リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「CO₂-dependent migration and relocation of LCIB, a pyrenoid-peripheral protein in Chlamydomonas reinhardtii」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

CO₂-dependent migration and relocation of LCIB, a pyrenoid-peripheral protein in Chlamydomonas reinhardtii

Yamano, Takashi Toyokawa, Chihana Shimamura, Daisuke Matsuoka, Toshiki Fukuzawa, Hideya 京都大学 DOI:10.1093/plphys/kiab528

2022.02

概要

Most microalgae overcome the difficulty of acquiring inorganic carbon (Ci) in aquatic environments by inducing a CO₂-concentrating mechanism (CCM). In the green alga Chlamydomonas reinhardtii, two distinct photosynthetic acclimation states have been described under CO₂-limiting conditions (low-CO₂, LC, and very low-CO₂, VLC). LC-inducible protein B (LCIB), structurally characterized as carbonic anhydrase, localizes in the chloroplast stroma under CO₂-supplied and LC conditions. In VLC conditions, it migrates to aggregate around the pyrenoid, where the CO₂-fixing enzyme Rubisco is enriched. Although the physiological importance of LCIB localization changes in the chloroplast has been shown, factors necessary for the localization changes remain uncertain. Here, we examined the effect of pH, light availability, photosynthetic electron flow, and protein synthesis on the localization changes, along with measuring Ci concentrations. LCIB dispersed or localized in the basal region of the chloroplast stroma at 8.3–15 µM CO₂, whereas LCIB migrated toward the pyrenoid at 6.5 µM CO₂. Furthermore, LCIB relocated toward the pyrenoid at 2.6–3.4 µM CO₂, even in cells in the dark or treated with DCMU and cycloheximide in light. In contrast, in the mutant lacking CCM₁, a master regulator of CCM, LCIB remained dispersed even at 4.3 µM CO₂. Meanwhile, a simultaneous expression of LCIC, an interacting protein of LCIB, induced the localization of several speckled structures at the pyrenoid periphery. These results suggest that the localization changes of LCIB require LCIC and are controlled by CO₂ concentration with ∼7 µM as the boundary.

この論文で使われている画像

参考文献

Atkinson N, Mao Y, Chan KX, McCormick AJ (2020) Condensation

of Rubisco into a proto-pyrenoid in higher plant chloroplasts. Nat

Commun 11: 6303

Barrett J, Girr P, Mackinder LCM (2021) Pyrenoids: CO2-fixing

phase separated liquid organelles. Biochim Biophys Acta Mol Cell

Res 1868: 118949

Bozzo GG, Colman B (2000) The induction of inorganic carbon

transport and external carbonic anhydrase in Chlamydomonas

reinhardtii is regulated by external CO2 concentration. Plant Cell

Environ 23: 1137–1144

Chrachri A, Hopkinson BM, Flynn K, Brownlee C, Wheeler G

(2018) Dynamic changes in carbonate chemistry in the microenvironment around single marine phytoplankton cells. Nat Commun

9: 74

Duanmu D, Miller AR, Horken KM, Weeks DP, Spalding MH (2009)

Knockdown of limiting-CO2-induced gene HLA3 decreases HCO3–

transport and photosynthetic Ci affinity in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 106: 5990–5995

Dutcher SK (1995) Mating and tetrad analysis in Chlamydomonas

reinhardtii. Methods Cell Biol 47: 531–540

Engel BD, Schaffer M, Cuellar LK, Villa E, Plitzko JM, Baumeister

W (2015) Native architecture of the Chlamydomonas chloroplast

revealed by in situ cryo-electron tomography. eLife 4: e04889

Freeman Rosenzweig ES, Xu B, Kuhn Cuellar L, Martinez-Sanchez

A, Schaffer M, Strauss M, Cartwright HN, Ronceray P, Plitzko

JM, Fo¨rster F, et al. (2017) The eukaryotic CO2-concentrating organelle is liquid-like and exhibits dynamic reorganization. Cell 171:

