydrate research, 327(4), 411-422.

71. Gruter, M., Billy, D., de Waard, P., Kuiper, J., Kamerling, J.P. & Vliegenthart, J.F. (1994). Structural studies on a cell wall polysaccharide preparation of Lactococcus lactis subspecies cremoris H414. Journal of carbohydrate chemistry, 13(3), 363-382.

72. Petersen, L.J., Mosbech, H. & Skov, P.S. (1996). Allergen-induced histamine release in intact human skin in vivo assessed by skin microdialysis technique: characterization of factors influencing histamine releasability. Journal of Allergy and Clinical Immunology, 97(2), 672-679.

73. Ihle, J., Keller, J., Oroszlan, S., Henderson, L., Copeland, T., Fitch, F., Prystowsky, M., Goldwasser, E., Schrader, J. & Palaszynski, E. (1983). Biologic properties of homogeneous interleukin 3. I. Demonstration of WEHI-3 growth factor activity, mast cell growth factor activity, p cell-stimulating factor activity, colony-stimulating factor activity, and histamineproducing cell-stimulating factor activity. The Journal of Immunology, 131(1), 282-287.

74. Kano, H., Kita, J., Makino, S., Ikegami, S. & Itoh, H. (2013). Oral administration of Lactobacillus delbrueckii subspecies bulgaricus OLL1073R-1 suppresses inflammation by decreasing interleukin-6 responses in a murine model of atopic dermatitis. Journal of Dairy Science, 96(6), 3525-3534.

75. Masuda, Y., Takahashi, T., Yoshida, K., Nishitani, Y., Mizuno, M. & Mizoguchi, H. (2012). Anti-allergic effect of lactic acid bacteria isolated from seed mash used for brewing sake is not dependent on the total IgE levels. Journal of Bioscience and Bioengineering, 114(3), 292-296.

76. Elbe-Bürger, A., Egyed, A., Olt, S., Klubal, R., Mann, U., Rappersberger, K., Rot, A. & Stingl, G. (2002). Overexpression of IL-4 alters the homeostasis in the skin. Journal of Investigative Dermatology, 118(5), 767-778.

77. Saitoh, A., Yasaka, N., Osada, A., Nakamura, K., Furue, M. & Tamaki, K. (1999). Migration of Langerhans cells in an in vitro organ culture system: IL-6 and TNF-α are partially responsible for migration into the epidermis. Journal of Dermatological Science, 19(3), 166-174.

78. Schoeler, D., Grützkau, A., Henz, B.M., Küchler, J. & Krüger-Krasagakis, S. (2003). Interleukin-6 enhances whereas tumor necrosis factor α and interferons inhibit integrin expression and adhesion of human mast cells to extracellular matrix proteins. Journal of Investigative Dermatology, 120(5), 795-801.

79. Soumelis, V., Reche, P.A., Kanzler, H., Yuan, W., Edward, G., Homey, B., Gilliet, M., Ho, S., Antonenko, S. & Lauerma, A. (2002). Human epithelial cells trigger dendritic cell– mediated allergic inflammation by producing TSLP. Nature Immunology, 3(7), 673-680.

80. Yamada, H., Matsukura, M., Yudate, T., Chihara, J., Stingl, G. & Tezuka, T. (1997). Enhanced production of RANTES, an eosinophil chemoattractant factor, by cytokinestimulated epidermal keratinocytes. International Archives of Allergy and Immunology, 114(Suppl. 1), 28-32.

81. Bergqvist, P., Gärdby, E., Stensson, A., Bemark, M. & Lycke, N.Y. (2006). Gut IgA class switch recombination in the absence of CD40 does not occur in the lamina propria and is independent of germinal centers. The Journal of Immunology, 177(11), 7772-7783.

82. 後藤弥生, 小阪英樹, 相磯知里, 吉田克久, 本山司, 本山貢 & 鈴木利雄. (2019). Lactococcus lactis subsp. cremoris FC で発酵したヨーグルトが高校陸上長距離選手 の唾液中分泌型免疫グロブリン A の分泌に与える影響. 体力科学, 68(6), 407-414.

83. Zeidan, A.A., Poulsen, V.K., Janzen, T., Buldo, P., Derkx, P.M., Øregaard, G. & Neves, A.R. (2017). Polysaccharide production by lactic acid bacteria: from genes to industrial applications. FEMS Microbiology Reviews, 41(Supp_1), S168-S200.

84. van Kranenburg, R., Kleerebezem, M. & de Vos, W.M. (2000). Nucleotide sequence analysis of the lactococcal EPS plasmid pNZ4000. Plasmid, 43(2), 130-136.

85. Dabour, N. & LaPointe, G. (2005). Identification and molecular characterization of the chromosomal exopolysaccharide biosynthesis gene cluster from Lactococcus lactis subsp. cremoris SMQ-461. Applied and environmental microbiology, 71(11), 7414-7425.

86. Forde, A. & Fitzgerald, G.F. (2003). Molecular organization of exopolysaccharide (EPS) encoding genes on the lactococcal bacteriophage adsorption blocking plasmid, pCI658. Plasmid, 49(2), 130-142.

87. Knoshaug, E.P., Ahlgren, J.A. & Trempy, J.E. (2007). Exopolysaccharide expression in 85 Lactococcus lactis subsp. cremoris Ropy352: evidence for novel gene organization. Appl. Environ. Microbiol., 73(3), 897-905.

88. Radke-Mitchell, L.C. & Sandine, W. (1986). Influence of temperature on associative growth of Streptococcus thermophilus and Lactobacillus bulgaricus. Journal of dairy science, 69(10), 2558-2568.

89. Cerning, J., Bouillanne, C., Landon, M. & Desmazeaud, M. (1992). Isolation and characterization of exopolysaccharides from slime-forming mesophilic lactic acid bacteria. Journal of Dairy Science, 75(3), 692-699.

90. Vedamuthu, E.R. & Neville, J.M. (1986). Involvement of a plasmid in production of ropiness (mucoidness) in milk cultures by Streptococcus cremoris MS. Appl. Environ. Microbiol., 51(4), 677-682.

91. Trevors, J. (1986). Plasmid curing in bacteria. FEMS microbiology reviews, 1(3-4), 149157.

92. Hayes, F., Caplice, E., McSweeney, A., Fitzgerald, G.F. & Daly, C. (1990). pAMβ1Associated Mobilization of Proteinase Plasmids from Lactococcus lactis subsp. lactis UC317 and L. lactis subsp. cremoris UC205. Applied and environmental microbiology, 56(1), 195-201.

93. Trotter, M., Ross, R., Fitzgerald, G. & Coffey, A. (2002). Lactococcus lactis DPC5598, a plasmid‐free derivative of a commercial starter, provides a valuable alternative host for culture improvement studies. Journal of applied microbiology, 93(1), 134-143.

94. van Kranenburg, R., Marugg, J.D., Van Swam, I.I., Willem, N.J. & De Vos, W.M. (1997). Molecular characterization of the plasmid ‐ encoded eps gene cluster essential for exopolysaccharide biosynthesis in Lactococcus lactis. Molecular microbiology, 24(2), 387-397.

95. Hong, S.H. & Marshall, R.T. (2001). Natural exopolysaccharides enhance survival of lactic acid bacteria in frozen dairy desserts. Journal of dairy science, 84(6), 1367-1374.

96. Saito, H. & Miura, K.-I. (1963). Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochimica et Biophysica Acta, 72, 619-629.

97. Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A. & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical chemistry, 28(3), 350-356.

98. De Vuyst, L. & Degeest, B. (1999). Heteropolysaccharides from lactic acid bacteria. FEMS microbiology reviews, 23(2), 153-177.

99. Jaworska, D., Waszkiewicz‐Robak, B., Kolanowski, W. & Swiderski, F. (2005). Relative importance of texture properties in the sensory quality and acceptance of natural yoghurts. International Journal of Dairy Technology, 58(1), 39-46.

100. Lee, W. & Lucey, J. (2010). Formation and physical properties of yogurt. AsianAustralasian Journal of Animal Sciences, 23(9), 1127-1136.

101. Marshall, V.M. & Rawson, H. (1999). Effects of exopolysaccharide‐producing strains of thermophilic lactic acid bacteria on the texture of stirred yoghurt. International journal of food science & technology, 34(2), 137-143.

102. Behare, P., Singh, R., Tomar, S., Nagpal, R., Kumar, M. & Mohania, D. (2010). Effect of exopolysaccharide-producing strains of Streptococcus thermophilus on technological attributes of fat-free lassi. Journal of dairy science, 93(7), 2874-2879.

103. 兼崎友. (2017). ゲノム研究の歴史と技術革新. 生物工学会誌, 95(3), 136-139.

104. Morimoto, T., Ara, K., Ozaki, K. & Ogasawara, N. (2009). A new simple method to introduce marker-free deletions in the Bacillus subtilis genome. Genes & genetic systems, 84(4), 315-318.

105. De Coster, W., D’Hert, S., Schultz, D.T., Cruts, M. & Van Broeckhoven, C. (2018). NanoPack: visualizing and processing long-read sequencing data. Bioinformatics, 34(15), 2666-2669.

106. Wick, R.R., Judd, L.M., Gorrie, C.L. & Holt, K.E. (2017). Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS computational biology, 13(6), e1005595.

107. Tanizawa, Y., Fujisawa, T. & Nakamura, Y. (2018). DFAST: a flexible prokaryotic genome annotation pipeline for faster genome publication. Bioinformatics, 34(6), 1037-1039.