148–162

Fukuzawa H, Miura K, Ishizaki Kucho KI, Saito T, Kohinata T,

Ohyama K (2001) Ccm1, a regulatory gene controlling the induction of a carbon-concentrating mechanism in Chlamydomonas

reinhardtii by sensing CO2 availability Proc Natl Acad Sci USA 98:

5347–5352

Fukuzawa H, Ogawa T, Kaplan A (2012) The uptake of CO2 by

cyanobacteria and microalgae. In JJ Eaton-rye, BC Tripathy, TD

Sharkey, eds, Photosynthesis Plastid Biology, Energy Conversion

and Carbon Assimilation, Vol. 34. Springer, Advances in

Photosynthesis and Respiration, Berlin/Heidelberg, Germany,

pp 625–650

Gao H, Wang Y, Fei X, Wright DA, Spalding MH (2015) Expression

activation and functional analysis of HLA3, a putative inorganic

carbon transporter in Chlamydomonas reinhardtii. Plant J 82: 1–11

He S, Chou HT, Matthies D, Wunder T, Meyer MT, Atkinson N,

Martinez-Sanchez A, Jeffrey PD, Port SA, Patena W, et al.

(2020) The structural basis of Rubisco phase separation in the pyrenoid. Nat Plants 6: 1480–1490

Hennacy JH, Jonikas MC (2020) Prospects for engineering biophysical CO2 concentrating mechanisms into land plants to enhance

yields. Annu Rev Plant Biol 71: 461–485

Itakura AK, Chan KX, Atkinson N, Pallesen L, Wang L, Reeves G,

Patena W, Caspari O, Roth R, Goodenough U, et al. (2019) A

Rubisco-binding protein is required for normal pyrenoid number

and starch sheath morphology in Chlamydomonas reinhardtii.

Proc Natl Acad Sci USA 116: 18445–18454

Jin S, Sun J, Wunder T, Tang D, Cousins AB, Sze SK, MuellerCajar O, Gao YG (2016) Structural insights into the LCIB protein

family reveals a new group of b-carbonic anhydrases. Proc Natl

Acad Sci USA 113: 14716–14721

Karlsson J, Clarke AK, Chen ZY, Hugghins SY, Park YI, Husic HD,

Moroney JV, Samuelsson G (1998) A novel a-type carbonic anhydrase associated with the thylakoid membrane in Chlamydomonas

reinhardtii is required for growth at ambient CO2. EMBO J 17:

1208–1216

Laughlin TG, Savage DF, Davies KM (2020) Recent advances on the

structure and function of NDH-1: the complex I of oxygenic photosynthesis. Biochim Biophys Acta Bioenerg 1861: 148254

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

1094

| PLANT PHYSIOLOGY 2022: 188; 1081–1094

Li X, Zhang, R, Patena W, Gang SS, Blum SR, Ivanova N, Yue R,

Robertson JM, Lefebvre PA, Fitz-Gibbon ST, et al. (2016) An indexed,

mapped mutant library enables reverse genetics studies of biological

processes in Chlamydomonas reinhardtii. Plant Cell 28: 367–387

Mackinder LCM, Meyer MT, Mettler-Altmann T, Chen VK,

Mitchell MC, Caspari O, Freeman Rosenzweig ES, Pallesen L,

Reeves G, Itakura A, et al. (2016) A repeat protein links Rubisco

to form the eukaryotic carbon-concentrating organelle. Proc Natl

Acad Sci USA 113: 5958–5963

Mackinder LCM, Chen C, Leib RD, Patena W, Blum SR, Rodman M,

Ramundo S, Adams CM, Jonikas MC (2017) A spatial interactome

reveals the protein organization of the algal CO2-concentrating

mechanism. Cell 17: 133–147

Mackinder LCM (2018) The Chlamydomonas CO2-concentrating

mechanism and its potential for engineering photosynthesis in

plants. New Phytol 217: 54–56

Meyer MT, Whittaker C, Griffiths H (2017) The algal pyrenoid: key

unanswered questions. J Exp Bot 68: 3739–3749

Meyer MT, Itakura AK, Patena W, Wang L, He S, Emrich-Mills T,

Lau CS, Yates G, Mackinder LCM, Jonikas MC (2020) Assembly

of the algal CO2-fixing organelle, the pyrenoid, is guided by a

Rubisco-binding motif. Sci Adv 6: eabd2408

Miura K, Yamano T, Yoshioka S, Kohinata T, Inoue Y, Taniguchi

F, Asamizu E, Nakamura Y, Tabata S, Yamato KT, et al. (2004)