108. Siguier, P., Gourbeyre, E., Varani, A., Ton-Hoang, B. & Chandler, M. (2015). Everyman's guide to bacterial insertion sequences. Mobile DNA III, 555-590.

109. Ohtsubo, Y., Ikeda-Ohtsubo, W., Nagata, Y. & Tsuda, M. (2008). GenomeMatcher: a graphical user interface for DNA sequence comparison. BMC bioinformatics, 9(1), 1-9.

110. Makarova, K., Slesarev, A., Wolf, Y., Sorokin, A., Mirkin, B., Koonin, E., Pavlov, A., Pavlova, N., Karamychev, V. & Polouchine, N. (2006). Comparative genomics of the lactic acid bacteria. Proceedings of the National Academy of Sciences, 103(42), 15611-15616.

111. Wegmann, U., O'Connell-Motherway, M., Zomer, A., Buist, G., Shearman, C., Canchaya, C., Ventura, M., Goesmann, A., Gasson, M.J. & Kuipers, O.P. (2007). Complete genome sequence of the prototype lactic acid bacterium Lactococcus lactis subsp. cremoris MG1363. Journal of bacteriology, 189(8), 3256-3270.

112. Bolotin, A., Quinquis, B., Ehrlich, S.D. & Sorokin, A. (2012). Complete genome sequence of Lactococcus lactis subsp. cremoris A76. Journal of bacteriology, 194(5), 1241-1242.

113. Linares, D.M., Kok, J. & Poolman, B. (2010). Genome sequences of Lactococcus lactis MG1363 (revised) and NZ9000 and comparative physiological studies. Journal of bacteriology, 192(21), 5806-5812.

114. Ainsworth, S., Zomer, A., de Jager, V., Bottacini, F., van Hijum, S.A., Mahony, J. & van Sinderen, D. (2013). Complete genome of Lactococcus lactis subsp. cremoris UC509. 9, host for a model lactococcal P335 bacteriophage. Genome announcements, 1(1).

115. Kelly, W.J., Altermann, E., Lambie, S.C. & Leahy, S.C. (2013). Interaction between the genomes of Lactococcus lactis and phages of the P335 species. Frontiers in microbiology, 4, 257.

116. Ruas-Madiedo, P. & De Los Reyes-Gavilán, C. (2005). Invited review: methods for the screening, isolation, and characterization of exopolysaccharides produced by lactic acid bacteria. Journal of dairy science, 88(3), 843-856.

117. 藤谷順子, 宇山理紗, 大越ひろ, 栢下淳, 小城明子, 高橋浩二, 前田広士, 藤島一 郎 & 植田耕一郎. (2013). 日本摂食・嚥下リハビリテーション学会嚥下調整食分 類 2013. 日本摂食嚥下リハビリテーション学会誌, 17(3), 255-267.

118. Ruas-Madiedo, P., Tuinier, R., Kanning, M. & Zoon, P. (2002). Role of exopolysaccharides produced by Lactococcus lactis subsp. cremoris on the viscosity of fermented milks. International Dairy Journal, 12(8), 689-695.

119. Girard, M. & Schaffer-Lequart, C. (2007). Gelation and resistance to shearing of fermented milk: role of exopolysaccharides. International Dairy Journal, 17(6), 666-673.

120. Corthésy, B., Gaskins, H.R. & Mercenier, A. (2007). Cross-talk between probiotic bacteria and the host immune system. The Journal of nutrition, 137(3), 781S-790S.

121. Mazmanian, S.K. & Kasper, D.L. (2006). The love–hate relationship between bacterial polysaccharides and the host immune system. Nature Reviews Immunology, 6(11), 849858.

122. Levy, M., Kolodziejczyk, A.A., Thaiss, C.A. & Elinav, E. (2017). Dysbiosis and the immune system. Nature Reviews Immunology, 17(4), 219-232.

123. 種本俊, 筋野智久 & 金井隆典. (2017). 腸内細菌叢と免疫の関わり. 日本臨床免 疫学会会誌, 40(6), 408-415.

124. 光岡知足. (2011). プロバイオティクスの歴史と進化. 日本乳酸菌学会誌, 22(1), 2637.

125. Rakhuba, D., Kolomiets, E., Dey, E.S. & Novik, G. (2010). Bacteriophage receptors, mechanisms of phage adsorption and penetration into host cell. Pol J Microbiol, 59(3), 145-55.

126. Leela, J.K. & Sharma, G. (2000). Studies on xanthan production from Xanthomonas campestris. Bioprocess Engineering, 23(6), 687-689.

127. Souw, P. & Demain, A.L. (1979). Nutritional studies on xanthan production by Xanthomonas campestris NRRL B1459. Applied and Environmental Microbiology, 37(6), 1186.

128. 福田健二. (2015). 乳酸菌の細胞外多糖 (特集 乳に係わる糖鎖研究の最前線). 応 用糖質科学: 日本応用糖質科学会誌, 5(1), 31-37.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る