Expression profiling-based identification of CO2-responsive genes

regulated by CCM1 controlling a carbon-concentrating mechanism

in Chlamydomonas reinhardtii. Plant Physiol 135: 1595–1607

Mukherjee A, Lau CS, Walker CE, Rai AK, Prejean CI, Yates G,

Emrich-Mills T, Lemoine SG, Vinyard DJ, Mackinder LCM, et al.

(2019) Thylakoid localized bestrophin-like proteins are essential for

the CO2 concentrating mechanism of Chlamydomonas reinhardtii.

Proc Natl Acad Sci USA 116: 16915–16920

Ohad I, Siekevitz P, Palade GE (1967) BIOGENESIS OF CHLOROPLAST

MEMBRANES: I. plastid dedifferentiation in a dark-grown algal mutant

(Chlamydomonas reinhardi). J Cell Biol 35: 521–552

Nitta N, Sugimura T, Isozaki A, Mikami H, Hiraki K, Sakuma S,

Iino T, Arai F, Endo T, Fujiwaki Y, et al. (2018) Intelligent

image-activated cell sorting. Cell 175: 266–276

Raven JA, Giordano M, Beardall J, Maberly SC (2011) Algal and

aquatic plant carbon concentrating mechanisms in relation to environmental change. Photosynth Res 109: 281–296

Yamano et al.

Sager R, Palade GE (1957) Structure and development of the chloroplast in Chlamydomonas. I. The normal green cell. J Biophys

Biochem Cytol 3: 463–488

Toyokawa C, Yamano T, Fukuzawa H (2020) Pyrenoid starch

sheath is required for LCIB localization and the CO2-concentrating

mechanism in green algae. Plant Phys 182: 1883–1893

Vance P, Spalding MH (2005) Growth, photosynthesis, and gene expression in Chlamydomonas over a range of CO2 concentrations

and CO2/O2 ratios: CO2 regulates multiple acclimation states. Can

J Bot 83: 820–833

Wang Y, Spalding MH (2006) An inorganic carbon transport system

responsible for acclimation specific to air levels of CO2 in

Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 103:

10110–10115

Wang Y, Spalding MH (2014a) Acclimation to very low CO2: contribution of limiting CO2 inducible proteins, LCIB and LCIA, to inorganic carbon uptake in Chlamydomonas reinhardtii. Plant Physiol

166: 2040–2050

Wang Y, Spalding MH (2014b) LCIB in the Chlamydomonas

CO2-concentrating mechanism. Photosynth Res 121: 185–192

Wunder T, Cheng SLH, Lai SK, Li HY, Mueller-Cajar O (2018) The

phase separation underlying the pyrenoid-based microalgal

Rubisco supercharger. Nat Commun 9: 5076

Yamano T, Miura K, Fukuzawa H (2008) Expression analysis of

genes associated with the induction of the carbon-concentrating

mechanism in Chlamydomonas reinhardtii. Plant Physiol 147:

340–354

Yamano T, Tsujikawa T, Hatano K, Ozawa SI, Takahashi Y,

Fukuzawa H (2010) Light and low-CO2-dependent LCIB-LCIC

complex localization in the chloroplast supports the

carbon-concentrating mechanism in Chlamydomonas reinhardtii.

Plant Cell Physiol 51: 1453–1468

Yamano T, Asada A, Sato E, Fukuzawa H (2014) Isolation and characterization of mutants defective in the localization of LCIB, an

essential factor for the carbon-concentrating mechanism in

Chlamydomonas reinhardtii. Photosynth Res 121: 193–200

Yamano T, Sato E, Iguchi H, Fukuda Y, Fukuzawa H (2015)

Characterization of cooperative bicarbonate uptake into chloroplast stroma in the green alga Chlamydomonas reinhardtii. Proc

Natl Acad Sci USA 112: 7315–7320

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る